
2004/08/24 16:50

1 Kernels for graphs

Hisashi Kashima

Koji Tsuda

Akihiro Inokuchi

This chapter discusses the construction of kernel functions between labeled graphs.

We provide a unified account of a family of kernels called label sequence kernels

that are defined via label sequences generated by graph traversal. For cyclic graphs,

dynamic programming techniques cannot simply be applied, because the kernel is

based on an infinite dimensional feature space. We show that the kernel computation

boils down to obtaining the stationary state of a discrete-time linear system, which is

efficiently performed by solving simultaneous linear equations. Promising empirical

results are presented in classification of chemical compounds.

1.1 Introduction

Many real-world data are represented not as vectors but as graphs, including se-

quences and trees as special cases. Examples of such data include biological se-

quences, phylogenetic trees, RNA structures (Durbin et al., 1998), natural lan-

guage texts (Manning and Schütze, 1999), semistructured data such as HTML and

XML (Abiteboul et al., 2000), and so on. In computational biology, graph data

are attracting considerable attention in drug design. Chemical compounds can be

represented as labeled graphs and their automatic classification to predict the ef-

fectiveness or toxicity of drugs is of crucial importance to the rationalization of

drug discovery processes (Kramer and De Raedt, 2001; Inokuchi et al., 2000). In

protein engineering, three-dimensional structures of proteins are often represented

as distance graphs (Holm and Sander, 1993).

Kernel methods such as support vector machines (SVMs) are becoming increas-

ingly popular for their high performance (Schölkopf and Smola, 2002). In kernel

methods, all computations are done via a kernel function, which is defined as the

inner product of two vectors in a feature space. A kernel function needs to be de-
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signed to capture the characteristics of the objects appropriately, and at the same

time, to be computed efficiently. Furthermore it must satisfy the mathematical

property called positive definiteness. A kernel function should deliberately be de-

signed to satisfy this property, because ad hoc similarity functions are not always

positive definite; see, for example, Shimodaira et al. (2002) and Bahlmann et al.

(2002).

Haussler (1999) introduced “convolution kernels”, a general framework for han-

dling discrete data structures by kernel methods. In convolution kernels, objects

are decomposed into parts, and kernels are defined in terms of the (sub)kernels

between parts. After Haussler’s seminal paper, a number of kernels for structured

data were proposed, for example, Watkins (2000), Jaakkola et al. (2000), Leslie

et al. (2003), Lodhi et al. (2002), and Tsuda et al. (2002) for sequences, and Vish-

wanathan and Smola (2003), Collins and Duffy (2002), and Kashima and Koyanagi

(2002) for trees. Most of them are basically based on the same idea. An object such

as a sequence or a tree is decomposed into substructures, for example, substrings,

subsequences, and subtrees, and a feature vector is composed of the counts of the

substructures. Since the dimensionality of feature vectors is typically very high, the

explicit computations of feature values should be avoided. So most of the kernels

adopt efficient procedures such as dynamic programming or suffix trees.

In this chapter, we discuss the construction of kernel functions between labeled

graphs.1 We try to give a unified overview on the recent researches for graph

kernels (Kashima and Inokuchi, 2002; Kashima et al., 2003; Gärtner, 2002; Gärtner

et al., 2003). A common point of these works is that features are composed of the

counts of label sequences produced by graph traversal. For the labeled graph shown

in figure 1.1, a label sequence is produced by traversing the vertices, and looks like

(A, c, C, b, A, a, B), (1.1)

where the vertex labels A, B, C, D and the edge labels a, b, c, d appear alternately.

The essential difference among the kernels lies in how graphs are traversed and how

weights are involved in computing a kernel. We call this family of kernel “label

sequence kernels”. This family of kernels can be computed efficiently and capture

essential features of labeled graphs. As we will see below, label sequence kernels

are closely related to the kernels between probability distributions (Jebara and

Kondor, 2003), especially the kernels between hidden Markov models (HMMs).

Mathematically it is possible to consider a kernel based on more complicated

substructures such as subgraphs. However, the practical computation becomes

considerably more difficult, because counting the number of all possible subgraphs

turns out to be NP-hard (Gärtner et al., 2003).

1. Note that they should be distinguished from kernels in graph-structured input spaces
such as kernels between two vertices in a graph, for example, diffusion kernels (Srinivasan
et al., 1996; Kondor and Lafferty, 2002; Lafferty and Lebanon, 2003) or kernels between
two paths in a graph, for example, path kernels (Takimoto and Warmuth, 2002).
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Figure 1.1 An example of labeled graphs. Vertices and edges are labeled by uppercase
and lowercase letters, respectively. By traversing along the bold edges, the label sequence
(1.1) is produced.

When the graphs are acyclic, the label sequence kernels are computed simply by

dynamic programming, as shown in subsection 1.2.3. However, when the graphs are

cyclic, label sequences of infinite length can be produced because the traversal may

never end. In that case, the number of features becomes infinite. For computing

a kernel based on infinite-dimensional vectors, we exploit recursive structures in

features, and it will be shown that the kernel computation is reduced to finding the

stationary state of a discrete-time linear system (Rugh, 1995), which can be done

efficiently by solving simultaneous linear equations with a sparse coefficient matrix.

In the following, we describe the kernel function proposed by Kashima et al.

(2003).2 This kernel is defined as the expectation of a string kernel over all possible

label sequences, which is regarded as a special case of marginalized kernels (Tsuda

et al., 2002). The relations to other label sequence kernels are discussed, and

several extensions are proposed as well. Finally, in order to investigate how well

our kernel performs on the real data, we show promising results on classifying

chemical compounds.

1.2 Label Sequence Kernel between Labeled Graphs

In this section, we introduce a kernel between labeled graphs. First of all, let us

define a labeled graph. Let ΣV , ΣE be the sets of vertex labels and edge labels,Labeled graph

respectively. Let X be a finite nonempty set of vertices, v be a function v : X → ΣV ,

L be a set of ordered pairs of vertices called edges, and e be a function e : L → ΣE .

Then G = (X, v, L, e) is a labeled graph with directed edges. figure 1.1 shows such

a graph. For the time being, we assume that there are no multiple edges from one

vertex to another. Our task is to construct a kernel function k(G, G′) between two

labeled graphs.

2. Notice that the notations here are in part changed from those in Kashima et al. (2003)
for better presentation.
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1.2.1 Random Walks on Graphs

For extracting features from graph G, a set of label sequences is produced by random

walking. At the first step, x1 ∈ X is sampled from an initial probability distribution

ps(x1). Subsequently, at the ith step, the next vertex xi ∈ X is sampled subject

to a transition probability pt(xi|xi−1), or the random walk ends with probability

pq(xi−1):

|X|
∑

xi=1

pt(xi|xi−1) + pq(xi−1) = 1. (1.2)

When we do not have any prior knowledge, we can set ps to be the uniform

distribution, the transition probability pt to be a uniform distribution over the

vertices adjacent to the current vertex, and the termination probability pq to be a

small constant probability.

From the random walk, we obtain a sequence of vertices called path:

x = (x1, x2, . . . , x`), (1.3)

where ` is the length of x (possibly infinite). The probability for the path x is

described as

p(x|G) = ps(x1)
∏̀

i=2

pt(xi|xi−1)pq(x`).

Let us define a label sequence as an alternating sequence of vertex labels and edgeLabel sequence

labels:

h = (h1, h2, . . . , h2`−1) ∈ (ΣV ΣE)`−1ΣV .

Associated with a path x, we obtain a label sequence

hx = (vx1
, ex1,x2

, vx2
, . . . , vx`

).

The probability for the label sequence h is equal to the sum of the probabilities of

the paths emitting h,

p(h|G) =
∑

x

δ(h = hx) ·

(

ps(x1)
∏̀

i=2

pt(xi|xi−1)pq(x`)

)

,

where δ is a function that returns 1 if its argument holds, 0 otherwise.

1.2.2 Label Sequence Kernel

Next we define a kernel kz between two label sequences h and h′. We assume that

two kernel functions, kv(v, v′) and ke(e, e
′), are readily defined between vertex labels
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and edge labels, respectively. We constrain both kernels kv(v, v′), ke(e, e
′) ≥ 0 to

be non-negative.3 An example of a vertex label kernel is the identity kernel,Vertex and edge

kernels
kv(v, v′) = δ(v = v′). (1.4)

If the labels are defined in R, the Gaussian kernel,

kv(v, v′) = exp(− ‖ v − v′ ‖2 /2σ2), (1.5)

could be a natural choice (Schölkopf and Smola, 2002). Edge kernels are defined

similarly. The kernel for label sequences is defined as the product of label kernels

when the lengths of two sequences are equal (` = `′):

kz(h,h′) = kv(h1, h
′
1)
∏̀

i=2

ke(h2i−2, h
′
2i−2)kv(h2i−1, h

′
2i−1). (1.6)

If the lengths are different (` 6= `′), then kz is simply zero (kz(h,h′) = 0).

The function kz is proved to be a valid kernel function as follows: The set of all

possible label sequences H can be divided into subsets according to their lengths

as H1, H2, . . .. Let us define k
(j)
z as kz whose domain is limited to the subset

Hj × Hj , then k
(j)
z is a valid kernel as it is described as the tensor product of

kernels (Schölkopf and Smola, 2002). Now let us expand the domain of k
(j)
z to the

whole set H × H by assigning zero when one of the inputs is not included in Hj ,

and call it k̄
(j)
z . This operation is called zero extension (Haussler, 1999), which

preserves positive definiteness. Since kz is the sum of all k̄
(j)
z ’s, it turns out to be a

valid kernel.

Finally, our label sequence kernel is defined as the expectation of kz over allLabel sequence

kernel possible h and h′.

k(G, G′) =
∑

h

∑

h′

kz(h,h′)p(h|G)p(h′|G′). (1.7)

This kernel is valid, because it is described as an inner product of two vectors

p(h|G) and p(h′|G′).

3. This constraint will play an important role in proving the convergence of our kernel in
section 1.2.5.
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1.2.3 Efficient Computation of Label Sequence Kernels

The label sequence kernel (1.7) can be expanded as

k(G, G′) =
∞
∑

`=1

∑

h

∑

h′

(

kv(h1, h
′
1)
∏̀

i=2

ke(h2i−2, h
′
2i−2)kv(h2i−1, h

′
2i−1)

)

×

(

∑

x

δ(h = hx) ·

(

ps(x1)
∏̀

i=2

pt(xi|xi−1)pq(x`)

))

×

(

∑

x′

δ(h = hx′) ·

(

ps(x
′
1)
∏̀

i=2

pt(x
′
i|x

′
i−1)pq(x

′
`)

))

,

where
∑

h
:=
∑

h1∈ΣV

∑

h2∈ΣE
· · ·
∑

h2`−1∈ΣV
and

∑

x
:=
∑|X|

x1=1 · · ·
∑|X|

x`=1. The

straightforward enumeration of all terms to compute the sum takes a prohibitive

computational cost. For cyclic graphs, it is simply impossible because ` spans from

1 to infinity. Nevertheless, there is an efficient method to compute this kernel as

shown below. The method is based on the observation that the kernel has the

following nested structure.Nested structure

k(G, G′) = lim
L→∞

L
∑

`=1

∑

x1,x′

1

s(x1, x
′
1)





∑

x2,x′

2

t(x2, x
′
2, x1, x

′
1)





∑

x3,x′

3

t(x3, x
′
3, x2, x

′
2)×



· · ·





∑

x`,x′

`

t(x`, x
′
`, x`−1, x

′
`−1)q(x`, x

′
`)







 · · ·



 , (1.8)

where

s(x1, x
′
1) := ps(x1)p

′
s(x

′
1)kv(vx1

, v′x′

1

)

t(xi, x
′
i, xi−1, x

′
i−1) := pt(xi|xi−1)p

′
t(x

′
i|x

′
i−1)kv(vxi

, v′x′

i

)ke(exi−1xi
, ex′

i−1
x′

i
) (1.9)

q(x`, x
′
`) := pq(x`)p

′
q(x

′
`).

Acyclic Graphs Let us first consider acyclic graphs, that is, directed graphs

without cycles. Precisely, it means that if there is a directed path from vertex x1 to

x2, then there is no directed paths from vertex x2 to x1. When a directed graph is

acyclic, the vertices can be numbered in a topological order4 such that every edge

from a vertex numbered i to a vertex numbered j satisfies i < j (see figure 1.2).

Since there are no directed paths from vertex j to vertex i if i < j, we can employ

dynamic programming. When G and G′ are directed acyclic graphs, (1.8) can beDynamic

programming

4. Topological sorting of graph G can be done in O(|
�
| + | � |) (Cormen et al., 1990).
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Figure 1.2 A topologically sorted directed acyclic graph. The label sequence kernel can
be efficiently computed by dynamic programming running from right to left.

written as

k(G, G′) =
∑

x1.x′

1

s(x1, x
′
1)q(x1, x

′
1) + lim

L→∞

L
∑

`=2

∑

x1,x′

1

s(x1, x
′
1) × (1.10)





∑

x2>x1,x′

2
>x′

1

t(x2, x
′
2, x1, x

′
1)





∑

x3>x2,x′

3
>x′

2

t(x3, x
′
3, x2, x

′
2)×



· · ·





∑

x`>x`−1,x′

`
>x′

`−1

t(x`, x
′
`, x`−1, x

′
`−1)q(x`, x

′
`)







 · · ·



 .

The first and second terms correspond to the label sequences of length 1 and those

longer than 1, respectively. By defining

r(x1, x
′
1) := q(x1, x

′
1) + lim

L→∞

L
∑

`=2





∑

x2>x1,x′

2
>x′

1

t(x2, x
′
2, x1, x

′
1)×



· · ·





∑

x`>x`−1,x′

`
>x′

`−1

t(x`, x
′
`, x`−1, x

′
`−1)q(x`, x

′
`)







 · · ·



 ,(1.11)

we can rewrite (1.10) as the following:

k(G, G′) =
∑

x1,x′

1

s(x1, x
′
1)r(x1, x

′
1).

The merit of defining (1.11) is that we can exploit the following recursive equation.

r(x1, x
′
1) = q(x1, x

′
1) +

∑

j>x1,j′>x′

1

t(j, j′, x1, x
′
1)r(j, j

′). (1.12)

Since all vertices are topologically ordered, r(x1, x
′
1) for all x1 and x′

1 can be

efficiently computed by dynamic programming (figure 1.3). The worst-case time

complexity of computing k(G, G′) is O(c · c′ · |X| · |X′|) where c and c′ are the

maximum out degree of G and G′, respectively.

General Directed Graphs In the case of cyclic graphs, we do not have topo-

logically sorted graphs anymore. This means that we cannot employ the one-pass

dynamic programming algorithm for acyclic graphs. However, we can obtain a re-
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Figure 1.3 Recursion for computing r(x1, x
′

1) using recursive equation (1.12). r(x1, x
′

1)
can be computed based on the precomputed values of r(x2, x

′

2), x2 > x1, x′

2 > x′

1.

cursive form of the kernel like (1.12), and reduce the problem to solving a system

of simultaneous linear equations. Let us rewrite (1.8) as

k(G, G′) = lim
L→∞

L
∑

`=1

∑

x1,x′

1

s(x1, x
′
1)r`(x1, x

′
1),

where for ` ≥ 2,

r`(x1, x
′
1) :=





∑

x2,x′

2

t(x2, x
′
2, x1, x

′
1)





∑

x3,x′

3

t(x3, x
′
3, x2, x

′
2)×



· · ·





∑

x`,x′

`

t(x`, x
′
`, x`−1, x

′
`−1)q(x`, x

′
`)







 · · ·



 ,

and r1(x1, x
′
1) := q(x1, x

′
1). Replacing the order of summation, we have the follow-

ing:

k(G, G′) =
∑

x1,x′

1

s(x1, x
′
1) lim

L→∞

L
∑

`=1

r`(x1, x
′
1)

=
∑

x1,x′

1

s(x1, x
′
1) lim

L→∞
RL(x1, x

′
1), (1.13)

where

RL(x1, x
′
1) :=

L
∑

`=1

r`(x1, x
′
1).

Thus we need to compute R∞(x1, x
′
1) to obtain k(G, G′).

Now let us restate this problem in terms of linear system theory (Rugh, 1995).

The following recursive relationship holds between rk and rk−1 (k ≥ 2):Linear system
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rk(x1, x
′
1) =

∑

i,j

t(i, j, x1, x
′
1)rk−1(i, j). (1.14)

Using (1.14), the recursive relationship for RL also holds as follows:

RL(x1, x
′
1) = r1(x1, x

′
1) +

L
∑

k=2

rk(x1, x
′
1)

= r1(x1, x
′
1) +

L
∑

k=2

∑

i,j

t(i, j, x1, x
′
1)rk−1(i, j)

= r1(x1, x
′
1) +

∑

i,j

t(i, j, x1, x
′
1)RL−1(i, j). (1.15)

Thus RL can be perceived as a discrete-time linear system (Rugh, 1995) evolving

as the time L increases. Assuming that RL converges (see section 1.2.5 for the

convergence condition), we have the following equilibrium equation:

R∞(x1, x
′
1) = r1(x1, x

′
1) +

∑

i,j

t(i, j, x1, x
′
1)R∞(i, j). (1.16)

Therefore, the computation of our kernel finally boils down to solving simultaneous

linear equations (1.16) and substituting the solutions into (1.13).

Now let us restate the above discussion in the language of matrices. Let s, r1,Matrix

computation and r∞ be |X| · |X′| dimensional vectors such that

s = (· · · , s(i, j), · · · )>, r1 = (· · · , r1(i, j), · · · )
>, r∞ = (· · · , R∞(i, j), · · · )>,

(1.17)

respectively. Let the transition probability matrix T be a |X||X′| × |X||X′| matrix,

[T ](i,j),(k,l) = t(i, j, k, l).

Equation (1.13) can be rewritten as

k(G, G′) = rT
∞s (1.18)

Similarly, the recursive equation (1.16) is rewritten as

r∞ = r1 + T r∞.

The solution of this equation is

r∞ = (I − T )−1r1.

Finally, the matrix form of the kernel is

k(G, G′) = (I − T )−1r1s. (1.19)

Computing the kernel requires solving a linear equation or inverting a matrix

with |X||X′| × |X||X′| coefficients. However, the matrix I − T is actually sparse

because the number of non-zero elements of T is less than c · c′ · |X| · |X′| where
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c and c′ are the maximum out degree of G and G′, respectively [see (1.9) for

the definition of T ]. Therefore, we can employ efficient numerical algorithms that

exploit sparsity (Barrett et al., 1994). In our implementation, we employed a simple

iterative method that updates RL by using (1.15) until convergence starting from

R1(x1, x
′
1) = r1(x1, x

′
1).

1.2.4 Allowing Multiple Edges between Vertices

Up to this point, we assumed that there are no multiple edges from one vertex

to another. However, a slight modification allows incorporation of multiple edges.

Suppose that there are Mxi−1xi
directed edges from vertex x′

i−1 to vertex x′
i with

labels em
xi−1xi

, and transition probabilities pm
t (xi|xi−1) (m = 1, 2, . . . , Mxi−1xi

).

Instead of (1.9), by considering all pair of em
xi−1xi

and em
x′

i−1
x′

i

, we have only to

redefine t(xi, x
′
i, xi−1, x

′
i−1) as the following.

t(xi, x
′
i, xi−1, x

′
i−1) := k(vxi

, v′x′

i

) ×

Mxi−1xi
∑

m=1

M ′

xi−1xi
∑

m′=1

pm
t (xi|xi−1)p

′m′

t (x′
i|x

′
i−1)k(em

xi−1xi
, em′

x′

i−1
x′

i

)

1.2.5 Convergence Condition

Since loops are allowed in general directed graphs, an infinite number of paths can

be generated. Therefore some convergence condition is needed to justify (1.16). The

following theorem holds:

Theorem 1.1 The infinite sequence limL→∞ RL(x1, x
′
1) converges for any x1 ∈

{1, · · · , |X|} and x′
1 ∈ {1, · · · , |X′|}, if the following inequality holds for i0 ∈

{1, · · · , |X|} and j0 ∈ {1, · · · , |X′|},

|X|
∑

i=1

|X′|
∑

j=1

t(i, j, i0, j0)q(i, j) < q(i0, j0). (1.20)

For the proof, see Kashima et al. (2003). The condition (1.20) seems rather

complicated, but we can have a simpler condition, if the termination probabilities

are constant over all vertices.

Corollary 1.2 If pq(i) = p′q(j) = γ for any i and j, the infinite sequence

limL→∞ RL(x1, x
′
1) converges if

kv(v, v′)ke(e, e
′) <

1

(1 − γ)2
. (1.21)

Apparently, the above lemma holds if 0 ≤ kv , ke ≤ 1. Standard label kernels such

as (1.4) and (1.5) satisfy this condition.
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Figure 1.4 A chemical compound is conventionally represented as an undirected graph
(left). Atom types and bond types correspond to vertex labels and edge labels, respectively.
The edge labels s and d denote single and double bonds, respectively. As our kernel assumes
a directed graph, undirected edges are replaced by directed edges (right).

1.3 Experiments

We applied our kernel to the prediction of properties of chemical compounds.

A chemical compound can naturally be represented as an undirected graph byChemical

compound considering the atom types as the vertex labels, for example, C, Cl, and H, and the

bond types as the edge labels, for example, s (single bond) and d (double bond). For

our graph kernel, we replaced an undirected edge by two directed edges (figure 1.4)

since the kernel assumes directed graphs.

1.3.1 Pattern Discovery Algorithm

We compare our graph kernel with the pattern-discovery (PD) method of Kramer

and De Raedt (2001) which is one of the best state-of-the-art methods in predictive

toxicology. Like our graph kernel, the PD method counts the number of label

sequences appearing in the graph.5 There are other methods which count more

complicated substructures such as subgraphs (Inokuchi et al., 2000), but we focus

on Kramer and De Raedt (2001) whose features are similar to ours.

Assume that we have n graphs G1, . . . , Gn. Let us define #(h, G) as the number

of appearances of a label sequence h in G. The PD method identifies the set of all

label sequences H which appear in more than m graphs:

H = {h |

n
∑

i=1

δ (# (h, Gi) > 0) ≥ m},

where the parameter m is called the minimum support parameter. Furthermore, it

is possible to add extra conditions, for example, selecting only the paths frequent

5. Notice that the definition of label sequences is different from ours in several points, for
example, a vertex will not be visited twice in a path. See Kramer and De Raedt (2001)
for details.
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in a certain class and scarce in the other classes. Each graph G is represented by a

vector as

G → (#(x1, G), . . . , #(x|H|, G)), (1.22)

whose dimensionality is the cardinality of H. The PD method is useful for extracting

comprehensive features. However, as the minimum support parameter gets smaller,

the dimensionality of the feature vectors becomes so large that a prohibitive amount

of computation is required. Therefore, the user has to control the minimum support

parameter m, such that the feature space does not lose necessary information and,

at the same time, computation stays feasible.

The PD method contrasts markedly with our method. Our kernel method puts

emphasis on dealing with infinite, but less interpretable features, while the PD

method tries to extract a relatively small number of meaningful features. Looking

at the algorithms, our method is described by just one equation (1.16), while the

PD method’s algorithm is rather complicated (De Raedt and Kramer, 2001).

1.3.2 Data sets

We used two data sets, the PTC (predictive toxicology challenge) data set (Helma

et al., 2001) and the Mutag data set (Srinivasan et al., 1996). The PTC data set is

the result of the following pharmaceutical experiments. Four types of test animals—

male mouse (MM), female mouse (FM), male rat (MR), and female rat (FR)—

were given 417 compounds. According to its carcinogenicity, each compound was

assigned one of the following labels: {EE, IS, E, CE, SE, P, NE, N}, where CE, SE,

and P indicate “relatively active,” NE and N indicate “relatively inactive,” and

EE, IS, and E indicate “cannot be decided.” To simplify the problem, we relabeled

CE, SE, and P as “positive,” and NE and N as “negative.” The task is to predict

whether a given compound is positive or negative for each type of test animal.

Thus we eventually had four two-class problems. In the Mutag data set, the task is

a two-class classification problem to predict whether each of the 188 compounds has

mutagenicity or not. Several statistics of the data sets are summarized in table 1.1.

1.3.3 Experimental Settings and Results

Assuming no prior knowledge, we defined the probability distributions for random

walks as follows. The initial probabilities were simply uniform, that is, ps(x) =

1/|X|. The termination probabilities were determined as a constant γ over all

vertices. The transition probabilities pt(x|x0) were set as uniform over adjacent

vertices. We used (1.4) as the label kernels. In solving the simultanous equations,

we employed a simple iterative method (1.15). In our observation, 20 to 30 iterations

were enough for convergence in all cases. For the classification algorithm, we used

the voted kernel perceptron (Freund and Shapire, 1999), whose performance is

known to be comparable to SVMs. In the pattern discovery method, the minimum
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Table 1.1 Several statistics of the data sets such as numbers of positive examples (#pos-
itive) and negative examples (#negative), maximum degree (max. degree), maximum size
of graphs (max. |

�
|), average size of graphs (avg. |

�
|), and numbers of vertex labels (|ΣV |)

and edge labels (|ΣE |).

MM FM MR FR Mutag

#positive 129 143 152 121 125

#negative 207 206 192 230 63

max. |
�
| 109 109 109 109 40

avg. |
�
| 25.0 25.2 25.6 26.1 31.4

max. degree 4 4 4 4 4

|ΣV | 21 19 19 20 8

|ΣE | 4 4 4 4 4

Table 1.2 Classification accuracies (%) of the pattern discovery method. MinSup shows
the ratio of the minimum support parameter to the number of compounds m/n.

MinSup MM FM MR FR Mutag

0.5% 60.1 57.6 61.3 66.7 88.3

1.0% 61.0 61.0 62.8 63.2 87.8

3.0% 58.3 55.9 60.2 63.2 89.9

5.0% 60.7 55.6 57.3 63.0 86.2

10% 58.9 58.7 57.8 60.1 84.6

20% 61.0 55.3 56.1 61.3 83.5

support parameter was determined as 0.5%, 1%, 3%, 5%, 10%, and 20% of the

number of compounds, and the simple dot product in the feature space (1.22) was

used as a kernel. In our graph kernel, the termination probability γ was changed

from 0.1 to 0.9.

Tables 1.2 and 1.3 show the classification accuracies in the five two-class problems

measured by leave-one-out cross-validation. No general tendencies were found to

conclude which method is better (the PD was better in MR, FR, and Mutag, but

our method was better in MM and FM). Thus it would be fair to say that the

performances were comparable in this small set of experiments. Even though we

could not show that our method is constantly better, this result is still appealing,

because the advantage of our method lies in its simplicity both in concepts and in

computational procedures.

1.4 Related Works

We have presented one kernel for graphs based on label sequences, but variants can

be obtained by changing the following two points:
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Table 1.3 Classification accuracies (%) of our graph kernel. The parameter γ is the
termination probability of random walks, which controls the effect of the length of label
sequences.

γ MM FM MR FR Mutag

0.1 62.2 59.3 57.0 62.1 84.3

0.2 62.2 61.0 57.0 62.4 83.5

0.3 64.0 61.3 56.7 62.1 85.1

0.4 64.3 61.9 56.1 63.0 85.1

0.5 64.0 61.3 56.1 64.4 83.5

0.6 62.8 61.9 54.4 65.8 83.0

0.7 63.1 62.5 54.1 63.2 81.9

0.8 63.4 63.4 54.9 64.1 79.8

0.9 62.8 61.6 58.4 66.1 78.7

Removing probabilistic constraints: In our setting, the random walk parameters

are determined such that the probabilities of all label sequences sum to 1. One can

remove these constraints and simply consider transition “weights,” not probabilities.

Changing the rate of weight decay: The probabilities (or weights) associated with

a label sequence could decay as the length of the sequence increases. Variants can

be obtained by introducing an extra decaying factor depending on the sequence

length.

Recently, Gärtner et al. (2003) proposed two graph kernels called geometric and

exponential kernels. Let wt(xi|xi−1) denote a weight of transition from xi−1 to xi.Geometric and

exponential

kernels

Their kernels can be recovered in our framework by setting ps(·) = 1, pq(·) = 1 and

replacing the transition probability pt(xi|xi−1) with

√

λkwt(xi|xi−1)

where λk is the decaying factor depending on the current sequence length k. In our

setting, when the random walk passes through an edge, the probability is multiplied

by the same factor regardless of the current sequence length. However, in their

setting, the decay rate may get larger when the edge is visited later, that is, after

traversing many vertices.

In the geometric kernel, λk does not depend on k, that is, λk = λ. This kernel

is quite similar to our kernel and is computed by means of matrix inversion, as in

(1.19). An interesting kernel, called the exponential kernel, is derived when

λk =
β

k
.

It turns out that this kernel is computed efficiently by the matrix exponential:

k(G, G′) =
∑

i

∑

j

[

lim
L→∞

L
∑

`=1

(βT )`

`!

]

ij

=
∑

i

∑

j

[

eβT
]

ij
.
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Obviously, possible variants are not limited to these two cases, so there remains a

lot to explore.

Label sequence kernels have an intrinsic relationship to the kernels between

probability distributions called probability product kernels (Jebara and Kondor,

2003). Here the kernel between two probability distributions p and p′ is defined as

k(p, p′) =

∫

Ω

p(x)ρp′(x)ρdx (1.23)

When ρ = 1, the kernel is called expected likelihood kernel. Also, when ρ = 1/2, theExpected

likelihood kernel kernel is called Bhattacharrya kernel, which is related to the Hellinger distance. In

fact, when edges are not labeled and the vertex kernel is determined as the identity

kernel, our kernel can be regarded as the expected likelihood kernel between two

Markov models. In such cases. the graph G is perceived as a transition graph of

a Markov model and random walking amounts to the emission of symbols. The

same idea can be extended to define a kernel for HMMs (Lyngsø et al., 1999). AnKernels for

HMMs HMM can be regarded as a labeled graph where edges are not labeled and vertices

are probabilistically labeled, that is, a vertex randomly emits one of the symbols

according to some probability distribution.

If we regard the kernel kz(h,h′) as a joint distribution pz(h,h′) that emits a pair

of sequences h and h′, it can be an instance of rational kernels (Cortes et al., 2003),

Rational kernels

k(x,x′) =
∑

h

∑

h′

pz(h,h′)p(h|x)p′(h′|x′),

that define a kernel between two probabilistic automata p(h|x) and p′(h′|x′) via

probabilistic transducer pz(h,h′). The rational kernels are not limited to the

probabilistic setting, and provide a unified framework for designing kernels via

weighted transducers. Cortes et al. (2003) provided no algorithms for acyclic cases.

The techniques we introduced in this chapter can be easily applied to the rational

kernels for cyclic cases.

1.5 Conclusion

This chapter discussed the design of kernel functions between directed graphs with

vertex labels and edge labels. We defined the label sequence kernel by using random

walks on graphs, and reduced the computation of the kernel to solving a system of

simultaneous linear equations. In contrast to the PD method, our kernel takes into

account all possible label sequences without computing feature values explicitly. The

structure we dealt with in this chapter is fairly general, and promising in a wide

variety of problems in bioinformatics. Potential targets would be DNA and RNA

sequences with remote correlations, HTML and XML documents in MEDLINE,

topology graphs, and distance graphs of 3D protein structures, just to mention

some.
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T. Gärtner. Exponential and geometric kernels for graphs. In NIPS Workshop on

Unreal Data: Principles of Modeling Nonvectorial Data, 2002. Available from

http://mlg.anu.edu.au/unrealdata/.
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