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Motivation I ’

There are relationships between
e Empirical processes
e Probability in Banach spaces
e Geometry of Banach spaces
e Lecarning theory
Some examples
e Concentration inequalities (cf Lugosi / Massart)

— Empirical processes
— Combinatorial parameters (VC entropy, VC dimension)

e Combinatorial parameters (metric entropy /shattering dimension) (c¢f Mendel-
son)

e Capacity measures

e Margin/Regularization
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The Learning Problem

Formalization

o (X,Y) ~ P pair of random variables, values in X x ), P unknown joint
distribution.

e Given n i.i.d. pairs (X;,Y;) sampled according to P, find g : X — ) such
that P(g(X) #Y) is small

More generally, £ measures the cost of errors. Minimize

L(g) =E[((g(X),Y)]
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Motivation 11

Notation: Pf =E[f(X,Y)], P.f =13, f(X;,Y)).

In general,

L(gn> — Ln(gn> < SUP(P - Pn)f
fEF

For algorithms looking for small error functions, with high probability,

L(gn) — Ln(gn) < sup (P —F,)f.
feF Pf2<c

Expectations of these quantities measure the capacity of the function class.

O. Bousquet: Rademacher and Gaussian averages Marne-la-Vallée, 25/03/2003



Motivation 111

Regularization algorithms (dual to large margin algorithms)

gcréijrtan(f) + A S]]

Interesting classes have the form

feF lfll < B}

= Geometry of balls in Banach spaces
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Rademacher Averages

For bounded functions

sup Pf — P, f
feF

can be controlled by the random Rademacher average

or the random Gaussian average

o

1 n
SUup — gif<Xz'>]
feF

(cf Lugosi’s talk)
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Modulus of Continuity

With more care (and Talagrand’s inequality), one can get

n

1
sup  — Uif<Xi>
feF Pf<y T ;

Pf—P,f <K 'Pf*+¢KE 4.

for some 7.
o If Pf?is related to Pf then one can get a better bound from this
e What is the right value of r 7

r=1I SUp 1ZUz‘f<Xz'>]

feF.Pfe<r V]

Call this value r* capacity radius (“fixed point of the modulus of continuity”)

e [dea goes back to Massart (2000), Koltchinskii and Panchenko (2001). This
version Bartlett, B. and Mendelson (2002)
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Empirical version

Pf—P,f< K 'Pf’+¢KE,

fEF Pof?<r 'V 4

with r satistying

n

SUp L Z Oif<Xi)]

feF P f2<r T

r =k,

Call this value r; empirical capacity radius

Bartlett, B. and Mendelson, to appear.

sup % Z o f(X5)

NI
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Margin and Regularization

e Normalize the weight vector w such that w.x = 1 for closest points.
e Margin proportional to 1/ ||w]|

e Give linear penalty to errors
SVM algorithm equivalent to

1w
mu%nﬁz;(l — Y. X)) + Mw|?
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Kernel Spaces
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The SVM algorithm does this after mapping the data to a high dimensional

euclidean space (cf Ben-David’s talk)

Actually it solves

mian(l —Yif(Xi)+ + A HfH2 :

feH N

1=1
in a reproducing kernel Hilbert space H generated by k(x, z')
(H = span{k(x,.) : x € X'}).

Equivalent problem

HﬁisnB Lalf)

= estimate the capacity of balls in the RKHS H.
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Duality of Rademacher Averages

Rademacher average

up 1S asx)

flf<am

Reproducing property
FXi) = (f, k(X))

By duality

Sup Oz Oik<Xi7 )
Fillfl<1 ™ ; ; J

= This is a general phenomenon for regularization in a Banach space
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Computing Capacity Measures

13

Some notation

Rul(F) = Eq [sup > Zaz

fe]-"n ]

fefipanS?" n i=1

ru(F) = on(F, 1 (F))
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Convex Hull

e Motivation: Boosting type algorithms
Choose a base class of {—1,1} functions, make linear combinations and
penalize by the sum of the weights

e Global
R, (conv F) = R,(F)

However entropy can be much larger
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Convex Hull

e [ocal

Gp(conv(F), 1) < glg (2%(}", €?) + c\/rN(]:, e)/n) ,

Proof idea: approximate convex hull by linear subspace (span of an e-net)

1
r(conv F) < inf EeXp (Knr;;(]-") log” —) + de/TE(F) .
€

e0mn
e For VC classes *(F) = O(d/n), and
rr(conv F) = O(n_%ggg)

for some constant a > 1 (ideally o = 1), with log factors
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Reproducing Kernel Hilbert Space
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e Motivation: kernel algorithms (SVM)
F=1feHr |flly<1)
e Global

e Gram matrix

K positive semidefinite, > k(X;, X;) =tr K = >\,
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Reproducing Kernel Hilbert Space

e [LLocal

c

< —— ] .

Pn(F,1) < nc%fw vVird + E>d)\j/n
J

Proof idea: approximation by a linear subspace (span of main eigenvectors)

C
< —inf | d A
CErd 1 AR
J

d = 0 gives the trace bound
Exponential decay (e.g. \; = ne™") gives 1/n bound instead of 1/y/n.

e Radius
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Union of RKHS
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e Motivation: automatic choice of the kernel
F = UextS € Hi 2 [[flly, <1}

e Rademacher averages

n n

R.(F) = Ip [sup \/%] < 1\/ E [sup atKa]

KeK KeK

= Rademacher chaos
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Union of RKHS
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For one matrix

1
n

Interesting classes of positive semidefinite matrices

e Convex hull

R,(F) < E\/logN max tr &
n
e Quadratic hull

N
C _
Ru(F) < = [ Y67 K+ ||

j=1
e Spectral classes (commuting matrices)

R, (F) < E\/logn max tr K
n

1/4
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Lipschitz Spaces

e Motivation: regularize by the Lipschitz norm of the functions

e Use duality
Predual = Arens-Eells space, functions with finite support with norm

1]l = mf{z jai|d(zi, yi) - f = Zal ;)

e Relates to matching theorems/transportation (Ajtai, Komlos, Tusnady) (Ta-
lagrand)
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Lipschitz Spaces

For a Lipschitz ball
F={f A, <1}
we have
o In RY for d > 3,
R,(F) <n Y4

o In R?
logn

R,(F) <

n

Proof idea: use majorizing measures (Talagrand) for d = 2 and a modification
of Dudley’s entropy bound for d > 2

Rn(]:)§6+/ HY?(F,u)du

Entropy estimates of Lipschitz balls (e.g. Kolmogorov and Tihomirov)
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Embedding of a Metric Space

e Motivation: large margin classification in metric spaces
e [sometric embedding into Cy(X)
r— &, =d(x,-) — d(xg, ")
e The span of {®, : z € X'} can be completed into a Banach space with the
supremum norm.

e One can define large margin hyperplanes and consider the unit ball F of the
dual

e Result: geometry of F = geometry of X

where points in x are seen as evaluation functions defined on {®y.}
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Open problems

1. Improve convex hull estimates

2. Obtain capacity radius bounds for chaoses

3. Investigate interesting classes of matrices (with nice geometry)

4. Obtain capacity radius bounds for Lipschitz balls
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