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Image Reconstruction by Linear Programming

Koji Tsuda and Gunnar R̈atsch

Abstract. A common way of image denoising is to project a noisy image to the subspace of admissible
images made for instance by PCA. However, a major drawback of this method is that all pixels are updated by the
projection, even when only a few pixels are corrupted by noise or occlusion. We propose a new method to identify
the noisy pixels bỳ 1-norm penalization and update the identified pixels only. The identification and updating of
noisy pixels are formulated asone linear program which can be solved efficiently. Especially, one can apply the
ν-trick to directly specify the fraction of pixels to be reconstructed. Moreover, we extend the linear program to be
able to exploit prior knowledge that occlusions often appear in contiguous blocks (e.g. sunglasses on faces). The
basic idea is to penalize boundary points and interior points of the occluded area differently. We are able to show
theν-property also for this extended LP leading a method which is easy to use. Experimental results impressively
demonstrate the power of our approach.

1 Introduction

Image denoising is an important subfield of computer vision, which has extensively been studied [e.g. Black and
Rangarajan, 1996, Mika et al., 1999, Ben Hamza and Krim, 2001, Takahashi and Kurita, 2002]. The aim of image
denoising is to restore the image corrupted by noise as close as possible to the original one. When one does not
have any prior knowledge about the distribution of images, the image is often denoised by simple smoothing [e.g.
Black and Rangarajan, 1996, Ben Hamza and Krim, 2001]. When one has a set of template images, it is preferable
to project the noisy image to the linear manifold made by PCA, which is schematically illustrated in Fig. 1 (left).
One can also construct a nonlinear manifold, for instance by kernel PCA, requiring additional computational
costs [Mika et al., 1999]. The projection amounts to finding the closest point in the manifold according to some
distance. Instead of using the standard Euclidean distance (i.e. the least squares projection), one can adopt a robust
loss such as Huber’s loss as the distance, which often gives a better result [robust projection, cf. Takahashi and
Kurita, 2002]. However, a major drawback of these projection approaches is that all pixels are updated by the
projection. However, typically only a few pixels are corrupted by noise, thus non-noise pixels should best be left
untouched.

This paper proposes a new denoising approach by linear programming, where the`1-norm regularizer is adopted
for automatic identification of noisy pixels – only these are updated. The identification and updating of noisy pixels
are neatly formulated as one linear program. The theoretical advantages of linear programming lie in duality and
optimality conditions. By considering both primal and dual problems at the same time, one can construct effective
and highly principled optimizers such as interior point methods. Also, the optimality conditions enables us to
predict important properties of the optimal solution before we actually solve it. In particular, we can explicitly
specify the fraction of noisy pixels by means of theν-trick originally developed for SVMs [Scḧolkopf et al., 2000]
which was later applied to Boosting [Rätsch et al., 2000].

In some cases the noisy pixels are not scattered over the image (“impulse noise”), but form a considerably large
connected region (“block noise”), e.g. face images occluded by sunglasses. By using the prior knowledge that the
noisy pixels form blocks, we should be able to improve the denoising performance. Several ad-hoc methods have
been proposed so far [e.g. Takahashi and Kurita, 2002], but we obviously need a more systematic way. We will
show that a very simple modification of the linear program has the effect that we can control how block-shape
like the identified and reconstructed region is. In the experimental section we will show impressive results on face
images from the MPI face data base corrupted by impulse and block noise.
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Figure 1: Difference between projection methods (left) and our LP method (right).

2 Image Denoising by Linear Programming

Let {tj}J
j=1 be the set of vectors in<N , which have been derived for instance by principal component analysis.

The linear manifold of admissible images is described as

T =
{

t | t =
J∑

j=1

βjtj , βj ∈ <
}

Now we would like to denoise a noisy imagex ∈ <N . Let us describe the denoised image asx̄. In order that the
denoised imagēx is similar to admissible images,x̄ should be close to the manifold:

min
β

d1

(
x̄,

J∑
j=1

βjtj

)
≤ ε1, (1)

whered1 is a distance between two images. Also, we have to constrainx to be close tōx, otherwise the denoised
image becomes completely independent from the original image:

d2(x̄,x) ≤ ε2, (2)

whered2 is another distance. A number of denoising methods can be produced by choosing different distances
and changing how to minimize the two competing objectives (1) and (2). In projection methods,ε1 is simply set
to zero andε2 is minimized withd2 being set to the Euclidean distance or a robust loss.

2.1 A Linear Programming Formulation

Our wish is that most pixels ofx stay unchanged in̄x, in other words, the difference vectorα = x̄ − x should
besparse. For this purpose,d2 is chosen as thè1-norm, as it is well known that thè1-norm constraints produce
sparse solutions [R̈atsch et al., 2000, e.g.]. Also ford1, the`∞-norm is especially interesting as it leads to linear
programming. We design the optimization problem as follows:

min
α,β

∥∥∥x + α−
J∑

j=1

βjtj

∥∥∥
∞

(3)

‖α‖1 ≤ C, (4)

where‖x‖∞ = maxi |xi|, ‖α‖1 =
∑N

i=1 |αi| and C is a constant to determine the sparseness. The solu-
tion α tends to become more sparse asC decreases. Geometrically, this optimization problem is explained as
Fig. 1 (right). The constraint (4) keeps̄x within the`1-sphere centered onx. The optimization finds a point in the
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sphere, which is closest to the linear manifold. As a side effect, we have another solution
∑

j βjtj on the mani-
fold. We call the former the “off-manifold solution” and the latter “on-manifold solution”. Here, we are mainly
concerned with the off-manifold solution, because of the sparsity.

Let us actually formulate (3) as a linear programming problem. The optimization problem (3) is equivalently
transformed as

min
α,β,ε

1
N

N∑
n=1

|αn|+ νε (5)∣∣∣∣∣∣xn + αn −
J∑

j=1

βjtjn

∣∣∣∣∣∣ ≤ ε, n = 1, . . . , N,

whereν is a regularization parameter. Still this problem is not linear programming because of|αn| in the objective
function. Next let us restateα as follows:

α = α+ −α−, α+
n , α−n ≥ 0, n = 1, . . . , N.

Then (5) is rewritten as the following linear programming problem:

min
α±,β,ε

1
N

N∑
n=1

(α+
n + α−n ) + νε (6)

α+
n , α−n ≥ 0,

∣∣∣∣∣∣xn + α+
n − α−n −

J∑
j=1

βjtjn

∣∣∣∣∣∣ ≤ ε, n = 1, . . . , N. (7)

Here we used the well known fact that eitherα+
n or α−n is zero at the optimum.

2.2 Theν-Trick

In the above optimization problem, the regularization constantν should be determined to control the fraction of
updated pixels. Interestingly,ν has an intuitive meaning as follows: LetNp denote the number of nonzero elements
in α. Furthermore letNc be the number of “crucial pixels” which are not updated, but the corresponding constraint
constraints (7) are met as equalities. If one of these pixels is modified, then it will likely lead to a different solution,
while changing any of the otherN −Np −Nc pixels locally does not change the optimal solution.

Proposition 1. Suppose the optimalε is greater than0. Then the number of nonzero elementsNp in the optimal
α is

1. upper bounded byνN , i.e.Np ≤ νN and

2. lower bounded byνN −Nc, i.e.Np ≥ νN −Nc.

Proof. Let QA be the set of indices of the active inequality constraints which are met by equality at the optimal
solution.QA is divided into the two subsetsQA0 andQAP , which correspond toαn = 0 andαn 6= 0, respectively.
Also defineQN be the complementary set ofQA. For alln ∈ QN , αn = 0. Thus,Np = |QAP | andNc = |QA0|.
Let us prove the first part by contradiction. AssumeNν < |QAP | at the optimal solution. Then suppose increasing
ε by an infinitesimal amountδ > 0 from the optimal value, i.e.̂ε = ε + δ. As we relaxed the constraints (7), we
can updateαn to minimize the objective function further. Since we do not need to change zeroαn’s, we need to
consider the constraints inQAP only. For the constraints thatxn + αn −

∑J
j=1 βjtj,n = ε, we can conclude that

αn ≤ 0, because otherwise one can decrease the objective by setting it to zero. Hence increasingε by δ leads to an
increase ofαn by the same amount. For the other constraints thatxn + αn −

∑J
j=1 βjtj,n = −ε, αn ≥ 0 and is

decreased byδ. Therefore|α̂n| = |αn|−δ. Now the change in the objective function sums up to− |QAP |δ
N +νδ. As

we assumedNν < |QAP |, the change is negative. It means that one can still decrease the objective function, which
contradicts the optimality assumption. Thus the first part is proven asNν ≥ |QAP | = Np. For the second part,

we assumeNν > |QA| and decreaseε. By similar reasoning, the change of the objective function is|QA|δ
N − νδ.

By contradiction, we haveNν ≤ |QA|, which is rewritten asNp ≥ νN −Nc.
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Another proof can be found in Appendix A.
The slack in the bound only comes fromNc. In practice we usually observed small values ofNc. We suspect

that its value is related toJ , the number of basis vectors.
In terms of images, one can bound the anticipated fraction of noise pixels byν. In contrast, the constantC in

(4) specifies the sum of the noise magnitudes, which is in practice rather difficult to figure out.

3 Dealing with Block Noise

3.1 Preliminaries

When the noise is clustered in blocks, this prior knowledge is considered to lead to an increased denoising perfor-
mance. So far we could only control the number of modified pixels which corresponds to the area of reconstruction.
In this section we also consider the length of the boundary of the identified pixels. For instance, consider the three
occlusion patterns in Figure 2. The pixel is white, when it is identified as noisy/occluded and black otherwise. In
the first case (left) the occlusion forms a block, in the second case the letters “lp” and in the third case the pixels
are randomly distributed. The covered area is the same for all three cases.

S− = 130, S+ = 256 S− = 280, S+ = 552 S− = 1987, S+ = 2725
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Figure 2: Three occlusion patterns with different degrees of having a block shape.

We will now define two measures of how much an occlusion patternmismatchesthe block shape. It is related to
the length of the boundary. Note that optimal “block” shapes have shortest boundaries. (It depends on the metric
what will be optimal.) The idea is to define a neighborhood relationG(n) ⊆ {1, . . . , N} for every pixeln. We say
that the pixelm is in the neighborhood ofn, if m ∈ G(n). We assumeG is symmetric.

We distinguish between two types of penalties: first, the ones which occur when a reconstructed pixel is a
neighbor of an untouched pixel (“boundary point”) and second, if a reconstructed pixel is neighbor of another such
pixel, but the corrections are in different directions (“inversion point”, e.g.αn > 0 andαm < 0). We have two
definitions for our scores, which we will later relate to the solution of our extended linear program.

The differences between the two scoresS− andS+ are only in subtle details in how to count boundary points
and inversion points:

– LetN−
b be the number of pixelsn which satisfy:

(a) αn = 0 and there existsm ∈ G(n) such thatαm 6= 0 (outer boundary point) or
(b) αn 6= 0 and forall m ∈ G(n) holdsαm = 0 (single pixel change).

Let N−
i be the number of pixelsn with αnαm < 0 for at least onem ∈ G(n) andαnαm ≤ 0 for all

m ∈ G(n) (single inversion point). The first score is computed asS− := N−
b + 2N−

i .

– LetN+
b be the number of pixelsn which satisfy:

(a) αn = 0 and there existsm ∈ G(n) such thatαm 6= 0 (outer boundary point) or
(b) αn 6= 0 and there existsm ∈ G(n) with αm = 0 (inner boundary point).

Let N+
i be the number of pixelsn with αnαm < 0 for at least onem ∈ G(n) (inversion point). Then the

second score is computed asS+ := N+
b + 2N+

i .

The main difference between the two scores is thatS+ counts the length of the innerand outer boundary, while
S− only counts the outer boundary.
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3.2 The Extended LP

The question is how we can introduce these definitions into a linear program, which somehow penalizes these
scores. As we will show in the following proposition, it turns out that it is enough to penalize the differences
between neighboringα’s. We introduce a new set of variables (theγ’s) which account for these differences and
which are linearly penalized. We control the contribution of theγ’s with the one of theα’s by introducing a new
parameterλ ∈ (0, 1) – if λ = 0, then the original LP is recovered:

min
γ≥0,α,ε≥0,β

λ

N

N∑
n=1

γn +
1− λ

N

N∑
n=1

|αn|+ νε (8)∣∣∣∣∣∣xn + αn −
J∑

j=1

βjtj,n

∣∣∣∣∣∣ ≤ ε for all n = 1, . . . , N

|αn − αm| ≤ γn for all m ∈ G(n) (9)

We will show in the experimental part that these novel constraints lead to substantial improvements for block noise.
The analysis of this linear program is considerably more difficult than of the previous one. However, we will show
that theν-trick still works in a generalized manner with some subtleties. We will show in the following Proposition
that LP (8) trades-off the areaNp with the penalty scoresS− andS+:

Proposition 2. LetNc the number of crucial pixels andNp the number of updated pixels (as before). Assume the
optimalε is greater0. Then holds:

1. Theλ-weighted average between area of the occlusion and scoreS− is not greater thanνN , i.e.

(1− λ)Np + λS− ≤ νN (10)

2. If λ < 1
2+|G| , then theλ-weighted average between area of the occlusion and scoreS+ is not smaller than

νN minus2Nc, i.e.
(1− λ)Np + λS+ > νN − 2Nc, (11)

where|G| := maxn |G(n)|

Note that the slackness in (11) again only comes from the number of crucial pointsNc. If λ = 0, we recover
Proposition 1. Note that the restrictionλ < 1

2+|G| only concerns the second part and and not the functioning of the
LP in practice. It can be made less restrictive, but this goes beyond the scope of this paper.

Proof. Let [ε∗,α∗,γ∗,β∗] be the optimal solution of (8). For the first statement consider increasingε by a small
amount0 < δ � minn |αn|, i.e. ε̃ = ε∗ + δ. Then all active constraints|xn + αn −

∑J
j=1 βjtj,n| ≤ ε are relaxed.

A feasible solution(ε̃, α̃, γ̃,β∗) can be constructed as follows: ifα∗n > 0, thenα̃n = α∗n − δ and ifα∗n < 0, then
α̃n = α∗n + δ. Additionally, if α∗n = 0, thenα̃n = 0. Let us define thesign differencebetweenαn andαm as

s(αn, αm) = | sign(αn)− sign(αm)|,

which can be 0,1 or 2. Then the following relation holds,

|α̃n − α̃m| − |α∗n − α∗m| = −δs(α∗n, α∗m), (12)

which can be verified by considering all the signs forα∗n andα∗m. A newγn is obtained as

γ̃n = γ∗n − min
m∈G(n)

δs(α∗n, α∗m)

for all n with α∗n 6= 0 (single pixel change) or for all m ∈ G(n) holdsα∗m = 0 (single pixel inversion). In the
remaining cases (i.e.outer boundary points) we set

γ̃n = γ∗n − δ.
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It can easily be verified that(ε̃, α̃, γ̃,β∗) satisfies (9). For this feasible solution, the total change in the objective
is written as

− (1− λ)Npδ

N
− λδ

N

∑
n

min
m∈G(n)

s(α∗n, α∗m)− λδ

N
|{n|α∗n = 0 ∧ ∃m ∈ G(n) : α∗m 6= 0}|+ νδ. (13)

Since

S− =
∑

n

min
m∈G(n)

s(α∗n, α∗m) +
λδ

N
|{n|α∗n = 0 ∧ ∃m ∈ G(n) : α∗m 6= 0}|,

the total change is rewritten as− ((1−λ)Np+λS−)δ
N + νδ. If statement 1 in the proposition would not be true, the

total change would be negative, which contradicts the assumption that[ε∗,α∗,γ∗,β∗] is optimal.

For the second statement considerε̃ = ε∗ − δ. We again construct a feasible solution. We first need

Lemma 1. Let(ε,α,β,γ) be the optimal solution of(8) andyn =
∑J

j=1 βjtj,n. If λ < 1
2+|G| , then the following

statements are true:

αn < 0 ⇒ xn + αn − yn = ε and αn > 0 ⇒ −xn − αn + yn = ε (14)

Proof. Supposeαn < 0 andxn +αn−
∑J

j=1 βjtj,n = ε−δ (δ > 0). Then we can increaseαn by δ and obtain an
equality. Consider the other constraints whereαn appears:|αn−αm| ≤ γn for all m ∈ G(n) and|αm−αn| ≤ γm

for all m such thatn ∈ G(m). In the worst case the change inαn causes an increase ofγm by δ in |G| cases and an
increase ofγn by δ. The total change of the objective can therefore be upper bounded by−(1−λ)δ +λ(|G|+1)δ.
This is negative ifλ < 1

2+|G| and leads to the contradiction. The second statement can be shown using the same
reasoning.

We start by constructing a feasible solution. Letyn =
∑J

j=1 β∗j tj,n. If n is an updated point (i.e.α∗n 6= 0), then
α̃n = α∗n + sign(α∗n)δ. If it is a lower crucial point (xn + α∗n − yn = −ε∗ andα∗n = 0), then we set̃αn = −δ, if
it is auppercrucial point (xn + α∗n − yn = ε∗ andα∗n = 0), thenα̃n = δ. By Lemma 1 holds|xn + α̃n − yn| ≤ ε̃
for all n, so these changes inα do not violate the constraints. Let us now propagate the changes to theγ’s. We will
use a similar relation as (12),

|α̃n − α̃m| − |α∗n − α∗m| = δs(α̃n, α̃m), (15)

where an important difference on the right hand side is thatα̃n, α̃m are used instead ofα∗n, α∗m. A feasibleγn is
obtained as

γ̃n = γ∗n + max
m∈G(n)

δs(α̃n, α̃m).

For this feasible solution, the total change in the objective is written as

δ

N
[(1− λ)(Nc + Np) + λS0 − νN ] (16)

whereS0 =
∑

n maxm∈G(n) s(α̃n, α̃m). S0 is decomposed as̃Nb + 2Ñbh, whereÑb andÑbh are the number
of boundary and hard boundary points afterα’s are changed. The signum change occurs only in crucial pixels
(α∗n = 0), and if oneα∗n is changed from 0 to positive or negative, it increases the score at most by one. If two
neighbouring crucial points change their signs in opposite direction then the score increases at most my two. The
score increase for all neighbouring points of a crucial point increases at most by one. Hence the total score increase
is |G|+ 2. Thus

S0 ≤ S+ + Nc(|G|+ 2).

So the total change is upperbounded by

δ

N

[
(1− λ)(Nc + Np) + λ(S+ + Nc(|G|+ 2))− νN

]
. (17)

If the statement
(1− λ)Np + λS+ ≥ νN −Nc(1 + λ(|G|+ 1)),

would not be true, then (17) would be negative, and we have a contradiction.
To get to the second statement in the proposition, use the fact thatλ < 1

|G|+2 and hence

1 + λ(|G|+ 1) < 2

.
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4 Denoising by QP and Robust Statistics

A characteristic of the LP method is that the`∞-norm is used asd1. But other choices are of course possible. For
example, when the squared loss is adopted asd1, the optimization problem (3) is rewritten as

min
α,β

1
N

N∑
n=1

(
xn + αn −

J∑
j=1

βjtjn

)2

+ ν|αn|. (18)

This is a quadratic program (QP), which can also be solved by standard algorithms. In our experience, QP takes
longer time to solve than LP and the denoising performance is more or less the same. Furthermore theν-trick does
not hold for QP. Nevertheless, it is interesting to take a close look at the QP method as it is more related to existing
robust statistical approaches [Black and Rangarajan, 1996, Takahashi and Kurita, 2002]. The QP can partially be
solved analytically with respect toα:

min
β

N∑
n=1

ρ
(
xn −

J∑
j=1

βjtjn

)
, (19)

whereρ is the Huber’s loss

ρ(t) =

{
t2

N −Nν
2 ≤ t ≤ Nν

2

|t| − Nν2

4 otherwise.

Thus, the on-manifold solution of (18) corresponds to the robust projection by the Huber’s loss. In other words,α
is considered as a set ofslack variablesin the robust projection. It is worthwhile to notice another choice of slack
variables proposed in [Black and Rangarajan, 1996]:

min
z,β

1
2γ

N∑
n=1

zn

(
xn −

J∑
j=1

βjtjn

)2

+ γ
1

2zn
. (20)

0 ≤ zn ≤ 1, n = 1, . . . , N.

Here the slack variables are denoted asz, which is called theoutlier process[Black and Rangarajan, 1996]. Notice
γ is a regularization constant. Let us definegn = xn −

∑J
j=1 βjtjn. Then the inside problem with respect tozn

can be analytically solved, and we have the reduced problem as

min
β

N∑
n=1

hγ

(
xn −

J∑
j=1

βjtjn

)
(21)

wherehγ(t) is again the Huber’s loss function:hγ(t) = t2

2γ + γ
2 if |t| < γ and|t| if |t| ≥ γ. The outlier process

tells one which pixels are ignored, but it does not directly represent the denoised image. From the viewpoint of
denoising, our slack variablesα seem to make more sense.

5 Experiments

We applied our new methods and the standard methods to the MPI face database [Blanz and Vetter, 1999, Graf
and Wichmann, 2002]. This dataset has 200 face images (100 males and 100 females) and each image is rescaled
to 44×64. The images are artificially corrupted by impulse and block noise. As impulse noise, 20% of the pixels
are chosen randomly and set to 0. For block noise, a rectangular region (10% of the pixels) is set to zero to hide
the eyes. We hide the same position for all images, but the position of the rectangle isnotknown to our algorithm.
The task is to recover the original image based on the remaining 199 images (i.e. l.o.o. cross validation).

Our linear program is compared against the least squares projection and the robust projection using Huber’s loss
(i.e. the on-manifold solution of QP). One could also apply the non-convex robust losses for better robustness,
e.g. Tukey’s biweight, Hampel, Geman-McClure, etc [Black and Rangarajan, 1996]. On the other hand, we could
also use the non-convex regularizers which are “steeper” than the`1-norm for greater sparsity [Mangasarian,
1995]. However, we will not trade convexity with denoising performance here, because local minima often put
practitioners into trouble. As a reference, we also consider anidealisticdenoising method, to which we give the
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true position of noise. Here, the pixel values of noisy positions are estimated by the least squares projection only
with respect to the non-noise pixels. Then, the estimated pixel values are plugged back into the original image.
The linear manifold is made by PCA from the remaining 199 images. The number of principal components is
determined such that the idealistic method performs the best. For impulse and block noise images, it turned out to
be 110 and 30, respectively.

The reconstruction errors of LP and QP for impulse noise are shown in Fig. 4. Here, the reconstruction error is
measured by thè2-norm between the images. Also an example of denoising is shown in Fig. 3. Both in LP and

a: original image b:noisy image
c: least squares 
   proj. (702)   

d: Off−Manifold 
      ν=0.4 (454)     

Figure 3: A typical result of denoising impulse noise. (a) An original face image. (b) The image corrupted by impulse noise.
(c) Reconstruction by the least squares projection to the PCA basis. The number in (·) shows the reconstruction error. (d)
Reconstruction by the LP (off-m.) whenν = 0.4.

QP, the off-manifold solution outperforms the on-manifold one, which confirms our intuition that it is effective
to keep most pixels unchanged. Compared with the least squares projection, the difference is so large that one
can easily see it in the reconstructed images (Fig. 3). Notably, the off-manifold solutions of LP and QP (cf. the
solid curves in Fig. 4, left and right) performed significantly better than the on-manifold solution of QP, which
corresponds to the robust projection using Huber’s loss (cf. the dashed curve in Fig. 4 right).

Figure 4: Reconstruction errors of LP and QP methods for impulse noise. The solid and dashed lines corresponds to the off-
manifold and on-manifold solutions. The flat lines correspond to the least squares projection and the unrealistic setting where
the correct positions of noise are given. The on-manifold solution of QP corresponds to the robust projection by the Huber’s
loss.

The results for block noise are shown in Fig. 5, where we again averaged over the 200 faces (using l.o.o. cross
validation for the construction of the PCA basis). In the left figure, we measure the reconstruction error for various
ν’s with fixed λ = 0, i.e. the block constraints are not taken into account. As in the case with impulse noise, the
error is smaller than that of the least squares regression (PCA projection), and the minimum is attained around
ν = 1/2. Moreover, we investigated how the error is further reduced by increasingλ from 0. As shown in the
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right figure, we obtain a significant improvement. Actually, there is not much room for improvements, since even
the idealistic case where the position of the occlusion is know is not much better.

An example of reconstructed images are shown in Fig. 7. Here we have shown variablesα andγ as well. When
λ = 0, nonzeroα’s appear not only in occluded part but also for instance along the face edge (Fig. 7:e). When
λ = 1/2, nonzeroα’s are more concentrated in the occluded part, because the block constraints suppress a isolated
nonzero values (Fig. 7:h). In Fig. 7:i, one can see highγ’s in the edge pixels of occluded region, which indicates
that the block constraints are active for those pixels.

Finally we empirically verify Proposition 2. In Fig. 6 we plot the lower and upper bound ofν as given in
Proposition 2 for different values ofν. Observe that the difference between lower and upper bound is quite small.

Figure 5: Reconstruction errors of the LP method for block noise. (Left) the re-
construction error of the “plain” LP, where the block constraints are not taken into
account (λ = 0). The right plot shows the improvement for increasedλ and fixed
ν = 1/2.

Figure 6: Illustration of Prop. 2: For
λ = 0.15 we compute the lower and up-
per bound ofνN for differentν’s.

Figure 7: A typical result of denoising block noise (ν = 0.5). The numbers in (·) in (c),(d),(f),(g) show the reconstruction errors.
The image (d) shows the denoising result when the block constraints are not taken into account (λ = 0, ν = 1/2). This result
improves by imposing the block constraints (λ = 1/2, ν = 1/4) as shown in (f) and (g), which are the off and on-manifold
solutions, respectively. The images (e),(h) and (i) show the parameter values obtained as the result of linear programming (see
the text for details).
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6 Concluding Remarks

In summary, we have presented a new image denoising method based on linear programming. Our main idea
is to introduce sparsity by detaching the solution slightly from the manifold. The on-manifold solution of our
method is related to existing robust statistical approaches. Remarkably, our method can deal with block noise
while retaining the convexity of the optimization problem (every linear program is convex). Existing approaches
[e.g. Takahashi and Kurita, 2002] tend to rely on non-convex optimization to include the prior knowledge that the
noise forms blocks. Perhaps surprisingly, our convex approach can solve this problem to a great extent. We are
looking forward to apply the linear programming to other computer vision problems which involve combinatorial
optimization, e.g. image segmentation. Also, it is interesting to explore the limitations of convex optimization,
since – naturally – convex optimization cannot solve every problem. Nevertheless, according to our experience in
this work, we feel that the power of convex optimization is not fully exploited.
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like to thank B. Scḧolkopf, J. Weston, T. Takahashi, T. Kurita and S. Akaho for fruitful discussions. Additionally,
we thank Chan-Kyoo Park for providing an alternative proof of Proposition 1 (cf. Appendix A).

A Another Proof of Proposition 1

The following proof is due to Chan-Kyoo Park and uses common optimization theory to show the result.

Proof. The linear programming proble (6) and (7) can be rewritten as follows:

min 1>α+ + 1>α− + Nνε

s.t. −ε1 ≤ x + α+ −α− − Tβ ≤ ε1

α+ ≥ 0,α− ≥ 0, ε ≥ 0

and

min 1>α+ + 1>α− + Nνε

(P ) s.t. Tβ −α+ + α− + ε1 ≥ x

−Tβ + α+ −α− + ε1 ≥ −x

α+ ≥ 0,α− ≥ 0, ε ≥ 0,

whereT = {tj,n} and1 = (1, . . . , 1)>. The dual problem of (P) is as follows:

max x>y+ − x>y−

(D) s.t. T>y+ − T>y− = 0
−1 ≤ y+ − y− ≤ 1

1>y+ + 1>y− ≤ Nv

y+ ≥ 0,y− ≥ 0

The complementary slackness conditions for(P ) and(D) are as follows (forn = 1, . . . , N ):

– (Tn·β − α+
n + α−n + ε− xn) · y+

n = 0

– (−Tn·β + α+
n − α−n + ε + xn) · y−n = 0

– α+
n · (y+

n − y−n + 1) = 0

– α−n · (y+
n − y−n − 1) = 0

– ε · (1>y+ + 1>y− −Nν) = 0

We know from complementary slackness that for any optimal solution of(P ) and(D) holds:

– y+
n y−n = 0, for all n.
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– if y+
n 6= 0 or y−n 6= 0, then one of inequalities (7) is active.

– if α−n > 0, theny−n = 0 andy+
n = 1.

– if α+
n > 0, theny+

n = 0 andy−n = 1.

– if ε > 0, then1>y+ + 1>y− = Nv.

Let Np denote the number of nonzero elements in an optimal solutionα to (P ). Also, letNc denote the number
of active constraint such that the correspondingαn is zero.

Now Proposition 1 is easily shown: Suppose thatε > 0. Then,Np + Nc ≥
∑

n(sign(y+
n ) + sign(y−n )) ≥

1>y+ + 1>y− = Nv. Furthermore,Np =
∑

sign(|αn|) =
∑

(sign(α+
n ) + sign(α−)) =

∑
y+

n =1 or y−n =1(y
+
n +

y−n ) ≤ 1>y+ + 1>y− = Nv.
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