

Advanced Statistical Learning Theory

Olivier Bousquet

Pertinence
32, rue des Jeûneurs
F-75002 Paris, France
olivier.bousquet@pertinence.com

Machine Learning Summer School, September 2004

Roadmap

• Lecture 1: Union bounds and PAC Bayesian techniques

• Lecture 2: Variance and Local Rademacher Averages

Lecture 3: Loss Functions

Lecture 4: Applications to SVM

Lecture 1

Union Bounds and PAC-Bayesian Techniques

- Binary classification problem
- Union bound with a prior
- Randomized Classification
- Refined union bounds

Probabilistic Model

We consider an input space \mathcal{X} and output space \mathcal{Y} .

Here: classification case $\mathcal{Y} = \{-1, 1\}$.

Assumption: The pairs $(X,Y) \in \mathcal{X} \times \mathcal{Y}$ are distributed

according to P (unknown).

Data: We observe a sequence of n i.i.d. pairs (X_i, Y_i) sampled according to P.

Goal: construct a function $g:\mathcal{X}\to\mathcal{Y}$ which predicts Y from X, i.e. with low risk

$$R(g) = P(g(X) \neq Y) = \mathbb{E}\left[1_{[g(X)\neq Y]}\right]$$

Probabilistic Model

Issues

- P is unknown so that we cannot directly measure the risk
- Can only measure the agreement on the data
- Empirical Risk

$$R_n(g) = \frac{1}{n} \sum_{i=1}^n 1_{[g(X_i) \neq Y_i]}$$

Bounds (1)

A learning algorithm

- Takes as input the data $(X_1, Y_1), \ldots, (X_n, Y_n)$
- Produces a function g_n

Can we estimate the risk of g_n ?

 \Rightarrow random quantity (depends on the data).

⇒ need probabilistic bounds

Bounds (2)

Error bounds

$$R(g_n) \le R_n(g_n) + B$$

- ⇒ Estimation from an empirical quantity
- Relative error bounds
 - * Best in a class

$$R(g_n) \le R(g^*) + B$$

★ Bayes risk

$$R(g_n) \leq R^* + B$$

 \Rightarrow Theoretical guarantees

Notation

Important: to simplify writing we use the notation:

- \bullet Z = (X, Y)
- ullet \mathcal{G} : hypothesis class, g function from \mathcal{X} to \mathbb{R}
- \bullet \mathcal{F} : loss class or centered loss class, f function from $\mathcal{X} \times \mathcal{Y}$ to \mathbb{R}

$$f(z) = f((x,y)) = \ell(g(x),y)$$
 or $\ell(g(x),y) - \ell(g^*(x),y)$

Simplest case $\ell(g(x), y) = 1_{[g(x) \neq y]}$

• $R(g) = Pf := \mathbb{E}[f(X,Y)], R_n(g) = P_nf := \frac{1}{n} \sum_{i=1}^n f(Z_i)$

Take Home Messages

- Two ingredients of bounds: deviations and union bound
- Optimal union bound with metric structure of the function space
- Can introduce a prior into the union bound
- PAC-Bayesian technique: improves the bound when averaged

Deviations

Hoeffding's inequality

for each fixed $f \in \mathcal{F}$, with probability at least $1 - \delta$,

$$Pf - P_n f \le C \sqrt{\frac{\log \frac{1}{\delta}}{n}}. \tag{1}$$

Finite union bound

For a finite set of functions \mathcal{F} with probability at least $1-\delta$,

$$\forall f \in \mathcal{F}, \ Pf - P_n f \le C \sqrt{\frac{\log |\mathcal{F}| + \log \frac{1}{\delta}}{n}}.$$
 (2)

- ullet $\log |\mathcal{F}|$ is analogue to a variance
- extra variability from the unknown choice
- measures the size of the class

Weighted union bound

Introduce a probability distribution π over \mathcal{F} : with probability at least $1-\delta$,

$$\forall f \in \mathcal{F}, \ Pf - P_n f \le C \sqrt{\frac{\log 1/\pi(f) + \log \frac{1}{\delta}}{n}}.$$
 (3)

- ullet the bound depends on the actual function f being considered
- ullet capacity term could be small if π appropriate
- ullet However, π has to be chosen before seeing the data

Comments

- π is just a technical prior
- allows to distribute the cost of not knowing f beforehand
- if one is lucky, the bound looks like Hoeffding
- goal: guess how likely each function is to be chosen

Randomized Classifiers

Given $\mathcal G$ a class of functions

- ullet Deterministic: picks a function g_n and always use it to predict
- Randomized
 - \star construct a distribution ρ_n over \mathcal{G}
 - \star for each instance to classify, pick $g \sim
 ho_n$
- Error is averaged over ρ_n

$$R(\rho_n) = \rho_n P f$$

$$R_n(\rho_n) = \rho_n P_n f$$

Union Bound (1)

Let π be a (fixed) distribution over \mathcal{F} .

Recall the refined union bound

$$\forall f \in \mathcal{F}, \ Pf - P_n f \le \sqrt{\frac{\log \frac{1}{\pi(f)} + \log \frac{1}{\delta}}{2n}}$$

ullet Take expectation with respect to ho_n

$$\rho_n Pf - \rho_n P_n f \le \rho_n \sqrt{\frac{\log \frac{1}{\pi(f)} + \log \frac{1}{\delta}}{2n}}$$

Union Bound (2)

$$\rho_n Pf - \rho_n P_n f \leq \rho_n \sqrt{\left(-\log \pi(f) + \log \frac{1}{\delta}\right)/(2n)}$$

$$\leq \sqrt{\left(-\rho_n \log \pi(f) + \log \frac{1}{\delta}\right)/(2n)}$$

$$\leq \sqrt{\left(K(\rho_n, \pi) + H(\rho_n) + \log \frac{1}{\delta}\right)/(2n)}$$

- $K(\rho_n, \pi) = \int \rho_n(f) \log \frac{\rho_n(f)}{\pi(f)} df$ Kullback-Leibler divergence
- $H(\rho_n) = \int \rho_n(f) \log \rho_n(f) df$ Entropy

PAC-Bayesian Refinement

- It is possible to improve the previous bound.
- With probability at least 1δ ,

$$\rho_n Pf - \rho_n P_n f \le \sqrt{\frac{K(\rho_n, \pi) + \log 4n + \log \frac{1}{\delta}}{2n - 1}}$$

- Good if ρ_n is spread (i.e. large entropy)
- Not interesting if $\rho_n = \delta_{fn}$

Proof (1)

ullet Variational formulation of entropy: for any T

$$\rho T(f) \le \log \pi e^{T(f)} + K(\rho, \pi)$$

• Apply it to $\lambda (Pf - P_n f)^2$

$$\lambda \rho_n (Pf - P_n f)^2 \le \log \pi e^{\lambda (Pf - P_n f)^2} + K(\rho_n, \pi)$$

ullet Markov's inequality: with probability $1-\delta$,

$$\lambda \rho_n (Pf - P_n f)^2 \le \log \mathbb{E} \left[\pi e^{\lambda (Pf - P_n f)^2} \right] + K(\rho_n, \pi) + \log \frac{1}{\delta}$$

Proof (2)

Fubini

$$\mathbb{E}\left[\pi e^{\lambda(Pf - Pnf)^2}\right] = \pi \mathbb{E}\left[e^{\lambda(Pf - Pnf)^2}\right]$$

Modified Chernoff bound

$$\mathbb{E}\left[e^{(2n-1)(Pf-P_nf)^2}\right] \le 4n$$

• Putting together ($\lambda = 2n - 1$)

$$(2n-1)\rho_n(Pf-P_nf)^2 \le K(\rho_n,\pi) + \log 4n + \log \frac{1}{\delta}$$

• Jensen $(2n-1)(\rho_n(Pf-P_nf))^2 \le (2n-1)\rho_n(Pf-P_nf)^2$

Other refinements

- Symmetrization
- Transductive priors
- Rademacher averages
- Chaining
- Generic chaining

Symmetrization

When functions have range in $\{0,1\}$, introduce a ghost sample Z'_1,\ldots,Z'_n . Then the set $S_n=\{f(Z_1),\ldots,f(Z_n),f(Z'_1),\ldots,f(Z'_n):f\in\mathcal{F}\}$ is finite. With probability at least $1-\delta,\,\forall f\in\mathcal{F}$

$$Pf - P_n f \le C \sqrt{\frac{\log \mathbb{E}|S_n| + \log \frac{1}{\delta}}{n}}$$
 (4)

- Finite union bound applies to infinite case
- ullet computing $\mathbb{E}|S_n|$ impossible in general
- need combinatorial parameters (e.g. VC dimension)

Transductive priors

If one defines a function $\Pi: \mathcal{Z}^{2n} \to \mathcal{M}_1^+(\mathcal{F})$ which is *exchangeable*, with probability at least $1-\delta$ (over the random choice of a double sample), for all $f \in \mathcal{F}$,

$$P'_n f - P_n f \le C \sqrt{\frac{\log 1/\Pi(Z_1, \dots, Z_n, Z'_1, \dots, Z'_n)(f) + \log \frac{1}{\delta}}{n}}$$

- Allows the prior to depend on the (double) sample
- Can be useful when there exists a data-independent upper bound

Rademacher averages

No Union Bound

Recall that with probability at least $1 - \delta$, for all $f \in \mathcal{F}$

$$Pf - P_n f \le C \left(\frac{1}{n} \mathbb{E}_n \mathbb{E}_\sigma \sup_{f \in \mathcal{F}} \sum_{i=1}^n \sigma_i f(Z_i) + \sqrt{\frac{\log \frac{1}{\delta}}{n}} \right)$$

- No union bound used at this stage, only deviations
- Union bound needed to upper bound the r.h.s.
- Finite case : $\sqrt{\log |\mathcal{F}|/n}$

Chaining

Global Metric Structure

Consider finite covers of the set of function at different scales. Construct a chain of functions that approximate a given function more and more closely. With probability at least $1-\delta$, for all $f\in\mathcal{F}$

$$Pf - P_n f \le C \left(\frac{1}{\sqrt{n}} \mathbb{E}_n \int_0^\infty \sqrt{\log N(\mathcal{F}, \epsilon, d_n)} d\epsilon + \sqrt{\frac{\log \frac{1}{\delta}}{n}} \right)$$

with d_n empirical L_2 metric

Generic chaining

Local Metric Structure

Let r > 0 and $(A_j)_{j \ge 1}$ be partitions of \mathcal{F} of diameter r^{-j} w.r.t. the distance d_n such that A_{j+1} refines A_j . Previous integral replaced by

$$\inf_{\forall j, \pi^{(j)} \in \mathcal{M}_1^+(\mathcal{F})} \sup_{f \in \mathcal{F}} \sum_{j=1}^{\infty} r^{-j} \sqrt{\log[1/\pi^{(j)} A_j(f)]}$$

- Better adaptation to the local structure of the space
- Equivalent to the Rademacher average (up to log)

Take Home Messages

- Two ingredients of bounds: deviations and union bound ⇒ next lecture improves the deviations
- Optimal union bound with metric structure of the function space ⇒ generic chaining
- Can introduce a prior into the union bound ⇒ best prior depends on the algorithm
- PAC-Bayesian technique: improves the bound when averaged ⇒ can be combined with generic chaining

Lecture 2

Variance and Local Rademacher Averages

Relative error bounds

Noise conditions

Localized Rademacher averages

Take Home Messages

- Deviations depend on the variance
- No noise means better rate of convergence
- Noise can be related to variance
- Rademacher averages can be improved with variance

Binomial tails

- $P_n f \sim B(p, n)$ binomial distribution p = P f
- $\mathbb{P}\left[Pf P_n f \ge t\right] = \sum_{k=0}^{\lfloor n(p-t)\rfloor} \binom{n}{k} p^k (1-p)^{n-k}$
- Can be upper bounded
 - \star Exponential $\left(\frac{1-p}{1-p-t}\right)^{n(1-p-t)} \left(\frac{p}{p+t}\right)^{n(p+t)}$
 - \star Bennett $e^{-\frac{np}{1-p}((1-t/p)\log(1-t/p)+t/p)}$
 - \star Bernstein $e^{-\frac{nt^2}{2p(1-p)+2t/3}}$
 - \star Hoeffding e^{-2nt^2}

Tail behavior

- For small deviations, Gaussian behavior $\approx \exp(-nt^2/2p(1-p))$ \Rightarrow Gaussian with variance p(1-p)
- For large deviations, Poisson behavior $\approx \exp(-3nt/2)$ \Rightarrow Tails heavier than Gaussian
- ullet Can upper bound with a Gaussian with large (maximum) variance $\exp(-2nt^2)$

Illustration (1)

Maximum variance (p = 0.5)

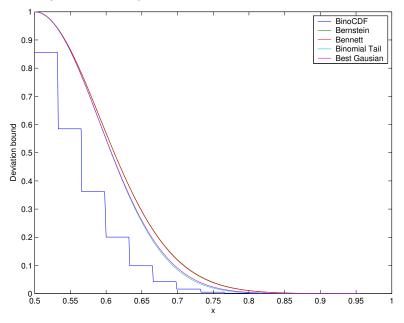
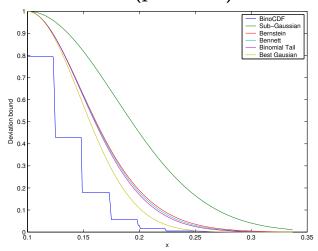
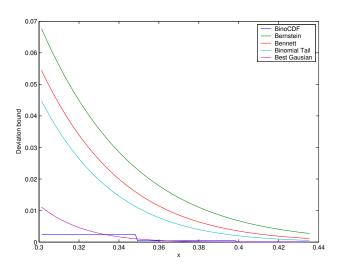


Illustration (2)

Small variance (p = 0.1)





Taking the variance into account (1)

- Each function $f \in \mathcal{F}$ has a different variance $Pf(1 Pf) \leq Pf$.
- For each $f \in \mathcal{F}$, by Bernstein's inequality

$$Pf \le P_n f + \sqrt{\frac{2Pf\log\frac{1}{\delta}}{n}} + \frac{2\log\frac{1}{\delta}}{3n}$$

- ullet The Gaussian part dominates (for Pf not too small, or n large enough), it depends on Pf
- \Rightarrow Better bound when Pf is small

Taking the variance into account (2)

• Square root trick:

$$x \le A\sqrt{x} + B \Rightarrow x \le A^2 + B + \sqrt{B}A \le 2A^2 + 2B$$

Consequence

$$Pf \le 2P_n f + C \frac{\log \frac{1}{\delta}}{n}.$$

 \Rightarrow Better bound when $P_n f$ is small

Normalization

Previous approach was to upper bound

$$\sup_{f \in \mathcal{F}} Pf - P_n f$$

The supremum is reached at functions with large variance. Those are not the interesting ones

- Here $(f \in \{0, 1\})$, $Var[f] \le Pf^2 = Pf$
- ullet Focus of learning: functions with small error Pf (hence small variance)
- Large variance ⇒ large risk

Normalization

- The idea is to normalize functions by their variance
- After normalization, fluctuations are more "uniform"

$$\sup_{f \in \mathcal{F}} \frac{Pf - P_n f}{\sqrt{Pf}}$$

All functions on the same scale

⇒ The normalized supremum takes the learning method into account.

Relative deviations

Vapnik-Chervonenkis 1974

For $\delta > 0$ with probability at least $1 - \delta$,

$$\forall f \in \mathcal{F}, \frac{Pf - P_n f}{\sqrt{Pf}} \le 2\sqrt{\frac{\log S_{\mathcal{F}}(2n) + \log \frac{4}{\delta}}{n}}$$

Consequence

From the square root trick we get

$$\forall f \in \mathcal{F}, \ Pf \leq P_n f + 2\sqrt{P_n f \frac{\log S_{\mathcal{F}}(2n) + \log \frac{4}{\delta}}{n}} + 4\frac{\log S_{\mathcal{F}}(2n) + \log \frac{4}{\delta}}{n}$$

Proof sketch

1. Symmetrization

$$\mathbb{P}\left[\sup_{f\in\mathcal{F}}\frac{Pf-P_nf}{\sqrt{Pf}}\geq t\right]\leq 2\mathbb{P}\left[\sup_{f\in\mathcal{F}}\frac{P_n'f-P_nf}{\sqrt{(P_nf+P_n'f)/2}}\geq t\right]$$

2. Randomization

$$\cdots = 2\mathbb{E}\left[\mathbb{P}_{\sigma}\left[\sup_{f \in \mathcal{F}} \frac{\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}(f(Z_{i}') - f(Z_{i}))}{\sqrt{(P_{n}f + P_{n}'f)/2}} \ge t\right]\right]$$

3. Tail bound

Zero noise

Ideal situation:

- \bullet g_n empirical risk minimizer
- ullet Bayes classifier in the class ${\cal G}$
- $R^* = 0$ (no noise)

In that case

$$\bullet \ R_n(g_n) = 0$$

$$\Rightarrow R(g_n) = O(\frac{d \log n}{n}).$$

Interpolating between rates?

- Rates are not correctly estimated by this inequality
- Consequence of relative error bounds

$$Pf_n \leq Pf^* + 2\sqrt{Pf^* \frac{\log S_{\mathcal{F}}(2n) + \log \frac{4}{\delta}}{n}} + 4\frac{\log S_{\mathcal{F}}(2n) + \log \frac{4}{\delta}}{n}$$

- ullet The quantity which is small is not Pf^* but Pf_n-Pf^*
- But relative error bounds do not apply to differences

Definitions

- $\eta(x) = \mathbb{E}\left[Y|X=x\right] = 2\mathbb{P}\left[Y=1|X=x\right] 1$ is the regression function
- $t(x) = \operatorname{sgn} \eta(x)$ is the target function or Bayes classifier (Bayes risk $R^* = \mathbb{E}\left[n(X)\right]$)
- in the deterministic case Y = t(X) ($\mathbb{P}[Y = 1|X] \in \{0,1\}$)
- in general, noise level

$$n(x) = \min(\mathbb{P}[Y = 1|X = x], 1 - \mathbb{P}[Y = 1|X = x])$$

= $(1 - \eta(x))/2$

Approximation/Estimation

Bayes risk

$$R^* = \inf_{g} R(g) .$$

Best risk a deterministic function can have (risk of the target function, or Bayes classifier).

• Decomposition: $R(g^*) = \inf_{g \in \mathcal{G}} R(g)$

$$R(g_n) - R^* = \underbrace{R(g) - R^*}_{\text{Approximation}} + \underbrace{R(g_n) - R(g^*)}_{\text{Estimation}}$$

• Only the estimation error is random (i.e. depends on the data).

Intermediate noise

Instead of assuming that $|\eta(x)|=1$ (i.e. n(x)=0), the deterministic case, one can assume that n is well-behaved. Two kinds of assumptions

• n not too close to 1/2

 \bullet *n* not often too close to 1/2

Massart Condition

• For some c > 0, assume

$$|\eta(X)| > \frac{1}{c}$$
 almost surely

- There is no region where the decision is completely random
- Noise bounded away from 1/2

Tsybakov Condition

Let $\alpha \in [0, 1]$, equivalent conditions

(1)
$$\exists c > 0, \ \forall g \in \{-1, 1\}^{\mathcal{X}},$$

$$\mathbb{P}\left[g(X)\eta(X) \le 0\right] \le c(R(g) - R^*)^{\alpha}$$

(2)
$$\exists c > 0, \ \forall A \subset \mathcal{X}, \ \int_A dP(x) \le c \left(\int_A |\eta(x)| dP(x) \right)^{\alpha}$$

(3)
$$\exists B > 0, \ \forall t > 0, \ \mathbb{P}[|\eta(X)| < t] < Bt^{\frac{\alpha}{1-\alpha}}$$

Equivalence

- $(1) \Leftrightarrow (2)$ Recall $R(g) R^* = \mathbb{E}\left[|\eta(X)|1_{[g\eta \leq 0]}\right]$. For each function g, there exists a set A such that $1_{[A]} = 1_{[g\eta < 0]}$
- $(2) \Rightarrow (3)$ Let $A = \{x : |\eta(x)| < t\}$

$$\mathbb{P}[|\eta| \le t] = \int_A dP(x) \le c \left(\int_A |\eta(x)| dP(x) \right)^{\alpha}$$
$$\le c t^{\alpha} \left(\int_A dP(x) \right)^{\alpha}$$
$$\Rightarrow \mathbb{P}[|\eta| \le t] \le c^{\frac{1}{1-\alpha}} t^{\frac{\alpha}{1-\alpha}}$$

• $(3) \Rightarrow (1)$

$$\begin{split} R(g) - R^* &= \mathbb{E}\left[|\eta(X)| \, \mathbf{1}_{[g\eta \leq 0]}\right] \\ &\geq \quad t \mathbb{E}\left[\mathbf{1}_{[g\eta \leq 0]} \mathbf{1}_{[|\eta| > t]}\right] \\ &= \quad t \mathbb{P}\left[|\eta| > t\right] - t \mathbb{E}\left[\mathbf{1}_{[g\eta > 0]} \mathbf{1}_{[|\eta| > t]}\right] \\ &\geq \quad t (1 - Bt^{\frac{\alpha}{1 - \alpha}}) - t \mathbb{P}\left[g\eta > 0\right] = t (\mathbb{P}\left[g\eta \leq 0\right] - Bt^{\frac{\alpha}{1 - \alpha}}) \end{split}$$

$$\mathsf{Take} \ t = \left(\frac{(1 - \alpha)\mathbb{P}\left[g\eta \leq 0\right]}{B}\right)^{(1 - \alpha)/\alpha} \\ \Rightarrow \mathbb{P}\left[g\eta \leq 0\right] \leq \frac{B^{1 - \alpha}}{(1 - \alpha)^{(1 - \alpha)}\alpha^{\alpha}} (R(g) - R^*)^{\alpha} \end{split}$$

Remarks

• α is in [0,1] because

$$R(g) - R^* = \mathbb{E}\left[|\eta(X)|1_{[g\eta \le 0]}\right] \le \mathbb{E}\left[1_{[g\eta \le 0]}\right]$$

• $\alpha = 0$ no condition

• $\alpha = 1$ gives Massart's condition

Consequences

Under Massart's condition

$$\mathbb{E}\left[\left(1_{[g(X)\neq Y]} - 1_{[t(X)\neq Y]}\right)^{2}\right] \leq c(R(g) - R^{*})$$

Under Tsybakov's condition

$$\mathbb{E}\left[\left(1_{[g(X)\neq Y]} - 1_{[t(X)\neq Y]}\right)^{2}\right] \leq c(R(g) - R^{*})^{\alpha}$$

Relative loss class

- ullet ${\mathcal F}$ is the loss class associated to ${\mathcal G}$
- The relative loss class is defined as

$$\tilde{\mathcal{F}} = \{ f - f^* : f \in \mathcal{F} \}$$

It satisfies

$$Pf^2 \le c(Pf)^{\alpha}$$

Finite case

ullet Union bound on $ilde{\mathcal{F}}$ with Bernstein's inequality would give

$$Pf_n - Pf^* \le P_n f_n - P_n f^* + \sqrt{\frac{8c(Pf_n - Pf^*)^{\alpha} \log \frac{N}{\delta}}{n}} + \frac{4 \log \frac{N}{\delta}}{3n}$$

• Consequence when $f^* \in \mathcal{F}$ (but $R^* > 0$)

$$Pf_n - Pf^* \le C \left(\frac{\log \frac{N}{\delta}}{n}\right)^{\frac{1}{2-\alpha}}$$

always better than $n^{-1/2}$ for $\alpha > 0$

Local Rademacher average

Definition

$$\mathcal{R}(\mathcal{F},r) = \mathbb{E}\left[\sup_{f \in \mathcal{F}: Pf^2 \leq r} R_n f
ight]$$

- Allows to generalize the previous result
- ullet Computes the capacity of a small ball in ${\mathcal F}$ (functions with small variance)
- Under noise conditions, small variance implies small error

Sub-root functions

Definition

A function $\psi:\mathbb{R} \to \mathbb{R}$ is sub-root if

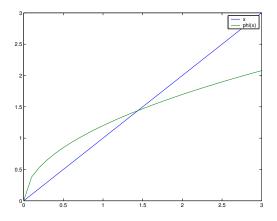
- ullet ψ is non-decreasing
- ullet ψ is non negative
- \bullet $\psi(r)/\sqrt{r}$ is non-increasing

Sub-root functions

Properties

A sub-root function

- is continuous
- ullet has a unique fixed point $\psi(r^*)=r^*$



Star hull

Definition

$$\star \mathcal{F} = \{ \alpha f : f \in \mathcal{F}, \ \alpha \in [0, 1] \}$$

Properties

$$\mathcal{R}_n(\star\mathcal{F},r)$$
 is sub-root

ullet Entropy of $\star \mathcal{F}$ is not much bigger than entropy of \mathcal{F}

Result

- r^* fixed point of $\mathcal{R}(\star \mathcal{F}, r)$
- Bounded functions

$$Pf - P_n f \le C \left(\sqrt{r^* \mathsf{Var}\left[f\right]} + \frac{\log \frac{1}{\delta} + \log \log n}{n} \right)$$

ullet Consequence for variance related to expectation $({\sf Var}\,[f] \le c(Pf)^eta)$

$$Pf \le C \left(P_n f + (r^*)^{\frac{1}{2-\beta}} + \frac{\log \frac{1}{\delta} + \log \log n}{n} \right)$$

Consequences

• For VC classes $\mathcal{R}(\mathcal{F},r) \leq C\sqrt{\frac{rh}{n}}$ hence $r^* \leq C\frac{h}{n}$

• Rate of convergence of $P_n f$ to P f in $O(1/\sqrt{n})$

• But rate of convergence of Pf_n to Pf^* is $O(1/n^{1/(2-\alpha)})$

Only condition is $t \in \mathcal{G}$ but can be removed by SRM/Model selection

Proof sketch (1)

Talagrand's inequality

$$\sup_{f \in \mathcal{F}} Pf - P_n f \le \mathbb{E} \left[\sup_{f \in \mathcal{F}} Pf - P_n f \right] + c \sqrt{\sup_{f \in \mathcal{F}} \operatorname{Var} \left[f \right] / n} + c' / n$$

Peeling of the class

$$\mathcal{F}_k = \{ f : \mathsf{Var}[f] \in [x^k, x^{k+1}) \}$$

Proof sketch (2)

Application

$$\sup_{f \in \mathcal{F}_k} Pf - P_n f \leq \mathbb{E}\left[\sup_{f \in \mathcal{F}_k} Pf - P_n f\right] + c\sqrt{x \mathrm{Var}\left[f\right]/n} + c'/n$$

Symmetrization

$$\forall f \in \mathcal{F}, \ Pf - P_n f \leq 2\mathcal{R}(\mathcal{F}, x \text{Var}[f]) + c\sqrt{x \text{Var}[f]/n} + c'/n$$

Proof sketch (3)

ullet We need to 'solve' this inequality. Things are simple if ${\mathcal R}$ behave like a square root, hence the sub-root property

$$Pf - P_n f \le 2\sqrt{r^* \operatorname{Var}[f]} + c\sqrt{x \operatorname{Var}[f]/n} + c'/n$$

Variance-expectation

$$Var[f] \leq c(Pf)^{\alpha}$$

Solve in Pf

Data-dependent version

 As in the global case, one can use data-dependent local Rademcher averages

$$\mathcal{R}_n(\mathcal{F}, r) = \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}: Pf^2 \leq r} R_n f \right]$$

Using concentration one can also get

$$Pf \le C \left(P_n f + (r_n^*)^{\frac{1}{2-\alpha}} + \frac{\log \frac{1}{\delta} + \log \log n}{n} \right)$$

where r_n^* is the fixed point of a sub-root upper bound of $\mathcal{R}_n(\mathcal{F},r)$

Discussion

- Improved rates under low noise conditions
- Interpolation in the rates
- Capacity measure seems 'local',
- but depends on all the functions,
- ullet after appropriate rescaling: each $f \in \mathcal{F}$ is considered at scale r/Pf^2

Take Home Messages

• Deviations depend on the variance

- No noise means better rate of convergence
- Noise can be related to variance ⇒ noise can be quantified

Rademacher averages can be improved with variance ⇒ localized

Lecture 3

Loss Functions

- Properties
- Consistency
- Examples
- Losses and noise

Motivation (1)

- ERM: minimize $\sum_{i=1}^{n} 1_{[g(X_i) \neq Y_i]}$ in a set \mathcal{G}
- \Rightarrow Computationally hard
- \Rightarrow Smoothing
 - ★ Replace binary by real-valued functions
 - * Introduce smooth loss function

$$\sum_{i=1}^{n} \ell(g(X_i), Y_i)$$

Motivation (2)

- Hyperplanes in infinite dimension have
 - * infinite VC-dimension
 - ★ but finite scale-sensitive dimension (to be defined later)
- \Rightarrow It is good to have a scale
- \Rightarrow This scale can be used to give a confidence (i.e. estimate the density)
 - However, losses do not need to be related to densities
 - ullet Can get bounds in terms of margin error instead of empirical error (smoother o easier to optimize for model selection)

Take Home Messages

- Convex losses for computational convenience
- No effect asymptotically
- Influence on the rate of convergence
- Classification or regression losses

Margin

• It is convenient to work with (symmetry of +1 and -1)

$$\ell(g(x), y) = \phi(yg(x))$$

- yg(x) is the margin of g at (x, y)
- Loss

$$L(g) = \mathbb{E} \left[\phi(Yg(X)) \right], \ L_n(g) = \frac{1}{n} \sum_{i=1}^n \phi(Y_i g(X_i))$$

• Loss class $\mathcal{F} = \{ f : (x, y) \mapsto \phi(yg(x)) : g \in \mathcal{G} \}$

Minimizing the loss

• Decomposition of L(g)

$$\frac{1}{2}\mathbb{E}\left[\mathbb{E}\left[(1+\eta(X))\phi(g(X)) + (1-\eta(X))\phi(-g(X))|X\right]\right]$$

Minimization for each x

$$H(\eta) = \inf_{\alpha \in \mathbb{R}} \left((1+\eta)\phi(\alpha)/2 + (1-\eta)\phi(-\alpha)/2 \right)$$

• $L^* := \inf_q L(g) = \mathbb{E}[H(\eta(X))]$

Classification-calibrated

- A minimal requirement is that the minimizer in $H(\eta)$ has the correct sign (that of the target t or that of η).
- Definition ϕ is classification-calibrated if, for any $\eta \neq 0$

$$\inf_{\alpha:\alpha\eta\leq 0}(1+\eta)\phi(\alpha)+(1-\eta)\phi(-\alpha)>\inf_{\alpha\in\mathbb{R}}(1+\eta)\phi(\alpha)+(1-\eta)\phi(-\alpha)$$

• This means the infimum is achieved for an α of the correct sign (and not for an α of the wrong sign, except possibly for $\eta = 0$).

Consequences (1)

Results due to (Jordan, Bartlett and McAuliffe 2003)

ullet ϕ is classification-calibrated iff for all sequences g_i and every probability distribution P,

$$L(g_i) \to L^* \Rightarrow R(g_i) \to R^*$$

• When ϕ is convex (convenient for optimization) ϕ is classification-calibrated iff it is differentiable at 0 and $\phi'(0) < 0$

Consequences (2)

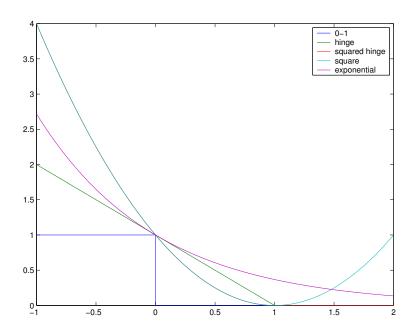
• Let
$$H^{-}(\eta) = \inf_{\alpha: \alpha \eta \leq 0} ((1+\eta)\phi(\alpha)/2 + (1-\eta)\phi(-\alpha)/2)$$

• Let $\psi(\eta)$ be the largest convex function below $H^-(\eta) - H(\eta)$

One has

$$\psi(R(g) - R^*) \le L(g) - L^*$$

Examples (1)



Examples (2)

Hinge loss

$$\phi(x) = \max(0, 1 - x), \ \psi(x) = x$$

Squared hinge loss

$$\phi(x) = \max(0, 1 - x)^2, \ \psi(x) = x^2$$

Square loss

$$\phi(x) = (1-x)^2, \ \psi(x) = x^2$$

Exponential

$$\phi(x) = \exp(-x), \ \psi(x) = 1 - \sqrt{1 - x^2}$$

Low noise conditions

- Relationship can be improved under low noise conditions
- Under Tsybakov's condition with exponent α and constant c,

$$c(R(g) - R^*)^{\alpha} \psi((R(g) - R^*)^{1-\alpha}/2c) \le L(g) - L^*$$

Hinge loss (no improvement)

$$R(g) - R^* \le L(g) - L^*$$

Square loss or squared hinge loss

$$R(g) - R^* \le (4c(L(g) - L^*))^{\frac{1}{2-\alpha}}$$

Estimation error

- Recall that Tsybakov condition implies $Pf^2 \leq c(Pf)^{\alpha}$ for the relative loss class (with 0-1 loss)
- What happens for the relative loss class associated to ϕ ?
- Two possibilities
 - \star Strictly convex loss (can modify the metric on \mathbb{R})
 - * Piecewise linear

Strictly convex losses

- Noise behavior controlled by modulus of convexity
- Result

$$\delta(\frac{\sqrt{Pf^2}}{K}) \le Pf/2$$

with K Lipschitz constant of ϕ and δ modulus of convexity of L(g) with respect to $\|f-g\|_{L_2(P)}$

Not related to noise exponent

Piecewise linear losses

Noise behavior related to noise exponent

Result for hinge loss

$$Pf^2 < CPf^{\alpha}$$

if initial class ${\cal G}$ is uniformly bounded

Estimation error

ullet With bounded and Lipschitz loss with convexity exponent γ , for a convex class \mathcal{G} ,

$$L(g) - L(g^*) \le C\left((r^*)^{\frac{2}{\gamma}} + \frac{\log \frac{1}{\delta} + \log \log n}{n} \right)$$

ullet Under Tsybakov's condition for the hinge loss (and general \mathcal{G}) $Pf^2 \leq CPf^{lpha}$

$$L(g) - L(g^*) \le C\left((r^*)^{\frac{1}{2-\alpha}} + \frac{\log\frac{1}{\delta} + \log\log n}{n}\right)$$

Examples

Under Tsybakov's condition

Hinge loss

$$R(g) - R^* \le L(g^*) - L^* + C\left((r^*)^{\frac{1}{2-\alpha}} + \frac{\log\frac{1}{\delta} + \log\log n}{n}\right)$$

• Squared hinge loss or square loss $\delta(x) = cx^2$, $Pf^2 \leq CPf$

$$R(g) - R^* \le C \left(L(g^*) - L^* + C'(r^* + \frac{\log \frac{1}{\delta} + \log \log n}{n}) \right)^{\frac{1}{2-\alpha}}$$

Classification vs Regression losses

ullet Consider a classification-calibrated function ϕ

• It is a classification loss if $L(t) = L^*$

otherwise it is a regression loss

Classification vs Regression losses

- Square, squared hinge, exponential losses
 - * Noise enters relationship between risk and loss
 - ⋆ Modulus of convexity enters in estimation error
- Hinge loss
 - ★ Direct relationship between risk and loss
 - * Noise enters in estimation error
- ⇒ Approximation term not affected by noise in second case
- ⇒ Real value does not bring probability information in second case

Take Home Messages

- Convex losses for computational convenience
- No effect asymptotically ⇒ Classification calibrated property
- Influence on the rate of convergence ⇒ approximation or estimation, related to noise level
- Classification or regression losses ⇒ depends on what you want to estimate

Lecture 4

SVM

- Computational aspects
- Capacity Control
- Universality
- Special case of RBF kernel

Take Home Messages

• Smooth parametrization

Regularization

RBF: universal, flexible, locally preserving

Formulation (1)

Soft margin

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \xi_i$$

$$y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1 - \xi_i$$

$$\xi_i \ge 0$$

- Convex objective function and convex constraints
- Unique solution
- Efficient procedures to find it
- \rightarrow Is it the right criterion ?

Formulation (2)

Soft margin

$$egin{aligned} \min_{\mathbf{w},b,\xi} & rac{1}{2} \left\| \mathbf{w}
ight\|^2 + C \sum_{i=1}^m \xi_i \ y_i(\left\langle \mathbf{w}, \mathbf{x}_i
ight
angle + b) & \geq 1 - \xi_i, \ \xi_i \geq 0 \end{aligned}$$

ullet Optimal value of ξ_i

$$\boldsymbol{\xi}_i^* = \max(0, 1 - y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b))$$

Substitute above to get

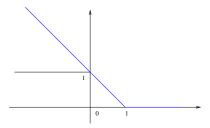
$$\min_{\mathbf{w},b} \ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \max(0, 1 - y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b))$$

Regularization

General form of regularization problem

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} c(y_i f(x_i)) + \lambda \|f\|^2$$

→ Capacity control by regularization with convex cost



Loss Function

$$\phi(Yf(X)) = \max(0, 1 - Yf(X))$$

- ullet Convex, non-increasing, upper bounds $1_{[Yf(X)\leq 0]}$
- Classification-calibrated
- Classification type $(L^* = L(t))$

$$R(g) - R^* \le L(g) - L^*$$

Regularization

Choosing a kernel corresponds to

- Choose a sequence (a_k)
- Set

$$||f||^2 := \sum_{k>0} a_k \int |f^{(k)}|^2 dx$$

- ⇒ penalization of high order derivatives (high frequencies)
- ⇒ enforce smoothness of the solution

Capacity: VC dimension

- The VC dimension of the set of hyperplanes is d+1 in \mathbb{R}^d . Dimension of feature space ? ∞ for RBF kernel
- w choosen in the span of the data $(w = \sum \alpha_i y_i \mathbf{x}_i)$ The span of the data has dimension m for RBF kernel $(k(., x_i)$ linearly independent)
- The VC bound does not give any information

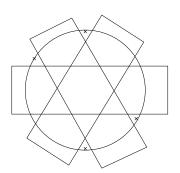
$$\sqrt{\frac{h}{n}} = 1$$

⇒ Need to take the margin into account

Capacity: Shattering dimension

Hyperplanes with Margin

If
$$||x|| \leq R$$
, vc (hyperplanes with margin $\rho, 1$) $\leq R^2/\rho^2$



Margin

- The shattering dimension is related to the margin
- Maximizing the margin means minimizing the shattering dimension
- Small shattering dimension ⇒ good control of the risk
- ⇒ this control is automatic (no need to choose the margin beforehand)

⇒ but requires tuning of regularization parameter

Capacity: Rademacher Averages (1)

- Consider hyperplanes with $||w|| \leq M$
- Rademacher average

$$\frac{M}{n\sqrt{2}}\sqrt{\sum_{i=1}^{n}k(x_i,x_i)} \leq \mathcal{R}_n \leq \frac{M}{n}\sqrt{\sum_{i=1}^{n}k(x_i,x_i)}$$

- Trace of the Gram matrix
- Notice that $\mathcal{R}_n \leq \sqrt{R^2/(n^2\rho^2)}$

Rademacher Averages (2)

$$\mathbb{E}\left[\sup_{\|w\| \leq M} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \left\langle w, \delta_{x_{i}} \right\rangle\right]$$

$$= \mathbb{E}\left[\sup_{\|w\| \leq M} \left\langle w, \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \delta_{x_{i}} \right\rangle\right]$$

$$\leq \mathbb{E}\left[\sup_{\|w\| \leq M} \|w\| \left\| \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \delta_{x_{i}} \right\|\right]$$

$$= \frac{M}{n} \mathbb{E}\left[\sqrt{\left\langle \sum_{i=1}^{n} \sigma_{i} \delta_{x_{i}}, \sum_{i=1}^{n} \sigma_{i} \delta_{x_{i}} \right\rangle}\right]$$

Rademacher Averages (3)

$$\frac{M}{n} \mathbb{E} \left[\sqrt{\left\langle \sum_{i=1}^{n} \sigma_{i} \delta_{x_{i}}, \sum_{i=1}^{n} \sigma_{i} \delta_{x_{i}} \right\rangle} \right] \\
\leq \frac{M}{n} \sqrt{\mathbb{E} \left[\left\langle \sum_{i=1}^{n} \sigma_{i} \delta_{x_{i}}, \sum_{i=1}^{n} \sigma_{i} \delta_{x_{i}} \right\rangle \right]} \\
= \frac{M}{n} \sqrt{\mathbb{E} \left[\sum_{i,j} \sigma_{i} \sigma_{j} \left\langle \delta_{x_{i}}, \delta_{x_{j}} \right\rangle \right]} \\
= \frac{M}{n} \sqrt{\sum_{i=1}^{n} k(x_{i}, x_{i})}$$

Improved rates – Noise condition

• Under Massart's condition $(|\eta| > \eta_0)$, with $||g||_{\infty} \leq M$

$$\mathbb{E}\left[\left(\phi(Yg(X)) - \phi(Yt(X))\right)^{2}\right] \leq (M - 1 + 2/\eta_{0})(L(g) - L^{*}).$$

- → If noise is nice, variance linearly related to expectation
- \rightarrow Estimation error of order r^* (of the class \mathcal{G})

Improved rates – Capacity (1)

ullet r_n^* related to decay of eigenvalues of the Gram matrix

$$r_n^* \le \frac{c}{n} \min_{d \in \mathbb{N}} \left(d + \sqrt{\sum_{j>d} \lambda_j} \right)$$

- Note that d = 0 gives the trace bound
- ullet r_n^* always better than the trace bound (equality when λ_i constant)

Improved rates – Capacity (2)

Example: exponential decay

$$\bullet \ \lambda_i = e^{-\alpha i}$$

- Global Rademacher of order $\frac{1}{\sqrt{n}}$
- r_n^* of order

$$\frac{\log n}{n}$$

Kernel

Why is it good to use kernels?

Gaussian kernel (RBF)

$$k(x,y) = e^{-\frac{\|x-y\|^2}{2\sigma^2}}$$

- σ is the width of the kernel
- \rightarrow What is the geometry of the feature space ?

Geometry

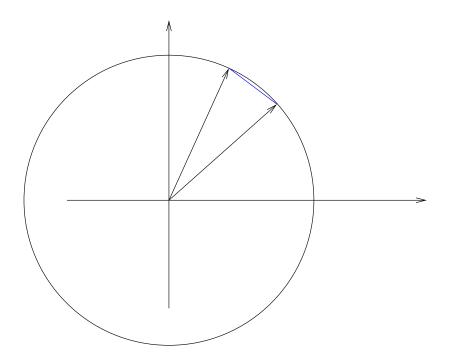
Norms

$$\|\Phi(x)\|^2 = \langle \Phi(x), \Phi(x) \rangle = e^0 = 1$$

- \rightarrow sphere of radius 1
- Angles

$$\cos(\Phi(\widehat{x}), \Phi(y)) = \left\langle \frac{\Phi(x)}{\|\Phi(x)\|}, \frac{\Phi(y)}{\|\Phi(y)\|} \right\rangle = e^{-\|x-y\|^2/2\sigma^2} \ge 0$$

- \rightarrow Angles less than 90 degrees
- $\Phi(x) = k(x, .) \ge 0$
 - → positive quadrant



Differential Geometry

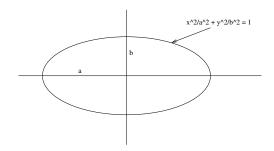
• Flat Riemannian metric

- → 'distance' along the sphere is equal to distance in input space
- Distances are contracted

→ 'shortcuts' by getting outside the sphere

Geometry of the span

Ellipsoid



- $K = (k(x_i, x_j))$ Gram matrix
- Eigenvalues $\lambda_1, \ldots, \lambda_m$
- ullet Data points mapped to ellispoid with lengths $\sqrt{\lambda_1},\ldots,\sqrt{\lambda_m}$

Universality

Consider the set of functions

$$\mathcal{H} = \operatorname{span}\{k(x,\cdot): x \in \mathcal{X}\}\$$

- \mathcal{H} is dense in $C(\mathcal{X})$
- \to Any continuous function can be approximated (in the $\|\cdot\|_{\infty}$ norm) by functions in ${\mathcal H}$
- ⇒ with enough data one can construct any function

Eigenvalues

Exponentially decreasing

Fourier domain: exponential penalization of derivatives

 Enforces smoothness with respect to the Lebesgue measure in input space

Induced Distance and Flexibility

- ullet $\sigma \to 0$ 1-nearest neighbor in input space Each point in a separate dimension, everything orthogonal
- $\sigma \to \infty$ linear classifier in input space All points very close on the sphere, initial geometry
- ullet Tuning σ allows to try all possible intermediate combinations

Ideas

- Works well if the Euclidean distance is good
- Works well if decision boundary is smooth
- Adapt smoothness via σ
- Universal

Choosing the Kernel

- Major issue of current research
- Prior knowledge (e.g. invariances, distance)
- Cross-validation (limited to 1-2 parameters)
- Bound (better with convex class)
- \Rightarrow Lots of open questions...

Take Home Messages

Smooth parametrization ⇒ regularization and smoothness parameters

Regularization ⇒ soft capacity control

 RBF: universal, flexible, locally preserving ⇒ trust the structure locally and do sensible things globally