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Goal

e Provide motivation/potential applications

e Sketch algorithmic issues

e Sketch theoretical problems
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Overview

— Induction vs Transduction

e Algorithms

e Formalization

e Open issues
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The learning problem '

Induction

We consider a phenomenon f that maps inputs (instances) & to outputs (labels)
y = [f(x) (here y € {—1,1})

e Given a set of example pairs (training set) {(x;, y;) ¢ =1,...,n},

e the goal is to recover f

— This will allow to predict the label y,.1 of a previously unseen instance
Ln+t1-

Example: Face recognition
Train on pictures of a person and recognize him /her the next day
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Shortcomings

But there are situations in which

e Obtaining labels is expensive

e Obtaining instances is cheap

e We know in advance the instances to be classified

e We do not care about the classification function

— Transduction applies
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Examples

Information retrieval

Information retrieval with relevance feedback
e User enters a query
e Machine returns sample documents
e User labels the documents (relevant /non-relevant)

e Machine selects most relevant documents from database

Relevance
e Obtaining labels requires work from the user
e Obtaining documents is automatic (from database)
e Instances to be classified: documents of the database

e No need to know the classification function (changes for each query)
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The learning problem '

Transduction

We consider a phenomenon f that maps inputs (instances) @ to outputs (labels)
y = f(z) (here y € {—1,1})

e Given a set of labeled examples {(x;,y;) 11 =1,...,n},

/

e and a set of unlabeled examples 2, ...,z

e the goal is to find the labels v}, ...,y

— No need to construct a function f, the output of the transduction algorithm
is a vector of labels.

— Transfer the information from labeled examples to unlabeled.
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Using Transduction for Prediction

Given training data and data to be classified, one can either
e Use induction: build f and classify the data with it
e Use transduction directly for classifying data

Even in an inductive setting, one can use transduction.

Example: News filtering
e [irst day user classifies news according to interest
e Subsequent days, machine classifies incoming news based on first day labels

— Train on the fly, when receiving the data to be classified
Retrain the machine every day

— Maximally use the information and tune the result to the news of the day

O. Bousquet: Transduction UNM, January 2002



Three Learning Tasks

e Induction: {(x;,y;) :i=1,...,n}— f

e Induction with unlabeled data: {(x;,y;) : i = 1,
e Transduction: {(x;,y;):i=1,...,n}U{x],...

The choice will depend on
e Availability of unlabeled data
e Need for interpretability

e T'ime considerations
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Overview

10

e Induction vs Transduction

— Algorithms

e Formalization

e Open issues
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Algorithms
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Linear classification

Instances represented in R
Find a linear separation.
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Algorithms
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Large margin classification

Margin = distance from the hyperplane to the closest point

Maximize the margin — leads to 'robust’ solution
— Support Vector Machines
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Transduction
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e Assumption: separated classes

e Maximize the margin on unlabeled instances.
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Transduction
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Implementation

Goal: Maximize the margin on all examples

Algorithmic issues
e no unlabeled data — quadratic optimization (n?)
e unlabeled data — combinatorial problem (NP)

— Need heuristics

— Greedy optimization
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Algorithms
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Greedy

e Only the examples in the margin have an influence

e Label the ones with largest confidence (largest margin)

— May add backtracking
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Comments
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e Influenced by starting point (induction)

e Not fully transductive because builds an f

e Assumption that data is separated

— (Can we make the data separated 7
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Kernel Machines

Support Vector Machines

e Map data into a feature space

reX — dx)e F

e Perform maximal margin classification in feature space

Kernel trick

e Algorithm can be implemented by computing inner products
d(x) - d(x') = k(x, 2

e Simply choose a kernel and run the linear algorithm on the matrix
K = (k(zi, z)))i je(1,.n}

— k is a measure of similarity. Algorithm works on similarity matrix.
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Alignment

e Choice of Kernel = choice of feature space
e [deal kernel = feature space contains label
e Ideal kernel matrix
ki(xi, ;) = yiy,

Measure distance from ideal kernel: Alignment
AK) = Ky,
i,

Measures the data separation:

A(K) = Z ]ﬂ(.’l}'i,wﬂ — Z k(%i, Cl?j)

YiFYj
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Transduction as Optimization
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e Maximize alignment on the labeled data
e Corresponds to maximizing data separation

e Diagonalize, fix eigenvectors, optimize eigenvalues
Align
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Overview
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e Induction vs Transduction

e Algorithms

— Formalization

e Open issues
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Formalization
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e Data is fixed
Tlyeovy Tpam € X

Yis- o Ynem € {=1,1}
e Oracle (teacher) chooses randomly a subset

Ic{l,....n+m}

e [Input to algorithm
L1y -y Lntm

I
(Yi)ier
e Output of algorithm
(f&z‘)z‘e{l,...,ner}
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Formalization

Random choice of [

Randomness models

e Fixed size
Choose n examples among n + m with uniform probability for every choice,

()T =,

n
e Variable size
For each 7 € {1,...,n+m} choose independently with probability —— 1o
include it.

~E[I]=n

— We want to make statements that hold with high probability over the random
choice of 1.
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Formalization
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Risk

Recall output y = 1, ..., Ynim.

y is an n + m dimensional vector in {—1,1}"*™.

e Test error !
Ry =17 > i # i}
iel

e Cannot be computed: need to estimate it from the data
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Formalization
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Error bounds

We estimate the test error by the empirical error

R(I,y)
We want to prove
P; |R(I,y) — R(I,y) > €| <9
Choose a set of vectors ) C {—1,1}""". We want to bound

P; [sup R(I,y) — R(I,y) > e
yey
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Results v

When n = m,
R(I,y) < R(I,y)+KC(Y)+ O (L)

Where C' Rademacher complexity of ).

3

When m > n,

R(I,y) < R(I,y) + KC(Y2)+ O (%)

where C'()),,) is the average Rademacher complexity computed on subsets of
size 2n of the data.

— Complexity can be computed from z; only. Labels don’t play any role !
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Overview
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e Induction vs Transduction

e Algorithms

e Formalization

— Open issues
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Comparison

Model Selection

Induction
e Define a structure without any data

e Compute empirical complexity

Transduction
e Define a structure with all the z;
e Know exact complexity of this structure

— Data-dependent classes.

— Justifies the margin approach.
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Open Problems
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e Analyze alignement algorithm in that framework

e Provide model selection methods

e Provide Rademacher estimates

e Prove that unlabeled data really help
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Conclusion
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e Different framework with potentially interesting applications

e Very few people studied it: a lot remains to be done

e Challenges

— Good empirical evidence — justification 7
— Algorithmic — make transduction efficient

— Theoretical — provide guarantees
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