
Max–Planck–Institut für biologische Kybernetik
Max Planck Institute for Biological Cybernetics

Technical Report No. 108

The Geometry Of Kernel
Canonical Correlation Analysis

Malte Kuss1 and Thore Graepel2

May 2003

1 Max Planck Institute for Biological Cybernetics, Dept. Schölkopf,
Spemannstrasse 38, 72076 Tübingen, Germany, email: malte.kuss@tuebingen.mpg.de
2 Microsoft Research Ltd, Roger Needham Building,
7 J J Thomson Avenue, Cambridge CB3 0FB, U.K, email: thoreg@microsoft.com

This report is available in PDF–format via anonymous ftp at ftp://ftp.kyb.tuebingen.mpg.de/pub/mpi-memos/pdf/TR-108.pdf. The
complete series of Technical Reports is documented at: http://www.kyb.tuebingen.mpg.de/techreports.html



The Geometry Of Kernel Canonical Correlation
Analysis

Malte Kuss, Thore Graepel

Abstract. Canonical correlation analysis (CCA) is a classical multivariate method concerned with describing
linear dependencies between sets of variables. After a short exposition of the linear sample CCA problem and
its analytical solution, the article proceeds with a detailed characterization of its geometry. Projection operators
are used to illustrate the relations between canonical vectors and variates. The article then addresses the problem
of CCA between spaces spanned by objects mapped into kernel feature spaces. An exact solution for this kernel
canonical correlation (KCCA) problem is derived from a geometric point of view. It shows that the expansion
coefficients of the canonical vectors in their respective feature space can be found by linear CCA in the basis
induced by kernel principal component analysis. The effect of mappings into higher dimensional feature spaces
is considered critically since it simplifies the CCA problem in general. Then two regularized variants of KCCA
are discussed. Relations to other methods are illustrated, e.g., multicategory kernel Fisher discriminant analysis,
kernel principal component regression and possible applications thereof in blind source separation.

1 Introduction

Kernel methods attract a great deal of attention in the machine learning field of research initially due to the success
of support vector machines. A common principle of these methods is to construct nonlinear variants of linear
algorithms by substituting the linear inner product by kernel functions. Under certain conditions these kernel
functions can be interpreted as representing the inner product of data objects implicitly mapped into a nonlinear
related feature space (see for example Schölkopf and Smola (2002)).

Let xi ∈ X i = 1, . . . ,m denote input space objects and consider a feature space mappingφ : X → F where
the feature spaceF is an inner product space. The “kernel trick” is to calculate the inner product inF ,

k(xi,xj) = 〈φ(xi),φ(xj)〉F , (1)

using a kernel functionk : X × X → R of input space objects while avoiding explicit mappingsφ. If an
algorithm can be restated such that the data objects only appear in terms of inner products, one substitutes the
linear dot product by such a kernel function1. Though mappingsφ will be used as an auxiliary concept during the
construction of geometric algorithms, they never have to be constructed explicitly. The resulting kernel algorithm
can be interpreted as running the original algorithm on the feature space mapped objectsφ(xi).

This construction has been used to derive kernel variants of various methods originated in multivariate statistics.
Prominent examples are kernel principal component analysis (Schölkopf et al. 1998), kernel discriminant analysis
(Mika et al. 1999) and variants of chemometric regression methods like kernel principal component regression,
kernel ridge regression and kernel partial least squares regression (Rosipal and Trejo 2001). Furthermore, several
authors have studied the construction of a kernel variant of CCA and proposed quite different algorithms (Lai and
Fyfe 2000; Melzer et al. 2001; van Gestel et al. 2001; Bach and Jordan 2002).

Although CCA is a well known concept in mathematical statistics, it is seldom used in statistical practice.
For this reason the following section starts with an introduction to sample linear CCA and describes the solution
from a geometric point of view. We then go further into the question of how the canonical correlation between
configurations of points mapped into kernel feature spaces can be determined while preserving the geometry of the
original method. Afterwards we consider regularized variants of this problem and discuss their advantages. Finally,
we illustrate relations to other methods, e.g. kernel principal component regression, blind source separation and
multicategory kernel discriminant analysis.

1In the examples below we use polynomial kernels of the formk(xi,xj) =
(
〈xi,xj〉X + θ

)d
and Gaussian radial basis

function (rbf) kernelsk(xi,xj) = exp
(
− 1

2σ2 ||xi − xj ||2
)
.
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2 Linear Canonical Correlation Analysis

Canonical correlation analysis (CCA) as introduced by Hotelling (1935,1936) is concerned with describing linear
relations between sets of variables. Letzi = (xi,yi) for i = 1, . . . ,m denote samples of measurements on
m objects wherexi andyi are meant to describe different aspects of these objects. A classical example—also
illustrating the origin of CCA—would be to think of a psychological experiment collectingnx measurements of
reading abilityxi andny quantities describing the analytical abilityyi of m individuals. From a machine learning
perspective, it may be more familiar to think ofxi as describing theith observation while the correspondingyi

describes aspects of the class affiliation of this object. Even if the latter example suggests a directional relation
between the sets, in general CCA handles the sets symmetrically. The data is compactly written using a partitioned
matrixZ :=

[
X Y

]
such thatzi corresponds to theith row ofZ. We initially presumem � nx + ny and a

full column rank ofX andY. Throughout the paper, we also implicitly assume the dataZ to be column centered.
To gain insight into the geometry of the method it is advantageous to contemplate the CCA solution with respect

to the spaces spanned by the rows and columns of the matricesX andY. Just to illustrate the notation used let
A be an arbitrary[m × n] matrix thenL{A} := {Aα |α ∈ Rn} will be referred to as the column-space and
L{A′} := {A′α |α ∈ Rm} the row-space ofA (Harville 1997, 4.1).

The aim of sample canonical correlation analysis is to determine vectorsvj ∈ L{X′} andwj ∈ L{Y′} such
that the variatesaj := Xvj andbj := Ywj are maximally correlated.

cor(aj ,bj) :=
〈aj ,bj〉
‖aj‖ ‖bj‖

(2)

Usually, this is formulated as a constraint optimization problem

argmax
vj∈L{X′},wj∈L{Y′}

v′jX
′Ywj (3)

subject tov′jX
′Xvj = w′

jY
′Ywj = 1

whereby the constraint is arbitrary in some respect as the lengths ofaj ∈ L{X} andbj ∈ L{Y} do not affect the
correlation (2) while‖aj‖ , ‖bj‖ > 0 holds. The solution of (3) gives the first pair of canonical vectors(v1,w1),
anda1 = Xv1 andb1 = Yw1 are the corresponding canonical variates. Up tor = min (dimL{X},dimL{Y})
pairs of canonical vectors(vj ,wj) can be recursively defined maximizing (3) subject to corresponding variates
being orthogonal to previously found pairs. Referring to the examples above, CCA can be interpreted as con-
structing pairs of factors (or call them features) fromX andY respectively by linear combination of the respective
variables, such that linear dependencies between the sets of variables are summarized.

Analytically, the maximization of (3) leads to the eigenproblems

(X′X)−1 X′Y (Y′Y)−1 Y′Xvj = λ2
jvj (4)

(Y′Y)−1 Y′X (X′X)−1 X′Ywj = λ2
jwj (5)

describing the canonical vectors(vj ,wj) as eigenvectors corresponding to the majorr non-zero eigenvalues1 ≥
λ2

1 ≥ . . . ≥ λ2
r > 0. Note that the eigenvalues equal the squared canonical correlation coefficients such that

λj = cor (aj ,bj). Usually but not necessarilyvj andwj are scaled such that‖aj‖ = ‖bj‖ = 1 as in (3), which
will be assumed in the following.

We now turn to the geometry of the canonical variates and vectors which is more illustrative than the alge-
braic solution. When constructing CCA between kernel feature spaces in the following section, understanding the
geometry will help us to verify the correctness of the solution.

At first a column-space point of view of the geometry will be described (Afriat 1957; Kockelkorn 2000). By
examining (2) we find that the canonical correlation coefficientλj = cor (aj ,bj) equals the cosine of the angle
between the variatesaj andbj . Maximizing this cosine can be interpreted as minimizing the angle betweenaj

andbj , which in turn is equivalent to minimizing the distance for variates of equal length,

argmin
aj∈L{X},bj∈L{Y}

‖aj − bj‖ (6)

subject to‖aj‖ = ‖bj‖ = 1 ,
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Figure 1: Illustration of the column-space geometry of the CCA solution. The canonical variates are the vectorsa ∈ L{X}
andb ∈ L{Y} that minimize their enclosed angle. The image of the orthogonal projection ofa ontoL{Y} is λb and likewise
PL{X}b = λa. Projecting these back onto the respective other space leads to relations (7) and (8).

again enforcing orthogonality with respect to previously found pairs. LetPL{X} := X (X′X)−X′ andPL{Y} :=
Y (Y′Y)−Y′ denote the orthogonal projections onto the respective column-spacesL{X} andL{Y} (Harville
1997, 12.3). In view of these projections, the eigenproblems (4) and (5) give an obvious geometric characterization
of the solution

PL{X}PL{Y}aj = λ2
jaj (7)

PL{Y}PL{X}bj = λ2
jbj . (8)

The column-space geometry of the first pair of canonical variates is illustrated in Figure 1.
Basically, the canonical variatesaj andbj for j = 1, . . . , r are the elements of their respective column-spaces

minimizing the angle between them with respect to the implied orthogonalityaj ⊥ al andbj ⊥ bl towards
previously found pairsl < j.

So the column-space perspective provides an elegant and illuminating description of the CCA solution. However,
for the construction of geometric algorithms the row-space geometry is the more common point of view and will
therefore be considered here as well. Again, letvj andwj be a pair of canonical vectors andaj andbj the
corresponding canonical variates. If we projectxi andyi onto the respective canonical vectors we obtain

PL{vj}xi = aji
vj

‖vj‖2
(9)

PL{wj}yi = bji
wj

‖wj‖2
(10)

whereaij andbij denote the scores ofith observation on thejth canonical variates. Figure 2 illustrates the row-
space geometry.

Another appealing description of CCA can be motivated by a least square regression problem which also has
been introduced by Hotelling (1935). GivenX andY, the problem is to find the linear combination of the columns
of the respective other matrix which can be most accurately predicted by a least square regression. These “most
predictable criteria” turn out to be the canonical variates. Further details on CCA and its applications can be found
in Gittins (1985) and Mardia et al. (1979). Björck and Golub (1973) provide a detailed study of the computational
aspects of CCA.

3 Kernel Canonical Correlation Analysis

We now describe how to determine canonical variates for spaces spanned by kernel feature space mapped objects.
Therefore letφX : X → FX andφY : Y → FY denote feature space mappings corresponding to possibly
different kernel functionskX (xi,xj) := 〈φX (xi),φX (xj)〉 andkY(yi,yj) :=

〈
φY(yi),φY(yj)

〉
. We use a
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L{X′} L{Y′}

Figure 2: Illustration of the row-space geometry of the canonical vectors. The left and right part have to be seen separately and
respectively show the canonical vectorsv ∈ L{X′} andw ∈ L{Y′} and two exemplary observationszi = (xi,yi) i = 1, 2.
The correlation of the variates is indicated bya1, b1 < 0 anda2, b2 > 0.

compact representation of the objects in feature spacesΦX := [φX (x1), . . . ,φX (xm)]′ and likewiseΦY :=[
φY(y1), . . . ,φY(ym)

]′
. These configurations span the spacesL{ΦX } andL{ΦY} which will be referred to

as effective feature spaces. As usualKX := ΦXΦ′
X andKY := ΦYΦ′

Y denote the[m × m] kernel inner
product matrices, also known as kernel Gram matrices, which can be constructed element-wise as(KX )ij :=
kX (xi,xj) and(KY)ij := kY(yi,yj) for i, j = 1, . . . ,m. A notable advantage of the kernel approach—and thus
of the method considered below—is the ability to handle various data types, e.g. strings and images, by using an
appropriate kernel function.

Since we know the canonical vectorsvj ∈ L{Φ′
X } andwj ∈ L{Φ′

Y} to lie in the spaces spanned by the
feature space mapped objects we can represent them as linear combinationsvj = Φ′

Xαj andwj = Φ′
Yβj using

αj ,βj ∈ Rm as expansion coefficients. Accordingly, the canonical variates areaj = ΦXvj = KXαj and
likewisebj = ΦYwj = KYβj . As in the linear method the feature space configurationsΦX andΦY are assumed
to be centered which can be realized by a subsequent column and row centering of the kernel Gram matrices
(Schölkopf et al. 1998).

As in the linear case, the aim of kernel canonical correlation analysis (KCCA) is to find canonical vectors in
terms of expansion coefficientsαj ,βj ∈ Rm. Formulated as a constraint optimization problem this leads to

argmax
αj ,βj∈Rm

α′jKXKYβj (11)

subject toα′jKXKXαj = β′jKYKYβj = 1

again forj = 1, . . . ,min (dimL{ΦX },dimL{ΦY}) and with respect to orthogonality towards previously found
pairs. Note that in case the Gramians are singular the expansion coefficients corresponding to the canonical vectors
are not unique and one cannot proceed straightforward as in the linear case.

From a geometric point of view the effective feature spaces are identical to the spaces spanned by the kernel
Gram matrices.

L{ΦX } = L{ΦXΦ′
X } = L{KX } (12)

L{ΦY} = L{ΦYΦ′
Y} = L{KY} (13)

So the canonical variatesaj ∈ L{KX } andbj ∈ L{KY} can be considered elements of the column-spaces of the
Gramians and therefore can be described using bases of these spaces.

For this purpose we use kernel principal components which constitute particular orthogonal bases of the effective
feature spaces (Schölkopf et al. 1998). Here we restrict ourselves to the description of how to find the principal
components forΦX . Afterwards it should be obvious how the principal components forΦY can be analogously
determined. The firsti = 1, . . . , d principal componentsui ∈ L{Φ′

X } combined in a matrixUX = [u1, . . . ,ud]
form an orthonormal basis of ad-dimensional subspaceL{UX } ⊆ L{Φ′

X } and can therefore also be described
as linear combinationsUX = Φ′

XAX where the[m × d] matrix AX holds the expansion coefficients. From a
geometric point of viewAX is chosen to minimize the sum of squared distances betweenΦ′

X and the projection
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of Φ′
X ontoL{UX } given byPL{U}Φ

′
X = UXU′

XΦ′
X .

argmin
A∈Rm×d

∥∥Φ′
X −UXU′

XΦ′
X

∥∥2
(14)

subject toU′
XUX = Id

Analytically, the optimalAX is found using the eigendecompositionKX = VΛV′ of the p.s.d. kernel Gram
matrix such thatAX consists of the firstd columns ofVΛ− 1

2 . So the principal components areUX = Φ′
XAX

and the coordinates of theΦX with respect to the principal components as a basis areCX = ΦXUX = KXAX .
If we choosedX = dimL{ΦX } = rkKX then the[m × dX ] matrixCX of principal component transformed

data constitutes a basis such thatL{ΦX } = L{CX }. Analogously, consider the[m×dY ] matrixCY of coordinates
describingΦY in the kernel principal component basisUY such thatL{ΦY} = L{CY}.

The problem of finding canonical correlations between kernel feature spaces thus reduces to linear CCA between
kernel principal component scores.

(C′
XCX )−1 C′

XCY
(
C′
YCY

)−1
C′
YCXψj = λ2

jψj (15)(
C′
YCY

)−1
C′
YCX (C′

XCX )−1 C′
XCYξj = λ2

jξj (16)

Then the canonical vectors are given byvj = ΦXAXψj andwj = ΦYAYξj or referring to above notationαj =
AXψj andβj = AYξj . So the corresponding kernel canonical variates areaj = KXAXψj andbj = KYAYξj .
An example is given in Figure 3. Scores on the kernel canonical vectors for previously unseen objectsz = (x,y)
can easily be calculated by computing the score on the particular kernel principal vectors and weighting them with
ψj or ξj respectively.

Applying a principal component transformation to the data, also seems to be a common procedure when singular
covariance matrices occure in linear CCA (see for example Khatri (1976)). Note that the values of the non-null
canonical correlation coefficientsλ2

j are not affected by this, since the resulting eigenproblem is similar. The
procedure can also be understood as constructing Moore-Penrose inverses in the projections occuring in (7) and
(8).

Using a subset of kernel principal components as basis vectors, e.g., by omitting those corresponding to smaller
eigenvalues, can still lead to highly correlated features and often has a smoothing effect. But since the directions
of the major canonical vectors are not necessarily related to those of the major principal components, this has to be
handled with caution. Theoretical optimality of the canonical vectors can only be assured by using complete bases.
Computationally this leads to the problem of estimating the dimensions of the effective feature spaces by looking at
the eigenspectra of the kernel Gramians during the calculation of KCCA. Fortunately, for some widely used kernel
functions, e.g. polynomial and RBF kernels, general propositions about the dimensionality of the corresponding
feature spaces are available.

As shown, the canonical correlation betweenL{ΦX } andL{ΦY} can be exactly determined—at least theoret-
ically. But the effect of mapping the data into higher dimensional spaces has to be critically reconsidered. The
sample canonical correlation crucially depends on the relation between the sample size and the dimensionalities of
the spaces involved. Feature space mappings usually considered in kernel methods share the property of mapping
into higher dimensional spaces such that the dimension of the effective feature space is larger than that of the input
space. If the spacesL{ΦX } andL{ΦY} share a common subspace of dimensionh = dim (L{ΦX } ∩ L{ΦY}),
thenaj = bj and thereforecor(aj ,bj) = 1 for j = 1, . . . , h (see Figure 1). IfdimL{KX }+ dimL{KY} > m
the effective feature spaces will share a common subspace. Especially in case of the frequently used Gaussian
radial basis function kernel the GramiansKX andKY are nonsingular so that the effective feature spaces are iden-
tical and the CCA problem becomes trivial. In general mappings into higher dimensional spaces are most likely
to increase the canonical correlation coefficient relative to linear CCA between the input spaces. Therefore the
kernel canonical correlation coefficient has to be interpreted with caution and KCCA should rather be considered
as a geometric algorithm to construct highly correlated features.

The proposed method includes linear CCA as special case when using linear kernel functions for which the
mappingsφX andφY are the identity mappings.

Note that we can also find directions of maximum covariance between kernel feature spaces in a similar way.
Referring to the above notation, the problem is to maximize

cov(aj ,bj) :=
〈aj ,bj〉
‖vj‖ ‖wj‖

(17)
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Figure 3: Kernel canonical correlation example. The data consists of two sets of 100 points each. ForX the points are lying on
a circle (solid points) whileY (circles) describe a sine curve (points correspond by arclength). ForX we used a RBF kernel
(σ = 1) and forY a homogeneous polynomial kernel of degree(d = 2). The lines plotted describe regions of equal score on
the first canonical vectors, which can be thought of as orthogonal (see Schölkopf et al. (1998)). This is shown forv1 ∈ L{Φ′

X}
(upper) and forw1 ∈ L{Φ′

Y} (middle). The bottom plot shows the first pair of kernel canonical variates(a1,b1) showing that
〈φ(xi),v1〉F and〈φ(yi),w1〉F are highly correlated fori = 1, . . . , m.

subject to orthogonality with previously found pairs as in the CCA derivation. In short, the solution is characterized
by the eigenproblems

C′
XCYC′

YCXψj = λjψj (18)

C′
YCXC′

XCYξj = λjξj (19)

again using the kernel principal components as bases of the effective feature spaces.

4 Regularized Variants

In previous approaches the kernel CCA problem (11) had been handled analogously to the linear CCA problem
(3) by optimizing (11) inαj andβj directly (e.g. Melzer et al. (2001)). An obvious drawback of this procedure
is that kernel Gram matricesKX andKY have to be inverted at some point during the derivation and they are not
necessarily nonsingular. This is caused by not using a minimal basis for the description of canonical vectors. To
overcome this problem, it has been suggested to add small multiples of the identity matrixγX I andγYI to the
kernel Gram matrices. This approach, which will be referred to as regularized kernel correlation, leads to a unique
solution described by the eigenproblems(

K2
X + γX I

)−1
KXKY

(
K2
Y + γYI

)−1
KYKXαj = λ2

jαj(
K2
Y + γYI

)−1
KYKX

(
K2
X + γX I

)−1
KXKYβj = λ2

jβj .

The so found pairs of vectors(αj ,βj) maximize the regularized criterion

〈aj ,bj〉√
‖aj‖2 + γX ‖αj‖2

√
‖bj‖2 + γY

∥∥βj

∥∥2
(20)

instead of maximizing the correlation coefficientcor(aj ,bj) (2). The solution neither shows the geometry of the
kernel canonical vectors nor gives an optimal correlation of the variates. On the other hand, the additional ridge
parametersγX andγY induce a beneficial control of over-fitting and enhance the numerical stability of the solution.
In many experiments the solution of this regularized problem shows a better generalization ability than the kernel
canonical vectors, in the sense of giving higher correlated scores for new objects. It also avoids the problem of
estimating the dimensionality of the effective feature spaces.
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These merits motivate a regularization of the kernel CCA method proposed in the previous section. Then the
criterion to maximize is

〈aj ,bj〉√
‖aj‖2 + γX

∥∥ψj

∥∥2
√
‖bj‖2 + γY

∥∥ξj

∥∥2
(21)

which in the context of linear CCA has been introduced by Vinod (1976) under the name “canonical ridge”.
Maximizing (21) inψj andξj leads to the eigenproblems

(C′
XCX + γX I)−1 C′

XCY
(
C′
YCY + γYI

)−1
C′
YCXψj = λ2

jψj(
C′
YCY + γYI

)−1
C′
YCX (C′

XCX + γX I)−1 C′
XCYξj = λ2

jξj .

In experiments the so–obtained feature space vectors were often found to give higher correlated features compared
to the regularized kernel correlation solution.

Nevertheless, the regularized variants constructed in this section do not exhibit the exact geometry of the canon-
ical correlation. From a geometric point of view, the effect of the ridge terms can be interpreted as distortions of
the projections resulting in a suboptimal solution regarding the correlation of obtained variates. For a given sample
and ridge parametersγX , γY > 0 the maximum value of (21) is smaller than the kernel CCA coefficient obtained
by (15, 16) but always larger or equal to the value of (20), which also holds for the correlation of the corresponding
variates. ForγX , γY → 0 all three approaches become equivalent which can be interpreted analogously to the limit
description of the Moore-Penrose inverse (Harville 1997, 20.7). Figure 4 illustrates a toy-example comparing the
presented methods on the open-closed-book dataset provided by Mardia et al. (1979).

5 Relations Towards Other Methods

Canonical correlation analysis embodies various other multivariate methods which arise as special cases for certain
restrictions on the kind and number of utilized variables (Gittins 1985; Mardia et al. 1979). Although CCA
is a symmetric method from a conceptual point of view, in these cases it is mostly used in a directed sense by
consideringX as input andY as target variables. It is then that CCA shows its least square regression character.

From the “most predictable criterion” property it can easily be derived that ify is a centered[m× 1] vector and
a linear kernel fory is used then the KCCA solution gives the estimator of the least square regression estimator of
CX ontoy which is equivalent to the kernel principal component regression estimator (Rosipal and Trejo 2001).
As in the linear case, the squared kernel canonical correlation coefficientλ2 describes the proportion of the sums
of squares explained by the regression.

Linear CCA also includes Fisher’s linear discriminant analysis as a special case. Since the geometry of linear
CCA is preserved in the kernel variant this relation also holds for the kernel methods (Mika et al. 1999). Thereby
the KCCA formulation provides an elegant solution to the general multicategory case. LetX =

[
X′

1, . . . ,X
′
g

]′
be

an[m× n] matrix of input space samples partitioned intog classes. We then construct an[m× g] indicator matrix
Y

Yij =
{

1 if xi belongs to classj
0 otherwise

(22)

of binary dummy variables. By computing the canonical correlation betweenL{ΦX } andL{Y}, the canonical
vectorsvj ∈ L{Φ′

X } for j = 1, . . . , g are equivalent to the kernel Fisher discriminant (KFD) vectors. Figure 5
provides two examples for the well known IRIS data set using linear and polynomial kernels. Note that this
formulation of KFD can go without a regularization parameter. The regularized forms of KCCA can be shown to
include kernel ridge regression and regularized kernel Fisher discriminant analysis as special cases analogously to
the relations described above.

The idea of relating two kernel feature spacesL{ΦX } andL{ΦY} has recently been considered more generally
in the kernel dependency estimation framework by Weston et al. (2002). The objective of their approach is to
learn mappings from objects ofL{Φ′

X } to targets inL{Φ′
Y}. KCCA and in particular its special case KFD can be

embedded in this framework.
Several authors studied applications of canonical correlation analysis in the context of blind source separation

problems. A linear approach by Borga and Knutsson (2001) uses CCA to find an approximate diagonalization
of the autocorrelation matrix of a set of signals. Given a linear mixtureX = SA of highly autocorrelated but
otherwise uncorrelated sourcesS the authors compute CCA between the signalsX and time delayed signalsX[τ ]
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plot shows correlation coefficients of the obtained variates with respect to a ridge parameterγ = γX = γY . A cross validation
procedure was used and the correlation coefficients were averaged. The respective upper line shows the averaged correlation
of the first pair of variates constructed from the training sets while the lower lines give the correlation of features constructed
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Figure 5: Kernel Fisher discriminant analysis as special case of KCCA: For illustration purposes we used Fisher’s famous
IRIS data set consisting of 4 measurements on 150 flowers taken from three different iris populations (“Iris setosa” (squares),
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linear discriminant solution. For the second plot we used a homogeneous polynomial kernel(d = 4).
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for several lagsτ . Afterwards the matrix of canonical vectors forX is used as an estimator forS−1 showing
notable performance. Using KCCA, a nonlinear transformation of the data can be incorporated into this method.
However, in numerous experiments for nonlinear mixtures, it proved to be difficult to find a kernel which only
approximately unmixed the signals.

Regularized kernel correlation has recently been used as criterion of independence in kernel approaches to inde-
pendent component analysis methods (Bach and Jordan 2002). The basic idea is that independence is equivalent to
uncorrelatedness under all continuous transformations of the random variables. Instead of considering all contin-
uous transformations the criterion is approximated by regularized kernel canonical correlation on transformations
of the random variables restricted to the function space induced by the kernel. An early reference in this context is
Hannan (1961).

6 Discussion

As shown, canonical correlations between kernel feature spaces can be exactly analyzed. Geometric concepts can
be used to interpret the canonical solution. In general, relations likeL{ΦX } = L{KX } illustrate that solutions of
kernel variants of linear algorithms can be geometrically identical to solutions of the corresponding original linear
algorithm by simply using kernel principal component transformed data. Previous approaches did not consider
the geometry of CCA, e.g. Lai and Fyfe (2000), and the proposed methods were similar to regularized kernel
correlation (van Gestel et al. 2001; Melzer et al. 2001; Bach and Jordan 2002).

The tendency of KCCA to overfit the data and numerical difficulties suggest the use of a regularized approxi-
mative variant. We described regularized kernel correlation and a regularized form of KCCA, which gave higher
correlated features on training and often on test data.

Kernel principal component regression and an elegant formulation of multicategory kernel discriminant analysis
can be shown to be special cases of the proposed methods. Note that while this article only considered CCA
between two sets of variables, a generalization towards more than two sets can be constructed as described by
Kettenring (1971) using kernel principal component scores instead of the raw input space data.
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