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Abstract—This paper describes model-based predictive control based on
Gaussian processes. Gaussian process models provide a probabilistic non-
parametric modelling approach for black-box identification of non-linear
dynamic systems. It offers more insight in variance of obtained model re-
sponse, as well as fewer parameters to determine than other models. The
Gaussian processes can highlight areas of the input space where predic-
tion quality is poor, due to the lack of data or its complexity, by indicating
the higher variance around the predicted mean. This property is used in
predictive control, where optimisation of control signal takes the variance
information into account. The predictive control principle is demonstrated
on a simulated example of nonlinear system.
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I. INTRODUCTION

MODEL Predictive Control (MPC) is one of the most fre-
quently met control algorithms in industrial practice.

These are computer control algorithms that use an explicit pro-
cess model to predict the future plant response. According to
this prediction in the chosen period, also known as the prediction
horizon, the MPC algorithm optimises the manipulated variable
to obtain an optimal future plant response. The input of cho-
sen length, also known as control horizon, is sent into the plant
and then the entire sequence is repeated again in the next time
sample. The popularity of MPC is to a great extent owed to the
ability of MPC algorithms to deal with constraints that are fre-
quently met in control practice and are often not well addressed
with other approaches. MPC algorithms can handle hard state
and rate constraints on inputs and states that are usually, but
not always incorporated in the algorithms via an optimisation
method. Linear model based predictive control approaches [11]
started appearing in the early eighties and are well-established
in control practice (e.g. overview in [17]). Nonlinear model
based predictive control (NMPC) approaches [1] start to appear
about ten years later and have also found their way into control
practice (e.g. [18], [23]). There were a number of contribu-
tions in the field of nonlinear model based predictive control
dealing with issues like stability, efficient computation, optimi-
sation, constraints and others. Some recent work in this field can
be found in [10]. NMPC algorithms are based on various nonlin-
ear models. Often these models are developed as first principles
models, but other approaches, like black-box identification ap-
proaches are also popular. Various predictive control algorithms
are based on neural networks model e.g. [16], fuzzy models e.g.
[6], [21] or local model networks e.g. [4]. The quality of control
depends on quality of model. New developments in NMPC ap-

proaches are coming from resolving various issues: from faster
optimisation methods to different process model. The contribu-
tion of this paper is to describe a NMPC principle with a Gaus-
sian process model. The Gaussian process model is an example
of a probabilistic non-parametric model that also provides infor-
mation about prediction uncertainties which are difficult to eval-
uate appropriately in nonlinear parametric models. The majority
of work on Gaussian processes shown up to now considers mod-
elling of static non-linearities. The use of Gaussian processes in
modelling dynamic systems is a recent development e.g. [13],
[12], [2], [20], [8], [9] and some control algorithms based on
such are described in [14], [3].

The paper is organised as follows. Dynamic Gaussian process
models are described in the next section. The control algorithm
principle is described in Section III and illustrated with an ex-
ample in Section IV. Conclusions are stated at the end of the
paper.

II. DYNAMIC GAUSSIAN PROCESS MODELS

A Gaussian process is an example of the use of a flexible,
probabilistic, non-parametric model with uncertainty predic-
tions. Its use and properties for modelling are reviewed in [22].
A Gaussian process is a collection of random variables which
have a joint multivariate Gaussian distribution: y1, . . . , yn ∼
N (0,Σ), where Σpq gives the covariance between output points
corresponding to input points xp and xq . Mean µ(yp), which is
usually assumed to be zero (µ(yp) = 0), and covariance func-
tion Σpq = Cov(xp, xq) determine a Gaussian process. Assum-
ing a relationship of the form y = f(x) between the inputs x

and outputs y, we have Cov(yp, yq) = C(xp, xq), where C(., .)
is some function with the property that it generates a positive
definite covariance matrix.

Consider a set of N D-dimensional vectors containing noisy
input data X = [x1,x2, . . . ,xD] and a vector of output data
y = [y(1), y(2), . . . , y(N)]T representing the static system.
The aim is to construct the model, namely function f(·) de-
pending on X and y, and than at some new input vector x∗ =
[x1(N + 1), x2(N + 1), . . . , xd(N + 1)] find the distribution of
the corresponding output y(N + 1). The model is determined
according to f(·), X and y and not on parameter determination
within a fixed model structure. That is why this is a probabilis-
tic non-parametric approach. Based on the covariance function,
the parameters – the so called hyperparameters – of which can
be determined from a training set X,y, the a posteriori value
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y(N + 1) can be determined.

An appropriate covariance function has to be chosen for
model identification. Any choice of the covariance function,
which will generate a non-negative definite covariance matrix
for any set of input points, can be chosen. A common choice is

C(xp, xq) = v1 exp

[
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D
∑
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wd(x
p

d − x
q

d)
2

]

+ v0 (1)

where v0, v1, wd, d = 1, . . . , D are hyperparameters of covari-
ance functions and D is the input dimension. Other forms of
covariance functions suitable for different applications can be
found in [19]. Given a set of training cases the hyperparame-
ters of the covariance function Θ = [w1 . . . wD v0 v1]

T should
be learned (identified). There is a hyperparameter correspond-
ing to each regressor ‘component’ so that, after the learning, if
a hyperparameter is zero or near zero it means that the corre-
sponding regressor ‘component’ has little impact and could be
removed.

Covariance functions hyperparameters are obtained from
training set by maximisation of the likelihood p(f(·) | X,y).
Since the analytic solution is very difficult to obtain other ap-
proaches are in place. The description of one possible approach
follows.

Calculation of the model output is straightforward for a given
covariance function. The posteriori probability depends on hy-
perparameters through the likelihood p(y | f(·),X).

The maximimum likelihood approach obtains the hyperpa-
rameters by minimising negative L. Any appropriate optimi-
sation method can be used for this minimisation. Nevertheless,
it has to be kept in mind that the approach is computationally
relatively demanding since the inverse covariance matrix has to
be calculated at every iteration.

The described approach can be easily utilised for regression
calculation. Based on training set X a covariance matrix KN

of size N × N is determined. As already mentioned before
the aim is to find the distribution of the corresponding output
y(N + 1) at some new input vector x∗ = [x1(N + 1), x2(N +
1), . . . , xD(N + 1)]T .

A prediction at point y(N + 1) is also a Gaussian distribu-
tion. For a new test input x∗, the predictive distribution of the
corresponding output is ŷ(N +1)|x∗ ∼ N (µ(x∗), σ2(x∗)) with

µ(x∗) = k(x∗)T K−1 y (2)
σ2(x∗) = k(x∗) − k(x∗)T K−1 k(x∗) + v0 (3)

For k-step ahead prediction we have to take account of the
uncertainty of future predictions which provide the ‘inputs’ for
estimating further means and uncertainties. Based on recent
work by Girard et. al. [2], we can use a Gaussian approx-
imation to the uncertainty of inputs. The predictive distribu-
tion of the corresponding output at the random input x∗ is
N (m(x∗), v(x∗)) where m(x∗) and v(x∗) are approximations

of µ(x∗) and σ2(x∗).

m(x∗) = Ex∗ [µ(x∗)]

≈ k(µ(x∗)TK−1y (4)

v(x∗) = Ex∗ [σ2(x∗)] + varx∗ (µ(x∗))

≈ σ2(µ(x∗)) + trace
{
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(5)

For a more detailed derivation see [2].

Gaussian processes can, like neural networks, be used to
model static nonlinearities and can therefore be used for mod-
elling of dynamic systems if delayed input and output signals are
fed back and used as regressors. In such cases an autoregressive
model is considered, such that the current output depends on
previous outputs, as well as on previous control inputs.

x(k) = [ŷ(k − 1), ŷ(k − 2), . . . , ŷ(k − L), u(k − 1),

u(k − 2), . . . , u(k − L)]T

ŷ(k) = f(x(k)) + ε (6)

Where k denotes consecutive number of data sample. Let x

denote the state vector composed of the previous outputs y and
inputs u up to a given lag L and ε is white noise.

It is worthwhile noting that the derivatives of means and vari-
ances can be calculated in straightforward manner. For more
details see [20] or [2].

As can be seen from the presented relations the obtained
model describes both the dynamic characteristics of non-linear
system, and at the same time provides information about the
confidence in these predictions. The Gaussian process can high-
light areas of the input space where prediction quality is poor,
due to the lack of data or its complexity, by indicating the higher
variance around the predicted mean.

III. CONTROLLER SYNTHESIS

The predictive control principle can be sumarised as follows:
• Prediction of system output signal y(k + j) is calculated
for each discrete sample k for a large horizon in future (j =
N1, . . . , N2). Predictions are denoted as ŷ(k + j|k) and repre-
sent j-step ahead prediction, while N1 and N2 determine lower
and upper bound of prediction horizon. Lower and upper bound
of output signal prediction horizon determine coincidence hori-
zon, within which a match between output and reference signal
is expected. Output signal prediction is calculated from process
model. Predictions are dependent also on the control scenario in
the future u(k + j|k), j = 0, . . . , Nu − 1, which is intended to
be applied from a moment k onwards.
• The reference trajectory is determined r(k + j|k), j =
N1, . . . , N2, which determines reference process response from
present value y(k) to the setpoint trajectory w(k).
• The vector of future control signals (u(k + j|k), j =
0, . . . , Nu − 1) is calculated by minimisation of objective func-
tion such that predicted error between r(k + j|k) and ŷ(k +
j|k, j = N1, . . . , N2. Structuring of future control samples can
be used in some approaches.
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• Only the first element u(k|k) of the optimal control signal
vector u(k + j|k), j = 0, . . . , Nu − 1 is applied.
In the next sample a new measured output sample is available
and the entire described procedure is repeated. This principle is
called receding horizon strategy.

Nonlinear model predictive control as it was applied with the
Gaussian process model can be in general described with a block
diagram, as depicted in Figure 1. The model used is fixed, iden-
tified off-line, which means that used control algorithm is not an
adaptive one.

O p t i m i s a t i o na l g o r i t h mR e f e r e n c eg e n e r a t o r P r o c e s s

M o d e l M o d e l

w r
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+
_

Fig. 1. Block diagram of model predictive control system

A moving-horizon minimisation problem of the special form
[11]

min
U(k)

[r(k + P ) − ŷ(k + P )]2 (7)

subject to:

var ŷ(k + P ) ≤ kv (8)
| U(k) | ≤ kih (9)
| U̇(k) | ≤ kir (10)
| x(k) | ≤ ksh (11)
| ẋ(k) | ≤ ksr (12)

where U(k) = [u(k) . . . u(k + P )] is input signal, P is the
coincidence point (the point where a match between output and
reference value is expected) and inequalities from (8) to (12)
represent constraint on output variance kv , input hard constraint
kih, input rate constraint kir, state hard constraint ksh and state
rate constraint ksr respectively.

The optimisation algorithm, which is constrained nonlinear
programming, is solved at each sample time over a prediction
horizon of length P , for a series of moves which equals to con-
trol horizon. In our case control horizon was chosen to be one
and to demonstrate constraint on variance the rest of constraints
was not taken into the account. Nevertheless, all this modifica-
tions do not change the generality of solution, but they do affect
the numerical solution itself.

The process model is a Gaussian process. Some issues of
interest for applied NMPC are:
Efficient numerical solution Nonlinear programming optimisa-
tion algorithm is very demanding for computation. Various ap-
proximations and other approaches (e.g. approximation of ex-
plicit solution) exist to decrease computational load, mainly for
special cases, like linear process models or special objective
functions.
One possibility to decrease the computational load necessary for
optimisation is with the incorporation of prediction derivation

(and variance) into optimisation algorithm. When using Gaus-
sian process models the prediction and variance derivation can
be calculated in a straightforward manner.
Stability At present no stability conditions have been derived
for Gaussian processes as a representative of probabilistic non-
parametric models.
Robustness This issue has a major impact on the applicability of
the algorithm in practice. The fact that the process model con-
tains the information about the model confidence enables con-
troller to optimise the manipulative variable to “avoid” regions
where the confidence in model is not high enough. This possibil-
ity itself makes the controller robust if applied properly. MPC
robustness in the case of other algorithms is usually not some
specially built feature of the MPC algorithms, but was more an
issue of assessment for particular MPC algorithms.

Alternative ways of how NMPC with Gaussian process mod-
els can be realised are as follows.
Different objective function The objective function used (7) is
just one of many possible ones. It is well known that selection
of the objective function has a major impact on the amount of
computation.
Optimisation problem for ∆∆∆U(k) instead of U(k) This is not
just a change of formalism, but also enables other forms of NPC.
One possibility is a DMC controller with nonlinear model, e.g.
[6] - a frequently used principle, that together with appropri-
ate objective function enables problem representation as a least
squares problem that can be solved in one iteration in which an
explicit solution is found. This is, as in the case with other spe-
cial case simplifications, not a general case solution.
Soft constraints Using constraint optimisation algorithms is
very demanding for computation and soft constrains, namely
weights on constrained variables in objective function, can be
used to decrease the amount of computation. More on this topic
can be found in [7], [24].
Linear MPC It is worth to remark that even though this is a con-
strained nonlinear MPC problem it can be used in its specialised
form as a robust linear MPC.

IV. EXAMPLE

A. The first order non-linear process

The described approach is illustrated with control of system
that is described with equation

ẏ = − tanh(y + u3) (13)

with output signal y and input signal u. The output signal
was disturbed with the white noise of variance 0.0025 and zero
mean. Data sampling time, determined according to system dy-
namics, was selected to be 0.5 units.

B. Model identification

The input signal was generated by a random number genera-
tor with normal distribution and rate of 3 units in the magnitude
range between -1.3 and 1.3 The number of input signal samples
determines the dimensions of the covariance matrix. To avoid
excessive computation time it is sensible to choose number of
samples to be no more than a few hundred samples. In our case
200 samples have been used for identification.
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Input, output signal and these two signals delayed for one
sample were chosen as regressors. The selected model can
therefore be written in the form

ŷ(k + 1) = f(ŷ(k), u(k)) (14)

where function f(·) represents Gaussian process model as a two
dimensional regression model. Since the system in equation
(13), as well as its discrete equivalent, have order one it is rea-
sonable to expect that the identified model would also be of the
system order, because the order of model spans from the order
of identified system itself. Some extra identification runs with
model structure of higher order were also pursued and results
confirmed that choice of the first order structure is appropri-
ate. The covariance function (1) was used for the model iden-
tification and the maximum likelihood framework was used to
determine the hyperparameters. The optimization method used
for identification of Gaussian process model was in our case a
conjugate gradient with line-searches [19] due to its good con-
vergence properties. The following set of hyperparameters was
found:

ΘΘΘ = [w1, w2, v0, v1] = [0.1312, 0.2948, 6.2618, 0.0045] (15)

where hyperparameters w1 and w2 allow a weight for each input
dimension.

The validation signal was also generated by random number
generator with normal distribution and at different rate (4) than
for the identification signal. Results on validation signal, dif-
ferent from the identification one, show that Gaussian process
model successfully models the system based on chosen iden-
tification signals. Moreover the information about uncertainty
which comes with the Gaussian process model indicate the level
to which the results are to be trusted. For more details see [8].

C. Control

The reference trajectory r is defined so that it approaches
the set-point exponentially from the current output value. This
means that the closed-loop system should behave close to the
first order system when the process model is a good descrip-
tion of the process itself. The coincidence point for the chosen
MPC was selected as P = 8 and the control horizon Nu = 1
as it has already been mentioned in the previous section. The
set-point for the closed-loop system was chosen in a way that
it goes from region where model is more trusted towards the
region where the model is less trusted.

The closed-loop response of unconstrained control is given in
Figure 2. It can be seen from Figure 2 that the model is less re-
liable in certain region of response, and its closed-loop response
deteriorates similarly, and its variance is also higher.

To avoid unpleasant responses that are the consequence of dif-
ference between the model and the real process a hard constraint
on variance value (σmax = 0.13) has been set and constrained
predictive control obtained. Closed-loop response can be seen
in Figure 3.

It can be seen that in the second case the controller “avoids”
control inputs that lead the process in the regions where vari-
ances are big. This means that the obtained non-linear control
algorithm is robust enough to ensure specified performance and
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Fig. 2. Non-constrained case: response of GP model based control (upper fig-
ure) and control signal (bottom figure)
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Fig. 3. Constrained case (σmax = 0.13): response of GP model based control
(upper figure) and control signal (bottom figure)

most likely stability. It can be said that it is intelligent enough to
avoid regions where it can not operate within specified parame-
ters1. This is a consequence of the information contained in the
Gaussian process model.

V. CONCLUSIONS

Model Predictive Control is industrially attractive and fre-
quently applied because it handles hard constraints, usually on
input and output signals. The principle of Model Predictive
Control based on a Gaussian process model was presented in
the paper and illustrated with an example. In the presented ex-
ample constraint on model variance was included. This can be
complimented also with other constraints when necessary. The
use of Gaussian process models makes it possible to include
information about the trust in the model depending on the re-

1A ‘soft’ version of this, which leads to different control properties, is de-
scribed in [15]
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gion. Incorporating this information enables a design of robust
controller that will optimise action according to the validity of
model. However, a distinction has to be made between informa-
tion contained in Gaussian process about trust into model and
model quality that depends on data used for identification. Nev-
ertheless, it was shown that using Gaussian process models of-
fers an attractive possibility for control design that results in a
controller with a higher level of robustness due to information
contained in the model. The principle shown in the paper is
quite general and several modifications that accelerate computa-
tion can be used and are planned to be derived in the future.
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