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Roadmap

• Lecture 1: Union bounds and PAC Bayesian techniques

• Lecture 2: Variance and Local Rademacher Averages

• Lecture 3: Loss Functions

• Lecture 4: Applications to SVM
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Lecture 1

Union Bounds and PAC-Bayesian Techniques

• Binary classification problem

• Union bound with a prior

• Randomized Classification

• Refined union bounds
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Probabilistic Model

We consider an input space X and output space Y .

Here: classification case Y = {−1, 1}.
Assumption: The pairs (X,Y ) ∈ X × Y are distributed

according to P (unknown).

Data: We observe a sequence of n i.i.d. pairs (Xi, Yi) sampled

according to P .

Goal: construct a function g : X → Y which predicts Y from X, i.e.

with low risk

R(g) = P (g(X) 6= Y ) = E
�
1[g(X) 6=Y ]

�
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Probabilistic Model

Issues

• P is unknown so that we cannot directly measure the risk

• Can only measure the agreement on the data

• Empirical Risk

Rn(g) =
1

n

nX
i=1

1[g(Xi) 6=Yi]
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Bounds (1)

A learning algorithm

• Takes as input the data (X1, Y1), . . . , (Xn, Yn)

• Produces a function gn

Can we estimate the risk of gn ?

⇒ random quantity (depends on the data).

⇒ need probabilistic bounds
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Bounds (2)

• Error bounds

R(gn) ≤ Rn(gn) + B

⇒ Estimation from an empirical quantity

• Relative error bounds

? Best in a class

R(gn) ≤ R(g
∗
) + B

? Bayes risk

R(gn) ≤ R
∗
+ B

⇒ Theoretical guarantees
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Notation

Important: to simplify writing we use the notation:

• Z = (X,Y )

• G: hypothesis class, g function from X to R

• F : loss class or centered loss class, f function from X × Y to R

f(z) = f((x, y)) = `(g(x), y) or `(g(x), y)− `(g
∗
(x), y)

Simplest case `(g(x), y) = 1[g(x) 6=y]

• R(g) = Pf := E [f(X,Y )], Rn(g) = Pnf := 1
n

Pn
i=1 f(Zi)
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Take Home Messages

• Two ingredients of bounds: deviations and union bound

• Optimal union bound with metric structure of the function space

• Can introduce a prior into the union bound

• PAC-Bayesian technique: improves the bound when averaged
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Deviations

Hoeffding’s inequality

for each fixed f ∈ F , with probability at least 1− δ,

Pf − Pnf ≤ C

s
log 1

δ

n
. (1)
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Finite union bound

For a finite set of functions F with probability at least 1− δ,

∀f ∈ F, Pf − Pnf ≤ C

s
log |F|+ log 1

δ

n
. (2)

• log |F| is analogue to a variance

• extra variability from the unknown choice

• measures the size of the class
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Weighted union bound

Introduce a probability distribution π over F : with probability at least

1− δ,

∀f ∈ F, Pf − Pnf ≤ C

s
log 1/π(f) + log 1

δ

n
. (3)

• the bound depends on the actual function f being considered

• capacity term could be small if π appropriate

• However, π has to be chosen before seeing the data
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Comments

• π is just a technical prior

• allows to distribute the cost of not knowing f beforehand

• if one is lucky, the bound looks like Hoeffding

• goal: guess how likely each function is to be chosen
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Randomized Classifiers

Given G a class of functions

• Deterministic: picks a function gn and always use it to predict

• Randomized

? construct a distribution ρn over G
? for each instance to classify, pick g ∼ ρn

• Error is averaged over ρn

R(ρn) = ρnPf

Rn(ρn) = ρnPnf
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Union Bound (1)

Let π be a (fixed) distribution over F .

• Recall the refined union bound

∀f ∈ F, Pf − Pnf ≤

s
log 1

π(f) + log 1
δ

2n

• Take expectation with respect to ρn

ρnPf − ρnPnf ≤ ρn

s
log 1

π(f) + log 1
δ

2n
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Union Bound (2)

ρnPf − ρnPnf ≤ ρn

q�
− log π(f) + log 1

δ

�
/(2n)

≤
q�

−ρn log π(f) + log 1
δ

�
/(2n)

≤
q�

K(ρn, π) +H(ρn) + log 1
δ

�
/(2n)

• K(ρn, π) =
R
ρn(f) log ρn(f)

π(f) df Kullback-Leibler divergence

• H(ρn) =
R
ρn(f) log ρn(f) df Entropy
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PAC-Bayesian Refinement

• It is possible to improve the previous bound.

• With probability at least 1− δ,

ρnPf − ρnPnf ≤

s
K(ρn, π) + log 4n+ log 1

δ

2n− 1

• Good if ρn is spread (i.e. large entropy)

• Not interesting if ρn = δfn
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Proof (1)

• Variational formulation of entropy: for any T

ρT (f) ≤ log πe
T (f)

+K(ρ, π)

• Apply it to λ(Pf − Pnf)2

λρn(Pf − Pnf)
2 ≤ log πe

λ(Pf−Pnf)2
+K(ρn, π)

• Markov’s inequality: with probability 1− δ,

λρn(Pf − Pnf)
2 ≤ log E

�
πe

λ(Pf−Pnf)2
�

+K(ρn, π) + log 1
δ
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Proof (2)

• Fubini

E
�
πe

λ(Pf−Pnf)2
�

= πE
�
e
λ(Pf−Pnf)2

�
• Modified Chernoff bound

E
�
e

(2n−1)(Pf−Pnf)2
�
≤ 4n

• Putting together (λ = 2n− 1)

(2n− 1)ρn(Pf − Pnf)
2 ≤ K(ρn, π) + log 4n+ log 1

δ

• Jensen (2n− 1)(ρn(Pf − Pnf))2 ≤ (2n− 1)ρn(Pf − Pnf)2
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Other refinements

• Symmetrization

• Transductive priors

• Rademacher averages

• Chaining

• Generic chaining
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Symmetrization

When functions have range in {0, 1}, introduce a ghost sample

Z ′1, . . . , Z
′
n. Then the set

Sn = {f(Z1), . . . , f(Zn), f(Z ′1), . . . , f(Z ′n) : f ∈ F} is finite.

With probability at least 1− δ, ∀f ∈ F

Pf − Pnf ≤ C

s
log E|Sn|+ log 1

δ

n
. (4)

• Finite union bound applies to infinite case

• computing E|Sn| impossible in general

• need combinatorial parameters (e.g. VC dimension)
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Transductive priors

If one defines a function Π : Z2n →M+
1 (F) which is exchangeable,

with probability at least 1− δ (over the random choice of a double

sample), for all f ∈ F ,

P
′
nf − Pnf ≤ C

s
log 1/Π(Z1, . . . , Zn, Z ′1, . . . , Z

′
n)(f) + log 1

δ

n

• Allows the prior to depend on the (double) sample

• Can be useful when there exists a data-independent upper bound
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Rademacher averages

No Union Bound

Recall that with probability at least 1− δ, for all f ∈ F

Pf − Pnf ≤ C

0
@1

n
EnEσ sup

f∈F

nX
i=1

σif(Zi) +

s
log 1

δ

n

1
A

• No union bound used at this stage, only deviations

• Union bound needed to upper bound the r.h.s.

• Finite case :
p

log |F|/n
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Chaining

Global Metric Structure

Consider finite covers of the set of function at different scales.

Construct a chain of functions that approximate a given function more

and more closely. With probability at least 1− δ, for all f ∈ F

Pf − Pnf ≤ C

0
@ 1
√
n

En
Z ∞

0

q
logN(F, ε, dn)dε+

s
log 1

δ

n

1
A

with dn empirical L2 metric
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Generic chaining

Local Metric Structure

Let r > 0 and (Aj)j≥1 be partitions of F of diameter r−j w.r.t. the

distance dn such that Aj+1 refines Aj. Previous integral replaced by

inf
∀j,π(j)∈M+

1 (F)

sup
f∈F

∞X
j=1

r
−j
q

log[1/π(j)Aj(f)]

• Better adaptation to the local structure of the space

• Equivalent to the Rademacher average (up to log)
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Take Home Messages

• Two ingredients of bounds: deviations and union bound ⇒ next

lecture improves the deviations

• Optimal union bound with metric structure of the function space ⇒
generic chaining

• Can introduce a prior into the union bound ⇒ best prior depends on

the algorithm

• PAC-Bayesian technique: improves the bound when averaged ⇒ can

be combined with generic chaining
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Lecture 2

Variance and Local Rademacher Averages

• Relative error bounds

• Noise conditions

• Localized Rademacher averages
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Take Home Messages

• Deviations depend on the variance

• No noise means better rate of convergence

• Noise can be related to variance

• Rademacher averages can be improved with variance
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Binomial tails

• Pnf ∼ B(p, n) binomial distribution p = Pf

• P [Pf − Pnf ≥ t] =
Pbn(p−t)c

k=0

�n
k

�
pk(1− p)n−k

• Can be upper bounded

? Exponential
�

1−p
1−p−t

�n(1−p−t) �
p
p+t

�n(p+t)

? Bennett e
− np

1−p((1−t/p) log(1−t/p)+t/p)

? Bernstein e
− nt2

2p(1−p)+2t/3

? Hoeffding e−2nt2
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Tail behavior

• For small deviations, Gaussian behavior ≈ exp(−nt2/2p(1− p))

⇒ Gaussian with variance p(1− p)

• For large deviations, Poisson behavior ≈ exp(−3nt/2)

⇒ Tails heavier than Gaussian

• Can upper bound with a Gaussian with large (maximum) variance

exp(−2nt2)
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Illustration (1)

Maximum variance (p = 0.5)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

D
ev

ia
tio

n 
bo

un
d

BinoCDF
Bernstein
Bennett
Binomial Tail
Best Gausian

O. Bousquet – Advanced Statistical Learning Theory – Lecture 2 30



Illustration (2)

Small variance (p = 0.1)
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Taking the variance into account (1)

• Each function f ∈ F has a different variance Pf(1−Pf) ≤ Pf .

• For each f ∈ F , by Bernstein’s inequality

Pf ≤ Pnf +

s
2Pf log 1

δ

n
+

2 log 1
δ

3n

• The Gaussian part dominates (for Pf not too small, or n large

enough), it depends on Pf

⇒ Better bound when Pf is small
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Taking the variance into account (2)

• Square root trick:

x ≤ A
√
x+ B ⇒ x ≤ A

2
+ B +

√
BA ≤ 2A

2
+ 2B

• Consequence

Pf ≤ 2Pnf + C
log 1

δ

n
.

⇒ Better bound when Pnf is small
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Normalization

• Previous approach was to upper bound

sup
f∈F

Pf − Pnf

The supremum is reached at functions with large variance. Those are

not the interesting ones

• Here (f ∈ {0, 1}), Var [f ] ≤ Pf2 = Pf

• Focus of learning: functions with small error Pf (hence small

variance)

• Large variance ⇒ large risk
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Normalization

• The idea is to normalize functions by their variance

• After normalization, fluctuations are more ”uniform”

sup
f∈F

Pf − Pnf√
Pf

All functions on the same scale

⇒ The normalized supremum takes the learning method into account.
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Relative deviations

Vapnik-Chervonenkis 1974

For δ > 0 with probability at least 1− δ,

∀f ∈ F,
Pf − Pnf√

Pf
≤ 2

s
log SF(2n) + log 4

δ

n
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Consequence

From the square root trick we get

∀f ∈ F, Pf ≤ Pnf + 2

s
Pnf

log SF(2n) + log 4
δ

n

+4
log SF(2n) + log 4

δ

n
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Proof sketch

1. Symmetrization

P

"
sup
f∈F

Pf − Pnf√
Pf

≥ t

#
≤ 2P

"
sup
f∈F

P ′
nf − Pnfp

(Pnf + P ′
nf)/2

≥ t

#

2. Randomization

· · · = 2E

"
Pσ

"
sup
f∈F

1
n

Pn
i=1 σi(f(Z ′i)− f(Zi))p

(Pnf + P ′
nf)/2

≥ t

##

3. Tail bound
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Zero noise

Ideal situation :

• gn empirical risk minimizer

• Bayes classifier in the class G

• R∗ = 0 (no noise)

In that case

• Rn(gn) = 0

⇒ R(gn) = O(d logn
n ).
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Interpolating between rates ?

• Rates are not correctly estimated by this inequality

• Consequence of relative error bounds

Pfn ≤ Pf
∗
+ 2

s
Pf∗

log SF(2n) + log 4
δ

n

+4
log SF(2n) + log 4

δ

n

• The quantity which is small is not Pf∗ but Pfn − Pf∗

• But relative error bounds do not apply to differences
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Definitions

• η(x) = E [Y |X = x] = 2P [Y = 1|X = x]− 1 is the regression

function

• t(x) = sgn η(x) is the target function or Bayes classifier (Bayes

risk R∗ = E [n(X)])

• in the deterministic case Y = t(X) (P [Y = 1|X] ∈ {0, 1})
• in general, noise level

n(x) = min(P [Y = 1|X = x] , 1− P [Y = 1|X = x])

= (1− η(x))/2
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Approximation/Estimation

• Bayes risk

R
∗
= inf

g
R(g) .

Best risk a deterministic function can have (risk of the target function,

or Bayes classifier).

• Decomposition: R(g∗) = infg∈G R(g)

R(gn)− R
∗
= R(g)− R

∗| {z } + R(gn)− R(g
∗
)| {z }

Approximation Estimation

• Only the estimation error is random (i.e. depends on the data).
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Intermediate noise

Instead of assuming that |η(x)| = 1 (i.e. n(x) = 0), the

deterministic case, one can assume that n is well-behaved.

Two kinds of assumptions

• n not too close to 1/2

• n not often too close to 1/2
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Massart Condition

• For some c > 0, assume

|η(X)| >
1

c
almost surely

• There is no region where the decision is completely random

• Noise bounded away from 1/2
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Tsybakov Condition

Let α ∈ [0, 1], equivalent conditions

(1) ∃c > 0, ∀g ∈ {−1, 1}X ,

P [g(X)η(X) ≤ 0] ≤ c(R(g)− R
∗
)
α

(2) ∃c > 0, ∀A ⊂ X ,
Z
A

dP (x) ≤ c(

Z
A

|η(x)|dP (x))
α

(3) ∃B > 0, ∀t ≥ 0, P [|η(X)| ≤ t] ≤ Bt
α

1−α
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Equivalence

• (1) ⇔ (2) Recall R(g) − R∗ = E
�
|η(X)|1[gη≤0]

�
. For each

function g, there exists a set A such that 1[A] = 1[gη≤0]

• (2) ⇒ (3) Let A = {x : |η(x)| ≤ t}

P [|η| ≤ t] =

Z
A

dP (x) ≤ c(

Z
A

|η(x)|dP (x))
α

≤ ct
α
(

Z
A

dP (x))
α

⇒ P [|η| ≤ t] ≤ c
1

1−αt
α

1−α
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• (3) ⇒ (1)

R(g)− R
∗
= E

�
|η(X)| 1[gη≤0]

�
≥ tE

�
1[gη≤0]1[|η|>t]

�
= tP [|η| > t]− tE

�
1[gη>0]1[|η|>t]

�
≥ t(1− Bt

α
1−α)− tP [gη > 0] = t(P [gη ≤ 0]− Bt

α
1−α)

Take t =
�

(1−α)P[gη≤0]
B

�(1−α)/α

⇒ P [gη ≤ 0] ≤
B1−α

(1− α)(1− α)αα
(R(g)− R

∗
)
α
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Remarks

• α is in [0, 1] because

R(g)− R
∗
= E

�
|η(X)|1[gη≤0]

�
≤ E

�
1[gη≤0]

�

• α = 0 no condition

• α = 1 gives Massart’s condition
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Consequences

• Under Massart’s condition

E
h
(1[g(X) 6=Y ] − 1[t(X) 6=Y ])

2
i
≤ c(R(g)− R

∗
)

• Under Tsybakov’s condition

E
h
(1[g(X) 6=Y ] − 1[t(X) 6=Y ])

2
i
≤ c(R(g)− R

∗
)
α
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Relative loss class

• F is the loss class associated to G

• The relative loss class is defined as

F̃ = {f − f
∗
: f ∈ F}

• It satisfies

Pf
2 ≤ c(Pf)

α

O. Bousquet – Advanced Statistical Learning Theory – Lecture 2 50



Finite case

• Union bound on F̃ with Bernstein’s inequality would give

Pfn−Pf∗ ≤ Pnfn−Pnf∗+

s
8c(Pfn − Pf∗)α log N

δ

n
+

4 log N
δ

3n

• Consequence when f∗ ∈ F (but R∗ > 0)

Pfn − Pf
∗ ≤ C

 
log N

δ

n

! 1
2−α

always better than n−1/2 for α > 0
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Local Rademacher average

• Definition

R(F, r) = E

"
sup

f∈F :Pf2≤r
Rnf

#

• Allows to generalize the previous result

• Computes the capacity of a small ball in F (functions with small

variance)

• Under noise conditions, small variance implies small error
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Sub-root functions

Definition

A function ψ : R → R is sub-root if

• ψ is non-decreasing

• ψ is non negative

• ψ(r)/
√
r is non-increasing
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Sub-root functions

Properties

A sub-root function

• is continuous

• has a unique fixed point ψ(r∗) = r∗
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Star hull

• Definition

?F = {αf : f ∈ F, α ∈ [0, 1]}

• Properties

Rn(?F, r) is sub-root

• Entropy of ?F is not much bigger than entropy of F
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Result

• r∗ fixed point of R(?F, r)
• Bounded functions

Pf − Pnf ≤ C

 q
r∗Var [f ] +

log 1
δ + log logn

n

!

• Consequence for variance related to expectation (Var [f ] ≤ c(Pf)β)

Pf ≤ C

 
Pnf + (r

∗
)

1
2−β +

log 1
δ + log logn

n

!
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Consequences

• For VC classes R(F, r) ≤ C
q

rh
n hence r∗ ≤ C h

n

• Rate of convergence of Pnf to Pf in O(1/
√
n)

• But rate of convergence of Pfn to Pf∗ is O(1/n1/(2−α))

Only condition is t ∈ G but can be removed by SRM/Model selection
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Proof sketch (1)

• Talagrand’s inequality

sup
f∈F

Pf−Pnf ≤ E

"
sup
f∈F

Pf − Pnf

#
+c
r

sup
f∈F

Var [f ] /n+c
′
/n

• Peeling of the class

Fk = {f : Var [f ] ∈ [x
k
, x

k+1
)}
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Proof sketch (2)

• Application

sup
f∈Fk

Pf−Pnf ≤ E

"
sup
f∈Fk

Pf − Pnf

#
+c
q
xVar [f ] /n+c

′
/n

• Symmetrization

∀f ∈ F, Pf−Pnf ≤ 2R(F, xVar [f ])+c
q
xVar [f ] /n+c

′
/n
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Proof sketch (3)

• We need to ’solve’ this inequality. Things are simple if R behave like

a square root, hence the sub-root property

Pf − Pnf ≤ 2
q
r∗Var [f ] + c

q
xVar [f ] /n+ c

′
/n

• Variance-expectation

Var [f ] ≤ c(Pf)
α

Solve in Pf
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Data-dependent version

• As in the global case, one can use data-dependent local Rademcher

averages

Rn(F, r) = Eσ

"
sup

f∈F :Pf2≤r
Rnf

#

• Using concentration one can also get

Pf ≤ C

 
Pnf + (r

∗
n)

1
2−α +

log 1
δ + log logn

n

!

where r∗n is the fixed point of a sub-root upper bound of Rn(F, r)
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Discussion

• Improved rates under low noise conditions

• Interpolation in the rates

• Capacity measure seems ’local’,

• but depends on all the functions,

• after appropriate rescaling: each f ∈ F is considered at scale r/Pf2
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Take Home Messages

• Deviations depend on the variance

• No noise means better rate of convergence

• Noise can be related to variance ⇒ noise can be quantified

• Rademacher averages can be improved with variance ⇒ localized
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Lecture 3

Loss Functions

• Properties

• Consistency

• Examples

• Losses and noise
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Motivation (1)

• ERM: minimize
Pn

i=1 1[g(Xi) 6=Yi] in a set G

⇒ Computationally hard

⇒ Smoothing

? Replace binary by real-valued functions

? Introduce smooth loss function
nX
i=1

`(g(Xi), Yi)
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Motivation (2)

• Hyperplanes in infinite dimension have

? infinite VC-dimension

? but finite scale-sensitive dimension (to be defined later)

⇒ It is good to have a scale

⇒ This scale can be used to give a confidence (i.e. estimate the density)

• However, losses do not need to be related to densities

• Can get bounds in terms of margin error instead of empirical error

(smoother → easier to optimize for model selection)
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Take Home Messages

• Convex losses for computational convenience

• No effect asymptotically

• Influence on the rate of convergence

• Classification or regression losses
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Margin

• It is convenient to work with (symmetry of +1 and −1)

`(g(x), y) = φ(yg(x))

• yg(x) is the margin of g at (x, y)

• Loss

L(g) = E [φ(Y g(X))] , Ln(g) =
1

n

nX
i=1

φ(Yig(Xi))

• Loss class F = {f : (x, y) 7→ φ(yg(x)) : g ∈ G}
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Minimizing the loss

• Decomposition of L(g)

1

2
E [E [(1 + η(X))φ(g(X)) + (1− η(X))φ(−g(X))|X]]

• Minimization for each x

H(η) = inf
α∈R

((1 + η)φ(α)/2 + (1− η)φ(−α)/2)

• L∗ := infg L(g) = E [H(η(X))]
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Classification-calibrated

• A minimal requirement is that the minimizer in H(η) has the correct

sign (that of the target t or that of η).

• Definition

φ is classification-calibrated if, for any η 6= 0

inf
α:αη≤0

(1+η)φ(α)+(1−η)φ(−α) > inf
α∈R

(1+η)φ(α)+(1−η)φ(−α)

• This means the infimum is achieved for an α of the correct sign (and

not for an α of the wrong sign, except possibly for η = 0).
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Consequences (1)

Results due to (Jordan, Bartlett and McAuliffe 2003)

• φ is classification-calibrated iff for all sequences gi and every proba-

bility distribution P ,

L(gi) → L
∗ ⇒ R(gi) → R

∗

• When φ is convex (convenient for optimization) φ is classification-

calibrated iff it is differentiable at 0 and φ′(0) < 0

O. Bousquet – Advanced Statistical Learning Theory – Lecture 3 71



Consequences (2)

• Let H−(η) = infα:αη≤0 ((1 + η)φ(α)/2 + (1− η)φ(−α)/2)

• Let ψ(η) be the largest convex function below H−(η)−H(η)

• One has

ψ(R(g)− R
∗
) ≤ L(g)− L

∗
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Examples (1)
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Examples (2)

• Hinge loss

φ(x) = max(0, 1− x), ψ(x) = x

• Squared hinge loss

φ(x) = max(0, 1− x)
2
, ψ(x) = x

2

• Square loss

φ(x) = (1− x)
2
, ψ(x) = x

2

• Exponential

φ(x) = exp(−x), ψ(x) = 1−
p

1− x2
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Low noise conditions

• Relationship can be improved under low noise conditions

• Under Tsybakov’s condition with exponent α and constant c,

c(R(g)− R
∗
)
α
ψ((R(g)− R

∗
)
1−α

/2c) ≤ L(g)− L
∗

• Hinge loss (no improvement)

R(g)− R
∗ ≤ L(g)− L

∗

• Square loss or squared hinge loss

R(g)− R
∗ ≤ (4c(L(g)− L

∗
))

1
2−α
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Estimation error

• Recall that Tsybakov condition implies Pf2 ≤ c(Pf)α for the

relative loss class (with 0− 1 loss)

• What happens for the relative loss class associated to φ ?

• Two possibilities

? Strictly convex loss (can modify the metric on R)

? Piecewise linear
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Strictly convex losses

• Noise behavior controlled by modulus of convexity

• Result

δ(

p
Pf2

K
) ≤ Pf/2

with K Lipschitz constant of φ and δ modulus of convexity of L(g)

with respect to ‖f − g‖L2(P )

• Not related to noise exponent
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Piecewise linear losses

• Noise behavior related to noise exponent

• Result for hinge loss

Pf
2 ≤ CPf

α

if initial class G is uniformly bounded
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Estimation error

• With bounded and Lipschitz loss with convexity exponent γ, for a

convex class G,

L(g)− L(g
∗
) ≤ C

 
(r
∗
)

2
γ +

log 1
δ + log logn

n

!

• Under Tsybakov’s condition for the hinge loss (and general G)

Pf2 ≤ CPfα

L(g)− L(g
∗
) ≤ C

 
(r
∗
)

1
2−α +

log 1
δ + log logn

n

!
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Examples

Under Tsybakov’s condition

• Hinge loss

R(g)−R∗ ≤ L(g
∗
)−L∗+C

 
(r
∗
)

1
2−α +

log 1
δ + log logn

n

!

• Squared hinge loss or square loss δ(x) = cx2, Pf2 ≤ CPf

R(g)−R∗ ≤ C

 
L(g

∗
)− L

∗
+ C

′
(r
∗
+

log 1
δ + log logn

n
)

! 1
2−α
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Classification vs Regression losses

• Consider a classification-calibrated function φ

• It is a classification loss if L(t) = L∗

• otherwise it is a regression loss
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Classification vs Regression losses

• Square, squared hinge, exponential losses

? Noise enters relationship between risk and loss

? Modulus of convexity enters in estimation error

• Hinge loss

? Direct relationship between risk and loss

? Noise enters in estimation error

⇒ Approximation term not affected by noise in second case

⇒ Real value does not bring probability information in second case
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Take Home Messages

• Convex losses for computational convenience

• No effect asymptotically ⇒ Classification calibrated property

• Influence on the rate of convergence ⇒ approximation or estimation,

related to noise level

• Classification or regression losses ⇒ depends on what you want to

estimate
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Lecture 4

SVM

• Computational aspects

• Capacity Control

• Universality

• Special case of RBF kernel
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Take Home Messages

• Smooth parametrization

• Regularization

• RBF: universal, flexible, locally preserving
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Formulation (1)

• Soft margin

min
w,b,ξ

1

2
‖w‖2

+ C

mX
i=1

ξi

yi(〈w, xi〉+ b) ≥ 1− ξi

ξi ≥ 0

• Convex objective function and convex constraints

• Unique solution

• Efficient procedures to find it

→ Is it the right criterion ?
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Formulation (2)

• Soft margin

min
w,b,ξ

1

2
‖w‖2

+ C
mX
i=1

ξi

yi(〈w, xi〉+ b) ≥ 1− ξi, ξi ≥ 0

• Optimal value of ξi

ξ
∗
i = max(0, 1− yi(〈w, xi〉+ b))

• Substitute above to get

min
w,b

1

2
‖w‖2

+ C
mX
i=1

max(0, 1− yi(〈w, xi〉+ b))
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Regularization

General form of regularization problem

min
f∈F

1

n

nX
i=1

c(yif(xi)) + λ ‖f‖2

→ Capacity control by regularization with convex cost

0 1

1
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Loss Function

φ(Y f(X)) = max(0, 1− Y f(X))

• Convex, non-increasing, upper bounds 1[Y f(X)≤0]

• Classification-calibrated

• Classification type (L∗ = L(t))

R(g)− R
∗ ≤ L(g)− L

∗
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Regularization

Choosing a kernel corresponds to

• Choose a sequence (ak)

• Set

‖f‖2
:=
X
k≥0

ak

Z
|f (k)|2dx

⇒ penalization of high order derivatives (high frequencies)

⇒ enforce smoothness of the solution
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Capacity: VC dimension

• The VC dimension of the set of hyperplanes is d+ 1 in Rd.
Dimension of feature space ?

∞ for RBF kernel

• w choosen in the span of the data (w =
P
αiyixi)

The span of the data has dimension m for RBF kernel (k(., xi)

linearly independent)

• The VC bound does not give any informationr
h

n
= 1

⇒ Need to take the margin into account
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Capacity: Shattering dimension

Hyperplanes with Margin

If ‖x‖ ≤ R,

vc(hyperplanes with margin ρ, 1) ≤ R2/ρ2
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Margin

• The shattering dimension is related to the margin

• Maximizing the margin means minimizing the shattering dimension

• Small shattering dimension ⇒ good control of the risk

⇒ this control is automatic (no need to choose the margin beforehand)

⇒ but requires tuning of regularization parameter
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Capacity: Rademacher Averages (1)

• Consider hyperplanes with ‖w‖ ≤M

• Rademacher average

M

n
√

2

vuut nX
i=1

k(xi, xi) ≤ Rn ≤
M

n

vuut nX
i=1

k(xi, xi)

• Trace of the Gram matrix

• Notice that Rn ≤
p
R2/(n2ρ2)
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Rademacher Averages (2)

E
h
sup‖w‖≤M

1
n

Xn

i=1
σi


w, δxi

�i
= E

h
sup‖w‖≤M

D
w, 1

n

Xn

i=1
σiδxi

Ei
≤ E

h
sup‖w‖≤M ‖w‖




1
n

Xn

i=1
σiδxi




i
=

M

n
E

"rDXn

i=1
σiδxi,

Xn

i=1
σiδxi

E#
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Rademacher Averages (3)

M

n
E

"rDXn

i=1
σiδxi,

Xn

i=1
σiδxi

E#

≤
M

n

r
E
hDXn

i=1
σiδxi,

Xn

i=1
σiδxi

Ei
=

M

n

r
E
hX

i,j
σiσj

D
δxi, δxj

Ei

=
M

n

rXn

i=1
k(xi, xi)
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Improved rates – Noise condition

• Under Massart’s condition (|η| > η0), with ‖g‖∞ ≤M

E
h
(φ(Y g(X))− φ(Y t(X)))

2
i
≤ (M−1+2/η0)(L(g)−L∗) .

→ If noise is nice, variance linearly related to expectation

→ Estimation error of order r∗ (of the class G)
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Improved rates – Capacity (1)

• r∗n related to decay of eigenvalues of the Gram matrix

r
∗
n ≤

c

n
min
d∈N

0
@d+

sX
j>d

λj

1
A

• Note that d = 0 gives the trace bound

• r∗n always better than the trace bound (equality when λi constant)
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Improved rates – Capacity (2)

Example: exponential decay

• λi = e−αi

• Global Rademacher of order 1√
n

• r∗n of order
logn

n
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Kernel

Why is it good to use kernels ?

• Gaussian kernel (RBF)

k(x, y) = e
−‖x−y‖

2

2σ2

• σ is the width of the kernel

→ What is the geometry of the feature space ?
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RBF
Geometry

• Norms

‖Φ(x)‖2
= 〈Φ(x),Φ(x)〉 = e

0
= 1

→ sphere of radius 1

• Angles

cos( ̂Φ(x),Φ(y)) =

�
Φ(x)

‖Φ(x)‖
,

Φ(y)

‖Φ(y)‖

�
= e

−‖x−y‖2/2σ2
≥ 0

→ Angles less than 90 degrees

• Φ(x) = k(x, .) ≥ 0

→ positive quadrant
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RBF
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RBF

Differential Geometry

• Flat Riemannian metric

→ ’distance’ along the sphere is equal to distance in input space

• Distances are contracted

→ ’shortcuts’ by getting outside the sphere
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RBF

Geometry of the span

Ellipsoid

a

b

x^2/a^2 + y^2/b^2 = 1

• K = (k(xi, xj)) Gram matrix

• Eigenvalues λ1, . . . , λm

• Data points mapped to ellispoid with lengths
√
λ1, . . . ,

√
λm
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RBF

Universality

• Consider the set of functions

H = span{k(x, ·) : x ∈ X}

• H is dense in C(X )

→ Any continuous function can be approximated (in the ‖‖∞ norm) by

functions in H

⇒ with enough data one can construct any function
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RBF

Eigenvalues

• Exponentially decreasing

• Fourier domain: exponential penalization of derivatives

• Enforces smoothness with respect to the Lebesgue measure in input

space
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RBF

Induced Distance and Flexibility

• σ → 0

1-nearest neighbor in input space

Each point in a separate dimension, everything orthogonal

• σ →∞
linear classifier in input space

All points very close on the sphere, initial geometry

• Tuning σ allows to try all possible intermediate combinations
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RBF

Ideas

• Works well if the Euclidean distance is good

• Works well if decision boundary is smooth

• Adapt smoothness via σ

• Universal
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Choosing the Kernel

• Major issue of current research

• Prior knowledge (e.g. invariances, distance)

• Cross-validation (limited to 1-2 parameters)

• Bound (better with convex class)

⇒ Lots of open questions...
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Take Home Messages

• Smooth parametrization ⇒ regularization and smoothness parame-

ters

• Regularization ⇒ soft capacity control

• RBF: universal, flexible, locally preserving ⇒ trust the structure

locally and do sensible things globally
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