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Abstract

Recent approaches to action classification in videos have
used sparse spatio-temporal words encoding local appear-
ance around interesting movements. Most of these ap-
proaches use a histogram representation, discarding the
temporal order among features. But this ordering infor-
mation can contain important information about the ac-
tion itself, e.g. consider the sport disciplines of hurdle race
and long jump, where the global temporal order of mo-
tions (running, jumping) is important to discriminate be-
tween the two. In this work we propose to use a sequential
representation which retains this temporal order. Further,
we introduce Discriminative Subsequence Mining to find
optimal discriminative subsequence patterns. In combina-
tion with the LPBoost classifier, this amounts to simultane-
ously learning a classification function and performing fea-
ture selection in the space of all possible feature sequences.
The resulting classifier linearly combines a small number
of interpretable decision functions, each checking for the
presence of a single discriminative pattern. The classifier is
benchmarked on the KTH action classification data set and
outperforms the best known results in the literature.

1. Introduction
Human activity recognition and classification systems

can provide useful semantic information to solve higher-
level tasks, for example to summarize or index videos based
on their semantic content. Robust activity classification is
also important for video-based surveillance systems, which
should act intelligently, such as alerting an operator of a
possibly dangerous situation.

Building a general activity recognition and classifica-
tion system is a challenging task, because of variations in

the environment, objects and actions. Variations in the
environment can be caused by cluttered or moving back-
ground, camera motion, occlusion, weather- and illumina-
tion changes. Variations in the objects are due to differences
in appearance, size or posture of the objects or due to self-
motion which is not itself part of the activity. Variations
in the action can make it difficult to recognize semantically
equivalent actions as such, for example imagine the many
ways to jump over an obstacle or different ways to throw a
stick.

In current computer vision research, it is common to
represent each data instance (i.e., video or image) as a
histogram of visual words, see for example the recent
VOC2006 object classification challenge [6]. However, due
to the variations stated above, not all visual words are infor-
mative for classification. Thus, feature selection is impor-
tant both for robustness against variations and interpretabil-
ity of the classification rule. However, simply removing vi-
sual words based on some statistics (e.g., correlation to the
class label) might be harmful, because, if combined with
other features, a visual word can possibly become an impor-
tant feature. In this light, finding the optimally discrimina-
tive combination of features is a combinatorial optimization
problem, leading to an exponentially large feature space.
The problem of high dimensionality of such feature space
can partially be overcome using kernel methods, which al-
lows one to learn a classification function implicitly. How-
ever, the cost is that the resulting classification function is
not interpretable.

Recently, Nowozin et al. [13] proposed an image clas-
sification method termed Itemset Boosting that selects dis-
criminative features from power sets of visual words. Thus,
features are still selected from a meaningful exponentially
large feature space, but the resulting classification function
is sparse and interpretable. They find that a combination of
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visual words captures objects in the image well (e.g., mo-
torbikes), and the classification accuracy was comparable to
state-of-the-art SVM methods.

When we use the spatio-temporal words for action recog-
nition, we can directly adopt the Itemset Boosting approach
for this task. However, this discards the temporal order of
spatio-temporal words. Instead, we propose to represent a
video as a sequence of sets of discretized spatio-temporal
words. Each set in the sequence is produced by collecting
the features of a number of adjacent video frames, such that
the overall sequence preserves approximately the global
temporal order of features. To train a classifier using this
representation we extend the PrefixSpan subsequence min-
ing algorithm [14] in combination with LPBoost [3].

In the remainder of this section we briefly introduce re-
lated work. In Section 2 we first describe spatio-temporal
features for action classification in videos and how they nat-
urally form a sequential representation for videos. In Sec-
tion 3 we propose the LPBoost classifier for sequential rep-
resentations. This produces as subproblem a combinatorial
optimization problem over the space of all sequences. To ef-
ficiently solve this problem, we propose in Section 4 the dis-
criminative subsequence mining (DPrefixSpan) algorithm.
Section 5 covers experiments and results based on the KTH
action classification benchmark dataset. Finally, Sections 6
and 7 discuss these results and draw conclusions.

1.1. Related work

We now discuss two main groups of approaches popu-
lar in the literature, part-based representations and holistic
representations.

Part-based representations. Part-based representations
based on interest point detectors, combined with robust de-
scriptor methods have been used very successfully for ob-
ject classification tasks, see for example the approaches sub-
mitted to the VOC2006 challenge [6].

Recently, representations based on sparse local features
have become popular also for human action classifica-
tion. Laptev [9] proposed to assign each voxel in a spatio-
temporal volume a saliency value and extract descriptors
from the neighborhood of local saliency maxima. Schüldt
et al. [17] used these features successfully for human ac-
tion classification by discretizing them into codewords and
producing histogram of the occurring words for each video.
The histograms are treated as fixed-length vectors to train
a classification function. Dollár et al. [4] argue in principle
for the same approach but suggest to use a denser sampling
of the spatio-temporal volume by only requiring each in-
terest point to be a local maxima in the spatial directions
instead of both spatial and temporal dimensions. They jus-
tify this change by increased classification performance on
the same dataset. Niebles et al. [11] train an unsupervised

probabilistic topic model on the same features as Dollár and
obtain comparable classification performance. Another ap-
proach is due to Ke at al. [7], who use a forward feature
selection procedure to train a classifier on volumetric fea-
tures.

Holistic representations. In earlier works a more holistic
representation has been advocated. Bobick et al. [2] pro-
posed motion history images (MHI) as a meaningful way to
encode short spans of motion. For each frame of the input
video the MHI is the gray scale image which records the
location of motion, where recent motion has high intensity
values and older motion produces lower intensities. The
MHI representation can be matched efficiently using global
statistics, such as moment features. Weinland et al. [19]
extended the idea to motion history volumes by means of
multiple cameras. By using such controlled environment a
high classification accuracy and desirable invariances can
be achieved. However, for most practical cases, Weinland’s
environment with five cameras around the scene is too ex-
pensive or difficult to setup. Efros et al. [5] create stabi-
lized spatio-temporal volumes for each object whose action
is to be classified. For each volume a smoothed dense op-
tical flow field is extracted and used as descriptor. Their
method is particularly best for classifying the actions of dis-
tant objects where detailed information is unavailable. Yil-
maz and Shah [21] again use a spatio-temporal volume, but
only project the contour of each frame into the volume. De-
scriptors encoding direction, speed and local shape of the
resulting surface are generated by measuring local differen-
tial geometrical properties. In [22], Zelnik-Manor and Irani
describe features derived from space-time gradients at mul-
tiple temporal scales. To compare two sequences of these
features, they use a sliding-window of fixed size and the
distance between two such windows is calculated as χ2-
distance or Mahalanobis distance. Their method works well
to cluster a single long video sequence into similar actions,
as well as recognizing actions in real-time.

There is a large body of work which first recover the pos-
ture of the human actor by means of tracking and fitting a
detailed model of the human body. Action classification can
then be performed by using the intrinsic model parameters
as features, providing great robustness and invariance. Rep-
resentatively, let us cite the work of Yacoob and Black [20],
Ramanan and Forsyth [16], Agarwal and Triggs [1] and for
an unsupervised method, Song et al. [18].

Comparison. Part-based representations treat the video
as a set of independent features, where each feature is
equally important, and by discarding the position informa-
tion they are robust against changes in both space and time
dimensions. A practical drawback of part-based represen-
tations is the variable size of the resulting representations,



which is often overcome by producing a histogram of fixed-
length. Naturally, part-based representations do not require
tracking and are often more resistant to clutter, as only few
parts may be occluded.

Holistic representations derive a fixed-length description
vector for each object whose action is to be classified. Ap-
proaches using these representations often require more pre-
processing of the input data, such as object tracking, reg-
istration, shape fitting or optical flow field calculation. In
case the environment conditions can be controlled these ap-
proaches perform very well.

Each of the above methods has its particular strength but
is also limited in its application. In particular, the part-
based methods discussed discard the temporal order of the
parts, which contains useful information to disambiguate
actions. For example, consider the disciplines of hurdle
race and long jump, where the global temporal order of
motions (running, jumping) is important to discriminate be-
tween the two. Therefore, in this work we use a part-based
view but preserve information about the relative temporal
order of spatio-temporal words by proposing a classifier for
a sequential representation.

2. Sequence Representation of Videos

As a basis of our sequence representation, we use the
spatio-temporal detector of Dollár which has shown good
experimental performance in Niebles et al. [11] and Dollár
et al. [4] for human action classification. In the Dollár
detector, a response function R = (I ∗ g ∗ hev)2 +
(I ∗ g ∗ hod)2 is calculated at each spatio-temporal voxel
(x, y, t) in the video volume I . In the spatial direc-
tions, a 2D Gaussian kernel g with bandwidth σ is used,
while temporally, a quadrature pair of 1D Gabor filters
hev(t; τ, ω) = − cos(2πtω)e−t

2/τ2
and hod(t; τ, ω) =

− sin(2πtω)e−t
2/τ2

is used. The Gabor filters respond
strongest on temporal intensity changes that vary at the fre-
quency ω, which has to be set in advance.

For each interesting point found, we have the spatio-
temporal coordinates (x, y, t) as well as the descriptor, the
concatenated vector of voxel values in the neighborhood of
the point. Typically, we have volumes of size 13 · 13 · 19
voxels, so the descriptor is a 3211-dimensional vector. To
reduce the dimensionality, PCA is used to keep the first 25
components of each descriptor. The reduced descriptors in
R25 are clustered using k-means clustering to produce a
codebook of prototypes. Using the code book, a video is
represented as a set of words of the form (x, y, t, w), where
(x, y) are the coordinates in the video frame t and w is the
codebook index.

Finally, the words are sorted ascendingly by their time
components t and then grouped into temporal bins as shown
in Figure 1, where the first frame a feature occurred is de-

timestart end

temporal bin size

temporal overlap

Figure 1. Temporal binning scheme: A number of overlapping
temporal bins are distributed equidistantly over the video frames.
Here B = 7, τ = 0.5.

noted start, the last frame is denoted end. Two parameters
determine how the features are mapped into the temporal
bins, i) the number of temporal bins B, and ii) the temporal
overlap τ , with 0 ≤ τ < 1. The length of each temporal bin
is simply the overall number of frames (end-start), divided
by B/(1 + τ), such that a large value of τ denotes a larger
overlap. The bins are distributed equidistant over the range
of found features. Since the bins are overlapping, it is possi-
ble that a word is assigned to more than two bins. Although
for the experiments we will keep B fixed over all videos,
our algorithm can deal with a variable number of bins.

Now each video is encoded as a sequence of sets of in-
tegers. To be more precise, let us formalize the notion of
sequence and define a subsequence relationship.

Definition 1 (Sequence). A sequence s = (s1, s2, . . . , s`)
is defined as an ordered list of elements si. Each element
si is a finite set of integers. Let S denote the space of all
possible sequences.

Definition 2 (Subsequence). For any two sequences s1, s2

with `1, `2 elements, respectively, the relationship⊆: S ×S
is defined as follows.

s1 ⊆ s2 ⇔ ∃ (i1, . . . , i`1) with ip > iq if p > q,
such that ∀ k = 1, . . . , `1 : s1

k ⊆ s2
ik
,

where the last ⊆ relation is the normal subset relationship
evaluated between two elements of the sequences.

Thus, a sequence s1 is a subsequence of s2 if there ex-
ists a strictly increasing element mapping such that each
element of s1 is a subset of the respective mapped element
of s2.

Note that the above subsequence relationship allows arbi-
trary long gaps when matching the sequences.

3. Classifier
Action recognition is a multiclass classification problem

in general, but first we focus on the binary classification
problem. Let us denote the training data as {(xn, yn)}`n=1,
where xn is the sequence corresponding to a video and
yn ∈ {−1, 1} is a class label. Denote by S̄ ⊂ S the set of
all patterns, i.e., all subsequences of {xn}`n=1. We use the
LPBoost algorithm [3] to construct the classification func-
tion as a linear combination of weak hypothesis functions.



LPBoost is preferred over AdaBoost, because of its fast con-
vergence and sparse coefficients [3]. Our hypothesis func-
tions are defined as

h(x; s, ω) =
{

ω s ⊆ x
−ω otherwise. , (1)

where an extra variable ω ∈ Ω,Ω = {−1, 1} is introduced
so that the stumps are two-sided and can decide for either
class decision. Our classification function has the form

f(x) =
∑

(s,ω)∈S̄×Ω

αs,ωh(x; s, ω). (2)

where αs,ω is a weight for pattern s and parameters ω such
that

∑
(s,ω)∈S̄×Ω αs,ω = 1 and αs,ω ≥ 0. This is a linear

discriminant function in an intractably large dimensional
space. To obtain an evaluable classification function, we
need to obtain a sparse weight vectorα, where only few co-
efficients are nonzero. The training problem is formulated
as the linear program,

min
α,ξ,ρ

−ρ+D
∑̀
n=1

ξn (3)

sb.t.
∑

(s,ω)∈S̄×Ω

ynαs,ωh(xn; s, ω) + ξn ≥ ρ, (4)

n = 1, . . . , `∑
(s,ω)∈S̄×Ω

αs,ω = 1, α ≥ 0, ξ ≥ 0,

where ρ is the soft-margin, separating negative from pos-
itive examples, D = 1

ν` , and ν ∈ (0, 1) is a parame-
ter controlling the cost of misclassification which has to
be found using model selection techniques, such as cross-
validation. Directly solving this optimization problem is in-
tractable due to the large number of variables in α. Instead
we solve the following equivalent dual problem instead.

min
λ,γ

γ (5)

sb.t.
∑̀
n=1

λnynh(xn; s, ω) ≤ γ, (s, ω) ∈ S̄ × Ω (6)

∑̀
n=1

λn = 1, 0 ≤ λn ≤ D, n = 1, . . . , `.

Afterwards the primal solution α is obtained from the La-
grange multipliers [3].

The dual problem has a limited number of variables,
but a huge number of constraints. Such a linear program
can be solved efficiently by the constraint generation tech-
nique [3]: Starting with an empty hypothesis set, the hy-
pothesis whose constraint (6) is violated the most is identi-
fied and added iteratively. Each time a hypothesis is added,

the optimal solution is updated by solving the restricted dual
problem. In each iteration, we have to solve the following
problem to find an optimal hypothesis,

(ŝ, ω̂) = argmax(s,ω)∈S̄×Ωg(s, ω), (7)

where the gain function is defined as

g(s, ω) =
∑̀
n=1

λnynh(xn; s, ω). (8)

The column generation algorithm terminates if there is no
hypothesis violating the constraint (6).

The proposed classifier allows us to learn two-class deci-
sion functions. To solve a multiclass learning problem using
the above method we use a 1-vs-1 class decomposition in
the form of a decision directed acyclic graph (DDAG) [15],
producing for k classes k(k−1)

2 1-vs-1 problems. While this
is similar to the usual 1-vs-1 decomposition, the DDAG of-
fers the additional advantage that we do not have to resolve
ties during test time.

4. Optimal Pattern Search
In this section we describe an algorithm to solve the

maximum-gain search problem (7). The problem of find-
ing the maximum-gain sequence is difficult due to the size
of the combinatorial space to be considered. By choosing a
clever search strategy we can solve this problem optimally.
Our proposed algorithm is a generalization of the PrefixS-
pan algorithm by Pei et al. [14], which is an algorithm to
enumerate all frequent subsequences: Find all s ∈ S such
that ∑̀

n=1

I(s ⊆ xn) ≥ τ,

where τ is a threshold called the minimum support param-
eter. It generates a search tree starting from an empty root
node, as shown in Figure 2. In the search tree, each child
node contains a sequence which is an extension of its par-
ent node’s sequence. By defining an ordering on the se-
quences, PrefixSpan never generates duplicate sequences in
the search tree.

Naively, our problem can now be solved by constructing
the search tree containing all patterns S̄ by PrefixSpan(γ =
1), and calculate the gain of all patterns. However, for ef-
ficient search, it is important to minimize the size of the
explored search tree. To this aim, tree pruning is crucially
important: Suppose the search tree is generated up to the
pattern s and denote by g∗ the maximum gain among the
ones observed so far. If it is guaranteed that g(s′, ω) is not
larger than g∗ for any extension s′ of s and any ω, we can
avoid the generation of downstream nodes without losing
the optimal pattern. Here, we use the following pruning
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Figure 2. Illustration of the search tree used for subsequence min-
ing.

condition first proposed in [10] for pattern search problems.
See [8] for the proof.

Theorem 1. Let us define the gain bound function as fol-
lows,

µ(s) = max {
2
∑
{n|yn=+1,s⊆xn} λn −

∑`
n=1 ynλn,

2
∑
{n|yn=−1,s⊆xn} λn +

∑`
n=1 ynλn } .

(9)

If the following condition is satisfied,

g∗ > µ(s),

the gain g(s′, ω) of any downstream sequence s′ ⊃ s does
not exceed the current best g∗ for any ω ∈ Ω.

Our Discriminative PrefixSpan mining algorithm (DPre-
fixSpan) is shown in Algorithm 1. Essentially, the differ-
ence from PrefixSpan is that, i) it finds the optimal pat-
tern that maximizes the gain function instead of enumera-
tion, and ii) the gain bound µ is used for tree pruning. The
algorithm recursively generates a subsequence search tree
(line 21). It keeps a variable g∗ which contains the highest
gain value observed so far and is updated whenever a better
subsequence is observed (lines 11 and 24). The tree pruning
happens in line 14, where the recursion call is skipped if the
pruning condition holds. Due to space restriction, we omit
the description of the frequent item finding (Algorithm 1,
line 3) and sequence projection (Algorithm 1, line 20) steps.
These two operations are identical to the original PrefixS-
pan algorithm specifications in Pei et al. [14].

4.1. Iterative Deepening

The current maximum gain g∗ starts from −∞ and
monotonically increases as the tree grows. For effective
pruning, it is desired that g∗ increases as rapidly as possible.
DPrefixSpan generates the tree in depth-first order, which is
usually not optimal in this respect. To discover high-gain
patterns earlier, we use a variant of the iterative deepen-
ing A∗ search algorithm [12], as shown in Algorithm 2.
First, the algorithm calls DPREFIXSPAN with restricting the

Algorithm 1 Discriminative PrefixSpan mining algorithm
(DPrefixSpan)
Input:

Prefix sequence: α ∈ S.
Set of sequences: X = {x1, . . . ,x`},xn ∈ S.
Labels: Y = {y1, . . . , y`}, yi ∈ {−1, 1}.
Weights: λ = {λ1, . . . , λ`}, 0 ≤ λi ≤ 1.
Minimum required support: τ ≥ 1.
Minimum required gain: θ > 0.
Maximum mining depth: level > 0.

Output:
Best observed gain: g∗.
Subsequence ŝ ∈ S and additional parameter ω̂ ∈ Ω,

maximizing g(s, ω).
Extensions-possible flag: found extensions.

Algorithm:
1: function DPREFIXSPAN(α,X, Y,λ, τ, θ, level)
2: g∗ ← θ, (ŝ, ω̂)← (<>,<>)
3: Scan X and find all frequent items (b, last insert) ∈
I × {⊥,>}, subject to

1. (b,>): b can be appended to the last element of α, or

2. (b,⊥): b can be appended as a new element to α

4: found extensions← ⊥
5: for each (b, last insert) found do
6: Produce α′ from α and (b, last insert)
7: ω ← argmaxω∈Ωg(α

′, ω)
8: if level = 1 then
9: if g(α′, ω) ≥ g∗ then

10: (ŝ, ω̂)← (α′, ω)
11: best gain← g(ŝ, ω̂)
12: end if
13: end if
14: if µ(α′) ≥ g∗ then
15: . Possible improvement by extending α′

16: if level ≤ 1 then
17: found extensions← >
18: continue . Maximum depth reached
19: end if
20: Produce X|α′ by α′-projecting X
21: (sub gain, s′, ω′)← DPREFIXSPAN(α′,
22: X|α′ , Y,λ, τ, g∗, level− 1)
23: if s′ 6=<> then
24: (g∗, ŝ, ω̂)← (sub gain, s′, ω′)
25: end if
26: end if
27: end for
28: end function

search depth to 1. Then, DPREFIXSPAN returns the optimal
pattern of length 1. The depth is gradually increased until
the overall optimal pattern is found (line 15). After each
iteration, the best gain observed so far is used for pruning
in the following iterations (line 6). If there are short high-



gain subsequences, the algorithm finds them earlier and the
pruning becomes more effective. In practice, this improved
pruning is crucial to make the search problem tractable.

Algorithm 2 Iterative deepening DPrefixSpan algorithm
Input:

Set of sequences: X = {x1, . . . ,x`},xn ∈ S.
Labels: Y = {y1, . . . , y`}, yi ∈ {−1, 1}.
Weights: λ = {λ1, . . . , λ`}, 0 ≤ λi ≤ 1.
Minimum support: τ ≥ 1.

Output:
Subsequence ŝ ∈ S and additional parameters ω̂ ∈ Ω,

maximizing g(s, ω).
Algorithm:

1: function ID DPREFIXSPAN(X,Y,λ, τ )
2: g∗ ← −∞
3: level← 1 . Iterative deepening depth
4: loop
5: (current gain, sc, ωc, found extensions)
6: ← DPREFIXSPAN(<>,X, Y,λ,
7: τ, g∗, level)
8: if current gain > g∗ then
9: (g∗, ŝ, ω̂)← (current gain, sc, ωc)

10: end if
11: if found extensions = false then
12: break
13: . No possibly optimal extensions beyond

current level
14: end if
15: level← level + 1 . Increase mining depth
16: end loop
17: end function

5. Experiments and Results
To evaluate our approach, we use the KTH human action

classification data set of Schüldt et al. [17], available on-
line1. It consists of 25 individuals, each performing six ac-
tivities (boxing, hand-clapping, hand-waving, jogging, run-
ning and walking) under four different environment condi-
tions. Together, with one broken video file removed, the
data set totals 599 video clips. We used the training, valida-
tion and testing splits as proposed in [17], such that the sets
contain 191, 192 and 216 samples, respectively.

The spatio-temporal features were extracted as described
in section 2 using the toolbox2 provided by Piotr Dollár
with the default settings. Model selection is performed on
the training and validation sets followed by a single train-
ing run on the combined training+validation set with the
best parameters of the validation phase. The final reported

1http://www.nada.kth.se/cvap/actions/
2http://vision.ucsd.edu/˜pdollar/research/

research.html

Figure 3. KTH Action Classification dataset with six actions and a
total of 599 video sequences. The actions are shown in alphabet-
ical order: boxing, handclapping, handwaving, jogging, running,
walking.

classification accuracy is the one evaluated on the test set.
Codebooks of sizes 128, 192, 256, 384, 512, 768 and 1024
codewords are created from the training set descriptors. In
all experiments, the same features and codebooks are used
to produce sequences as well as the histograms.

Subsequences. For model selection, the number of bins
is varied from B = 1 to B = 15; the temporal overlap τ =
0.5 remains fixed. The LPBoost regularization parameter
ν is set to 0.01, 0.05, 0.1 and 0.25. All combinations of
codebook sizes, B and ν have been tested.

SVM baseline. For the model selection of the baseline
classifiers, the histograms are preprocessed in one of the
following two ways, i) the 1-norm of the histogram is nor-
malized, or ii) the histogram is “binarized”, that is all non-
zero entries of the histogram are set to one.

As SVM kernel we use the linear kernel, the RBF Gaus-
sian kernel and the χ2-histogram-kernel3. For the RBF
Gaussian and χ2-kernel the kernel width has been selected
as the mean Euclidean and mean χ2 distance between all
training samples, respectively. This is a common heuristic
choice known to work well in practice. As multiclass de-
composition both 1-vs-rest and 1-vs-1 decompositions have
been tested.

In total, for the SVM baseline all combinations of the
codebook sizes, histogram preprocessing methods, multi-
class decompositions and kernel choices are part of the
model selection procedure. Thus the model selection for
the SVM baseline is much more exhaustive than in previ-
ous works [4, 17].

5.1. Results

The classification results of our Subsequence Boosting
approach, the results of the baseline SVM classifiers and the

3K(h, h′) = exp

„
− 1
A

»
1
2

P
{n:hn+h′

n>0}
(hn−h′

n)2

hn+h′
n

–«
.



results from the literature are shown in Table 1. During the
model selection process a codebook with 768 codewords
turned out to be consistently the best for all tested classi-
fier types. Each of our 1-vs-1 class Subsequence Boosting
classifiers selected around 20-70 active patterns, where the
tendency is fewer and shorter patterns for classes that are
easy to distinguish (e.g. boxing versus running), and more
and longer patterns for difficult to separate classes.

Figure 4 visualizes the sequence of a single decision
stump of a trained classifier. In Figure 5 we further illustrate
how the subsequences typically match into unseen test se-
quences. The confusion matrix for our Subsequence Boost-
ing classifier is shown in Figure 6.

Our features and preprocessing seem to be of high qual-
ity, given that the baseline SVM method produces better re-
sults than reported in the literature. In part, this is also due
to more thorough model selection, as noted above.

1. element, 2 items: {498, 601}

2. element, 2 items: {115, 277}

498

601

115

277

Figure 4. A discriminative pattern. Here, the pattern sequence is
{498, 601}{115, 277} and was selected in the jogging-vs-walking
classifier. Each row in the figure shows a codebook vector as 19
frames of size 13x13 over time. The pattern was assigned a nega-
tive ω-weight, such that the presence of this pattern will influence
the decision towards the walking class.

Method KTH accuracy
Niebles et al. [11], LOO, pLSA 81.50
Dollár et al. [4], LOO, SVM RBF 80.66
Schuldt et al. [17], splits, SVM match 71.71
Ke et al. [7], splits, forward feat.-sel. 62.94
baseline SVM linear bin, 1-vs-1 83.33
baseline SVM RBF bin, 1-vs-1 85.19
baseline SVM χ2 bin, 1-vs-1 87.04
Subsequence Boosting, B = 12, splits 84.72

Table 1. Results for the KTH human action classification data set.
For all the baseline SVM and Boosting results the model selection
has been performed on the validation set, followed by a single
training run on the joined training+validation set. The multiclass
accuracy shown is the one measured on the final test set. For the
baseline SVM results, the best classifier on the validation set was
found with a codebook size of 768 and a regularization parameter
of C = 10 for all kernels. The subsequence boosting result is
obtained with a codebook size of 768, B = 12 and ν = 0.05.

Sequence matches

1 2 3 4 5 6 7 8 9 10 11 12 13

boxing 1

boxing 2

waving 1

waving 2

Figure 5. Visualization of how the most influential patterns match
in four unseen test sequences in the boxing-vs-handwaving clas-
sifier, for the case of a 768-word codebook and 13 temporal bins.
Each of the four rows shows a distinct test videos, where the first
two correspond to boxing, the latter two to handwaving. We vi-
sualize the 32 pattern sequences of the decision stumps with the
highest coefficient value α. Sequences voting for boxing (ω = 1)
are shown at the top of each row in red (•) and sequences voting
for handwaving (ω = −1) are shown at the bottom of each row in
blue (•). All four test sequences are classified correctly.
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Figure 6. Confusion matrix of the Subsequence Boosting classi-
fier on the KTH test set. The classifier was produced with a 768
element codebook, B = 12 and ν = 0.05. Confusions happen
between the boxing, hand-clapping and hand-waving classes, as
well as between the jogging, running and walking classes.

6. Discussion

We achieved state-of-the-art classification results using
our proposed algorithm and report the best results in the lit-
erature so far. Our algorithm has favorable properties, such
as increased interpretability of the resulting classification
function, explicit feature selection, global optimal conver-
gence and fast testing times, but in the end we did not show
a clear and significant improvement of the classification ac-
curacy over a histogram approach with a SVM classifier and
nonlinear kernel.



This is quite surprising and it is not obvious why this
is the case. Possibly, the KTH data set favors a histogram
based classifier because each action is quite homogeneous
and does not involve global changes or complex behaviour.
Also, as in the reported literature results, in our classifier
the confusions happen in two clusters, namely i) boxing,
handclapping and handwaving, and ii) jogging, running and
walking. Each of these actions might be easily confused
on both a local temporal scale as well as a coarse temporal
scale, and we might very well do not gain much by includ-
ing the temporal order of features.

7. Conclusion

We proposed a novel classifier for sequence representa-
tions, suitable for action classification in videos. A goal
of our work is to make efficient pattern selection algorithms
from the data mining community accessible to the computer
vision community.

In the future we will apply our approach to classifiy
higher order action patterns. Unfortunately, the lack of an
openly available action classification data set for such high
level actions is currently a problem.

The data set as well as our implementation of the PRE-
FIXSPAN and DPREFIXSPAN algorithms are made available
under the GNU General Public License at http://www.
kyb.mpg.de/bs/people/nowozin/pboost/.
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