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Abstract:
Gaussian Process (GP) inference is a probabilistic kernel method where the GP is treated
as a latent function. The inference is carried out using the Bayesian online learning and its
extension to the more general iterative approach which we call TAP/EP learning (short for
TAP (Opper and Winther, 2001) and “expectation-propagation” (EP) (Minka, 2000)).
Sparsity is introduced in this context to make the TAP/EP method applicable to large datasets.
We address the prohibitive scaling of the number of parameters by defining a subset of the
training data that is used as the support the GP, thus the number of required parameters is
independent of the training set, similar to the case of “Support–” or “Relevance–Vectors”.
An advantage of the full probabilistic treatment is that allows the computation of the marginal
data likelihood or evidence, leading to hyper-parameter estimation within the GP inference.
An EM algorithm to choose the hyper-parameters is proposed. The TAP/EP learning is
the E-step and the M-step then updates the hyper-parameters. Due to the sparse E-step the
resulting algorithm does not involve manipulation of large matrices. The presented algorithm
is applicable to a wide variety of likelihood functions. We present results of applying the
algorithm on classification and nonstandard regression problems applied to artificial and real
datasets.
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1. INFERENCE WITH GAUSSIAN PROCESSES

Gaussian Processes (GPs) are probabilistic kernel
methods which combine the flexibility provided by
the generic kernel framework with the advantage of a
full probabilistic treatment of the problem, e.g. besides
the most probable latent function it also allows us to
assess the uncertainties associated to those values.

To have probabilistic treatment, we encode the data�������
xxxn � yyyn �
	 N

n � 1 using a likelihood function. For
independent data we have the likelihood as

P
����

fff � �
N

∏
n � 1

P
�
yyyn

xxxn � fff � �

N

∏
n � 1

P
�
yyyn

fxxxn ��� (1)

The likelihood is conditioned on a latent function fff
which we model as a GP, ie. a random function charac-

terised by a joint Gaussian distribution of the function
values for any finite collection of inputs. Notice that
the general conditioning of the likelihood on the whole
random function fff is simplified to dependence on a
single random variable: the GP marginal at location xxxn

(we use fn
�� fxxxn).

To perform Bayesian inference we need a GP prior
p0
�
fff � for the function fff . A GP is fully specified by

its prior mean function � fxxx � 0 and the prior covariance
kernel K0

�
xxx � xxx � � . In the following we assume zero prior

mean function, thus the choice of the covariance ker-
nel fully encodes our class of functions. The posterior
process is derived from Bayes’ rule and is written as

ppost
�
fff � � 1

Z
p
����

fff � po
�
fff � (2)



where Z
�

P
� � � � � d fff p

����
fff � po

�
fff � is the normal-

ising constant or the free energy.

The simple expression eq. (2) describing the poste-
rior process can seldom be applied in practise: two
fundamental problems need to be addressed. The
first problem appears with non-Gaussian likelihoods
which leads to non-Gaussian posterior processes. This
implies that we need approximations resulting in a
tractable posterior, a possible approximation is pre-
sented in this section. The second problem is the
super-linear increase of the parameters with the size
of the dataset, addressed in Section 2.

To have computational tractability we approximate
the non-Gaussian posterior process with a Gaussian
one by retaining only the posterior mean and covari-
ance kernel functions of the non-tractable posterior.
The posterior mean � fxxx � post and covariance kernel
Kpost

�
xxx � xxx � � functions are given by the following ex-

pressions (Csató and Opper, 2002):

� fxxx � post
� � fxxx � 0 � ∑N

n � 1 αn K0
�
xxx � xxxn �

Kpost
�
xxx � xxx � � � K0

�
xxx � xxx � �

� ∑N
m � n � 1K0

�
xxx � xxxm � CmnK0

�
xxxn � xxx � �

(3)

where the vector ααα
���

α1 � � � � � αN � T and matrix CCC
�

�
Cmn 	 N

m � n � 1 are the scalar parameters given as:

αn
� ∂

∂ � fn � 0 lnZ

Cmn
� ∂ 2

∂ � fm � 0∂ � fn � 0 lnZ
(4)

where Z is the complete data likelihood or the normal-
ising constant in eq. (2) and the derivatives are with
respect to the prior mean � fn � 0 of the GP at the training
points xxxn.

It is important that the functional form of the poste-
rior approximation does not depend on the particular
likelihood. The result for the posterior mean was also
obtained in the Kimeldorf-Wahba representer theo-
rem (Kimeldorf and Wahba, 1971). Additionally to
that, we have a representation for a full Gaussian pro-
cess by providing the covariance kernel of the poste-
rior approximation. The estimation of both moments
of the posterior allows the probabilistic treatment,
leading to eg. Bayesian error bars for prediction.

The expression of the posterior moments merely states
the existence of the parameters

�
ααα � CCC � since the free

energy Z cannot be computed nor the derivatives can
be taken. Therefore we have to consider approxima-
tions to find them. Exact result exists only for Gaus-
sian likelihood, however efficient approximations are
feasible for various other likelihood functions (Csató
and Opper, 2002; Minka, 2000; Csató, 2002).

We are focusing on the joint approximation of the pa-
rameters for both the mean and the covariance kernel
functions and mention that the approximation of the

parameters of the mean ααα alone for different likeli-
hoods is an active research area in the kernel commu-
nity, see eg. in (Schölkopf et al., 1999).

The approximation we use is the extension of the
Bayesian online learning, called the TAP/EP algo-
rithm (Minka, 2000; Opper and Winther, 2001). The
“expectation-propagation” (EP) algorithm proposed a
sequential optimisation procedure which updates the
GP coefficients

�
ααα � CCC � by considering a single likeli-

hood term P
�
yyyk


fk � from eq. (1) at each iteration. At

each step the approximated posterior, the result of the
previous step, was viewed as prior in the current step.
The update of the parameters were performed using
lnZk with single likelihood and the current prior. If we
denote the first and second derivative of lnZk with qk
and rk respectively, then we immediately have from
eq. (3) the following updates for the GP mean and
covariance functions:

� fxxx � new
� � fxxx � old � qk Kold

�
xxx � xxxk �

Knew
�
xxx � xxx � � � Kold

�
xxx � xxx � � � rk Kold

�
xxx � xxxk � Kold

�
xxxk � xxx � � �

(5)

In developing the EP algorithm Minka observed that
at each individual step the ratio of the prior and the
approximated posterior defines a Gaussian approxi-
mation to each likelihood term P

�
yyyk


fk � , these ap-

proximations are however dependent on each other,
the dependence comes from the use of priors, ie. the
approximations to the other likelihood terms. These
quadratic approximations allowed to go beyond the
conventional online learning and perform iterative up-
dates. In online learning each term in the likelihood
can only be used once. In the iterative extension first a
“subtraction” of the previous Gaussian approximation
to the likelihood is performed, followed by the online
learning of the current input (see (Minka, 2000; Opper
and Winther, 2001) for details). An other important
benefit of the EP algorithm is the approximation to
the marginal data likelihood, ie. model evidence and
the possibility to perform model selection, presented
in Section 3.

An important limiting factor of the framework pre-
sented so far is that it cannot be applied to large
datasets, the quadratic scaling of the parameters with
the size of the data is far too prohibitive. Therefore a
second approximation is performed, presented next.

2. OBTAINING SPARSE SOLUTION

The kernels we use might not be infinite-dimensional,
this implies that often the representation of the ap-
proximating posterior is redundant. Several tech-
niques to exploit the redundancy of the MAP solu-
tion, ie. the mean function from eq. (3) have been
proposed (Wahba, 1990; Smola and Bartlett, 2001;
Williams and Seeger, 2001). These approaches did not
take into account the posterior covariance. Our aim in
this section, similar in philosophy to the earlier work,



is to describe the posterior GP using a constant and
small number of parameters and to have this number
independent from the size of the dataset.

We want to write the posterior mean and covari-
ance considering a small subset of the training in-
puts, called “basis vector set” or � V set (similar
to Support Vectors (Vapnik, 1995) or Relevance Vec-
tors (Tipping, 2000)):

� fxxx ���post
� ∑ n ��� V α �n K0

�
xxx � xxxn �

K �post
�
xxx � xxx � � � K0

�
xxx � xxx � �

� ∑m � n ��� V K0
�
xxx � xxxn � C �nmK0

�
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(6)

where we assume that
�
ααα � � CCC � � are chosen such that

the new process is “as close as possible” to the
Bayesian posterior whilst

 � V
 �

d is constant. Since
both the original, large GP given by

�
ααα � CCC � from eq. (3)

and its approximation using only the elements from
the � V set are Gaussians, their KL-distance (Cover
and Thomas, 1991) is computable. We perform a min-
imisation to find

�
ααα � � CCC � � from the original

�
ααα � CCC �

and also evaluate the KL-distance which gives an
efficient criterion to select the elements of the � V
set (Csató, 2002; Csató and Opper, 2002). It is im-
portant to mention that the computation of the KL-
distance does not require the computation of

�
ααα � � CCC � � ,

additionally to the “old” parameters it only requires
the inverse of the kernel matrix. In implementation it-
eratively update the inverse kernel matrix, thus further
reducing the computational cost.

An efficient algorithm is obtained by combining the
TAP/EP iterations with the KL-optimal projections. In
the TAP/EP step, when processing the selected input,
the � V set is increased. After the TAP/EP update, in
the pruning phase, we consider the following optimi-
sation problem: find the parameters of a new GP con-
taining one less � V and it is the closest possible in the
KL-sense to the GP resulting from the TAP/EP update
step. The resulting algorithm is efficient and avoids the
inversion of large kernel matrices, a frequent problem
in using kernel methods. The algorithm is a greedy one
in choosing the elements of the � V set, i.e. at each
time it only looks at the possibility of exchanging a
single value.

The approximated posterior is used for prediction of
the yyy at an unseen point xxx. Applying again Bayes’ rule,
we have the predictive distribution of the outputs:

p
�
yyy

xxx � ���

d fxxx P
�
yyy

fxxx � ppost

�
fxxx � (7)

where P
�
yyy

fxxx � contains the latent function at an unseen

xxx. The latent process is a GP, meaning that the integral
in eq. (7) is one-dimensional and it is with respect to
a Gaussian, which is often doable either exactly or ap-
proximately. A second observation is that a Gaussian
approximation to the latent variables does not mean a
Gaussian predictive distribution, this depends on the
choice of the likelihood function.
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Fig. 1. Results for the Friedman dataset #1 using 300
training and 500 test data. The lines show the
average test errors with error bars showing the
empirical variance across different training sets.

We show the performance of the sparse algorithm
for normal regression using the Friedman dataset in
Fig. 1. The continuous line on the top shows the re-
sult of the batch GP regression when the inputs were
only partially used, up to the size of the � V set. The
bottom, dash-dotted line shows the performance when
sparsification was applied to the full GP solution ie.
all inputs were added to the � V set and then only
the specific number of basis vectors has been retained.
The middle, continuous line shows the results of com-
bining the online learning with sparsity. We obtain a
stable performance for � V set sizes exceeding 120.
The continuous line, labelled “Full GP” shows us that
the error for the sparse GP is never worse than the
performance of a GP where we stop at the � V set size.
The fact that the two bottom lines overlap means that
the for � V sizes matching the “effective” dimension
of the data the sparse GP is optimal.

We compared the sparse GP with the SVM and RVM
methods. The SVM used 116 support vectors that
lead to a test error of 2 � 92 and similar test error
performance of 2 � 80 was obtained using 59 relevance
vectors (Tipping, 2001), stating that our algorithm
compares well to these other ones.

A few differences between these methods need to be
mentioned. A first one is that both the SVM and the
RVM start with a full solution and then obtain the
sparse result without having control over the size of
the result. On the contrary, in the sparse GP method
we start with an empty � V set add training inputs up
to the capacity of the machine used for the experiment
or up to the dimension of the kernel. A second obser-
vation is that due to the storage of the covariance, the
number of parameter is quadratic with respect to

 � V


and this number is linear for the other two methods.

In this experiment the hyper-parameters were not se-
lected automatically. The next section we introduce a
method for hyper-parameter selection.



3. MODEL SELECTION

For model selection we use the expectation-maximisa-
tion (EM) algorithm (Bishop, 1995) which aims at
maximising the complete data likelihood P

��� � , the
normalisation constant in eq. (2). We see that the set of
model parameters can be divided in two groups: a first
group related to the likelihood function p

�
yyy

fxxx � and a

second set that specifies the kernel function K0
�
xxx � xxx � � .

To optimise the likelihood parameters we perform
the optimisation of a lower bound on the model evi-
dence using the EM-algorithm with the GP posterior
having the “old” likelihood parameters and we want to
find the new ones contained in P

����
fff � :

ln p
��� ��� �

d fff ppost
�
fff � lnP

� ��
fff � (8)

The GP inference is the E-step which gives the GP
with a fixed set of hyper-parameters.

In the M-step, assuming that the posterior GP ppost
�
fff �

is fixed, we optimise eq. (8) with respect to the like-
lihood parameters.The first term does not depend on
the likelihood parameters, we only need to optimise
the second expression.

Since the likelihood is factorising, the complete log-
likelihood is rewritten as a sum. Each component
of the sum depends on a single value of the la-
tent GP, meaning that the integrals involved are one-
dimensional, usually computable. After the update of
the likelihood parameters we re-run the TAP/EP algo-
rithm to find the new posterior ppost

�
fff � and alternate

the steps until convergence.

To test the EM-algorithm, we applied the GP inference
for non-symmetric and non-Gaussian additive noise,
with the single data likelihood given by:

P
�
y

fx � λ � �

�
λ exp

���
λ
�
y
�

fx � � if y � fx

0 otherwise
(9)

We can integrate the likelihood for a single data, we
can apply thus the TAP/EP learning. This example
shows the benefits of the online learning, i.e. that
approximation can be performed even in cases where
the MAP solution cannot be obtained. Fig. 2 shows
the results for this toy problem (left-hand sub-figure)
and an other GP regression where we used a symmet-
ric Laplace noise. The non-symmetric likelihood pro-
vides a very good fit and infers the correct likelihood
parameter, this is in contrast with symmetric noise
assumption (we used the same asymptotic behaviour)
where there is a constant bias and larger Bayesian
error bars which are shown with thin dash-dotted lines.

Next we address the optimisation of the kernel pa-
rameters. The E-step is the same as before. In the M-
step however, instead of upper-bounding the marginal
data likelihood, we compute the gradient of the log-
evidence with respect to a generic kernel parameter
θ . Using matrix algebra and the parameters of the
posterior GP

�
ααα � CCC � , we have the following relation:
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Fig. 2. Finding likelihood parameters of a robust and
one-sided regression problem. The left sub-figure
shows the result if the correct noise model is as-
sumed and on the right we see the approximation
for symmetrical noise. The noise parameter for
generating the data was λ � 2 for both cases.

∂ log P �	��

∂θ

� tr � ∂ log P ���

∂KKK � ∂KKK

∂θ �
∂ log P �	��


∂KKK
��� 1

2 � ααααααT � CCC � (10)

where θ is a parameter of the kernel and ∂KKK is the
matrix derivative. An exact update is not possible, we
used conjugate gradient algorithm (SCG) to find the
optimal kernel parameters. Here needs to be empha-
sised the sparse usefulness of the approximation: the
size of the matrices involved is small, only the size
of the � V set, making the proposed EM algorithm
feasible.

In the experiments we used the RBF kernels defined
as:

K � xxx � xxx ��
�� A exp ��� ∑i λi � xxxi � xxx �i 
 2
2 � (11)

where the A is a scaling constant and λi are are the
relevance parameters (ARD) specifying the impor-
tance of the i-th input dimension in predicting the
output. We tested the performance of the method first
for regression and the Friedman #1 dataset. This is a
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Fig. 3. Learning kernel parameters for noiseless Fried-
man data. On the top sub-figures the evolution
of the average test error is shown. The bottom
sub-figure shows the evolution of the lnλi. The
two rows show the results for no noise (top) and
additive noise with σ 2 � 1 (bottom) respectively.
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Fig. 4. Learning kernel parameters for noisy Friedman
data. For explanation see Fig. 3.

benchmark for the relevance parameters since only 5
out of the 10-dimensional inputs were used to generate
the output. Additionally to this source of uncertainty,
the outputs are also corrupted with Gaussian noise.
In Fig. 3 and 4 we see the test error and the result-
ing ARD kernel parameters for no noise and σ 2 � 1
respectively. As it can be seen, the separation of the
irrelevant inputs from the relevant ones is clearer for
the noiseless case.

Learning kernel parameters can also be done for clas-
sification tasks. We applied the EM algorithm for
learning Crab data with 6-dimensional inputs (Csató
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Fig. 5. Results for the Crab data. All figures show
the averages over 20 random permutation of the
training set. The figures show the test errors (top),
the logarithm of the input weights (middle) and
on the bottom, in the same plot, the negative log-
evidence of the model and � V set size respec-
tively. On the X-axis the number of the EM-steps
is counted.

and Opper, 2002). This dataset has been widely used
to assess various machine learning methods and most
of the results confirmed that optimal performance is
achieved using three of the six components. This is
seen in the middle plot of Fig. 5 where three compo-
nents are close together (approx

�
4 on a log-scale)

with the rest several orders of magnitude smaller, prac-
tically removing the corresponding input dimension
from the kernel function. It is important that simulta-
neously to this the the test error (upper plot of Fig. 5)
attains a minimum value that outperforms other cited
methods (see (Csató, 2002) for details).

It is interesting that, starting with a � V set size of
25, at the end of the iterations the size of the � V
set is less than 8 on average and the log-evidence is
also significantly smaller. We believe that this result
encourages further investigation.

4. CONCLUSIONS

A method for probabilistic and sparse GP inference is
presented. The inference is based on a representation



that is independent of the likelihood function. Joined
with the general representation, we present a method
to derive a sparse solution for the problem.

The presented method is of selecting the reduced rep-
resentation is constructive and flexible. It is applicable
to problems with non-differentiable likelihood func-
tion as well as to classification and Gaussian regres-
sion.

Further research is aimed to test the method for other
likelihoods and to try to establish conditions when
we can expect good performance. Open question is
still the performance of the sparse GP inference if all
hyper-parameters are simultaneously optimised.
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