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Roadmap

° : Union bounds and PAC Bayesian techniques
° : Variance and Local Rademacher Averages

° : Loss Functions

° . Applications to SVM
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Lecture 1

Union Bounds and PAC-Bayesian Techniques

e Binary classification problem
e Union bound with a prior
e Randomized Classification

e Refined union bounds
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Probabilistic Model

We consider an input space X and output space V.

Here: classification case Y = {—1, 1}.

Assumption: The pairs (X,Y) € X X Y are distributed
according to P (unknown).

Data: We observe a sequence of n i.i.d. pairs (X;, Y;) sampled
according to P.

Goal: construct a function g : X — ) which predicts Y from X, i.e.
with low risk

R(g) = P(9(X) #Y) =E [1gx)#v]]
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Probabilistic Model

Issues

® P is unknown so that we cannot directly measure the risk
e (Can only measure the agreement on the data

e Empirical Risk

1 n
R,.(g9) = - Z Lig(x;)2Y;]
i—1
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Bounds (1)

A learning algorithm

e Takes as input the data (X1, Y1), ..., (X, Yn)

e Produces a function g,

Can we estimate the risk of g,, 7
= random quantity (depends on the data).

— need probabilistic bounds
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Bounds (2)

e Error bounds
R(gn) < Rn(gn) + B
— Estimation from an empirical quantity

e Relative error bounds
* Best in a class
R(gn) < R(9") + B
* Bayes risk
R(g9n,) < R+ B
= Theoretical guarantees
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Notation

Important: to simplify writing we use the notation:

o /= (X,Y)
e G: hypothesis class, g function from X to R

e F: loss class or centered loss class, f function from X X )Y to R

f(z) = f((z,y)) = L(g(x),y) or L(g(x),y) — (g (x),y)

Simplest case £(g(x), y) = lig(z)s£y]
o R(9) =Pf=E[f(X,Y)], Ru(9) = Puf := + 211 f(Zi)
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Take Home Messages

e Two ingredients of bounds: deviations and union bound
e Optimal union bound with metric structure of the function space
e Can introduce a prior into the union bound

e PAC-Bayesian technique: improves the bound when averaged
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Deviations

Hoeffding’s inequality
for each fixed f € F, with probability at least 1 — 9,

O. Bousquet — Advanced Statistical Learning Theory — Lecture 1

(1)



Finite union bound

For a finite set of functions F with probability at least 1 — 9,

log | F| + log%

n

vfeF, Pf—PnfSC\/

e log |F| is analogue to a variance
e extra variability from the unknown choice

® measures the size of the class
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Weighted union bound

Introduce a probability distribution 7 over JF: with probability at least
1 — 4,

logl/7(f) + log%
- .

Vf € F, Pf— P.f < cv (3)

e the bound depends on the actual function f being considered
e capacity term could be small if 7w appropriate

e However, m has to be chosen before seeing the data
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Comments

® T is just a technical prior
e allows to distribute the cost of not knowing f beforehand
e if one is lucky, the bound looks like Hoeffding

e goal: guess how likely each function is to be chosen
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Randomized Classifiers

Given G a class of functions

e Deterministic: picks a function g,, and always use it to predict
e Randomized

* construct a distribution p,, over G
* for each instance to classify, pick g ~ p,

e Error is averaged over p,
R(pn) = pnPf

R.(pn) = pnPnf
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Union Bound (1)

Let 7 be a (fixed) distribution over F.

® Recall the refined union bound

log ﬁ + log %
2n

VfEf,Pf—PnfS\/

e Take expectation with respect to p,

log ﬁ + log %
2n

pnPf — pnPnf < pn\/
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Union Bound (2)

pnPf — pnPrf < pn\/(— log 7(f) + log ) /(2n)
< /(=pnlogm(f) +1log}) /(2n)
< /(K (pum) + H(pn) +log 1) /(2n)

o K(pn,m) = [ pn(f)log 2 df Kullback-Leibler divergence

e H(p,) = [ pu(f)log pu(f) df Entropy
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PAC-Bayesian Refinement

e |t is possible to improve the previous bound.

e With probability at least 1 — 9,

K(pn, ™) 4+ logdn + log%
2n — 1

pnpf_pnpnfg\/

e Good if p,, is spread (i.e. large entropy)

e Not interesting if p,, = 0y,
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Proof (1)

e Variational formulation of entropy: for any T
pT(f) < logme™ ) + K(p, )
o Apply it to N(Pf — P,f)?
Aon(PF = Pof)? < log me T PD" 4 K (p,, )

e Markov's inequality: with probability 1 — 4,

2
Aon(Pf — Pof)? < logE [we“Pf‘P”f) } + K (pn, ™) + log }
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Proof (2)

e Fubini
2 2
E [WeA(PfP”f) ] = 7Kk [e/\(PfP”f) ]

e Modified Chernoff bound

2
E [e<2n—1><Pf—Pnf> ] < an

e Putting together (A = 2n — 1)

(2n — 1)pa(Pf = Pof)* < K(pp, ) + log4n + log 1

e Jensen (2n — 1) (p(Pf — Pnf))2 < (2n —1)p,(Pf — Pnf>2
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Other refinements

e Symmetrization

e Transductive priors

e Rademacher averages
e Chaining

e Generic chaining
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Symmetrization

When functions have range in {0, 1}, introduce a ghost sample
Ziy...,Z . Then the set

Sn =A{f(Z1),...,f(Z,), f(Z),...,f(Z]): f € F}is finite.
With probability at least 1 — §, Vf € F

log E[S,| 4 log ;

n

Pf—Pnfgc\/ (4)

e Finite union bound applies to infinite case
e computing E|S;,| impossible in general

e need combinatorial parameters (e.g. VC dimension)
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Transductive priors

If one defines a function I : Z°" — M7 (F) which is exchangeable,
with probability at least 1 — & (over the random choice of a double

sample), for all f € F,

P C\/logl/H(Zl,...,Zn,Zi,...,Z,,{L)(f)—|—log%

n

e Allows the prior to depend on the (double) sample

e (Can be useful when there exists a data-independent upper bound
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Rademacher averages

No Union Bound

Recall that with probability at least 1 — 9§, for all f € F

1 n
Pf—P.f <C | —EE,sup Y o:if(Z:) +

n feF 4

e No union bound used at this stage, only deviations

e Union bound needed to upper bound the r.h.s.

e Finite case : +/log |F|/n

O. Bousquet — Advanced Statistical Learning Theory — Lecture 1

log

=

22



Chaining

Global Metric Structure
Consider finite covers of the set of function at different scales.

Construct a chain of functions that approximate a given function more
and more closely. With probability at least 1 — 9, for all f € F

Pf—P,f<C 1]E/oo\/l N(F. e, dy)de + 1] 22
—in = Y i og y €5 Un €
vn o Jo

n

1
5

with d,, empirical Lo metric
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Generic chaining

Local Metric Structure

Let » > 0 and (\A,);>1 be partitions of F of diameter 77 w.r.t. the
distance d,, such that A, refines A;. Previous integral replaced by

inf SupZ’P_j\/IOg[l/ﬂ'(j)Aj(f)]

\V/j,ﬂ'(j)EMii_(.’/—'.) feFx j=1

e Better adaptation to the local structure of the space

e Equivalent to the Rademacher average (up to log)
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Take Home Messages

e Two ingredients of bounds: deviations and union bound = next
lecture improves the deviations

e Optimal union bound with metric structure of the function space =
generic chaining

e (Can introduce a prior into the union bound = best prior depends on
the algorithm

e PAC-Bayesian technique: improves the bound when averaged = can
be combined with generic chaining
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Lecture 2

Variance and Local Rademacher Averages

e Relative error bounds

e Noise conditions

e Localized Rademacher averages
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Take Home Messages

e Deviations depend on the variance
e No noise means better rate of convergence
e Noise can be related to variance

e Rademacher averages can be improved with variance
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Binomial tails

e P,f ~ B(p,n) binomial distribution p = P f
o P[Pf—P.f>t]=3"t"" (MpFa -

e (Can be upper bounded

n(l—p—t) n(p+t)
* Exponential (%) (ﬁ)

P ((1—t/p)log(1—t/p)+t/p)

2
. nt
% Bernstein e 2pr(1—p)+2t/3

—2nt2

x Bennett e 195 —p

* Hoeffding e
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Tail behavior

e For small deviations, Gaussian behavior ~ exp(—nt*/2p(1 — p))
= Gaussian with variance p(1 — p)

e For large deviations, Poisson behavior &~ exp(—3nt/2)
=> Tails heavier than Gaussian

e Can upper bound with a Gaussian with large (maximum) variance
exp(—2nt?)
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lllustration (1)

Maximum variance (p = 0.5)

1
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Deviation bound
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lllustration (2)

Small variance (p = 0.1)
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Taking the variance into account (1)

e Each function f € F has a different variance Pf(1 — Pf) < Pf.
e For each f € F, by Bernstein's inequality

2Pflog% n 2log%

n 3n

PfSPanr\/

e The Gaussian part dominates (for Pf not too small, or n large
enough), it depends on P f

— Better bound when P f is small
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Taking the variance into account (2)

e Square root trick:

r< AVr+B=x< A*+ B+ VBA < 2A4° + 2B

e Consequence

log%
Pf<2P,f+C

n
= Better bound when P, f is small
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Normalization

e Previous approach was to upper bound

sup Pf — P, f
fer

The supremum is reached at functions with large variance. Those are
not the interesting ones

o Here (f € {0,1}), Var[f] < Pf* = Pf

e Focus of learning: functions with small error Pf (hence small
variance)

e lLarge variance = large risk
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Normalization

e The idea is to normalize functions by their variance

e After normalization, fluctuations are more " uniform”

} Pf—PFP,f
u
feJE VvVPf

All functions on the same scale

= The normalized supremum takes the learning method into account.
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Relative deviations

Vapnik-Chervonenkis 1974
For 6 > O with probability at least 1 — 9,

Pf—Puf _, [logSr(2n) + logs

Vf e F, JPF S ”
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Consequence

From the square root trick we get

og Sr(2n) + log 3

vVieF, Pf < Pnf_|_2\/Pnf1

n

+4log Sr(2n) + log 3

n
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Proof sketch

1. Symmetrization

P[ Pf—Pant]§2P[ P.f — P.f

u u >
?"eg vPf ?“GE V(Puf + P.f)/2 ™

2. Randomization

o [PU lsup i o (Z) — (Z) t] ]
rer (Pl + P2

3. Tail bound
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Zero noise
|deal situation :
® g, empirical risk minimizer
e Bayes classifier in the class G

e R* =0 (no noise)
In that case

e R,(gn) =0

- R(gn) — O(dlo%)
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Interpolating between rates ?

e Rates are not correctly estimated by this inequality

e Consequence of relative error bounds

log Sr(2n) + log 5

Pf, < Pf° +2\/Pf*

n

+4log Sr(2n) + log 3

n

e The quantity which is small is not Pf* but Pf,, — Pf"

e But relative error bounds do not apply to differences
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Definitions

e N(x) =E[Y|X =2] =2P[Y = 1|X = x| — 1 is the regression
function

e t(x) = sgnn(x) is the target function or Bayes classifier (Bayes
risk R* = E [n(X)])

e in the deterministic case Y = ¢(X) (P[Y = 1|X] € {0,1})

e in general, noise level

n(z) = min(PlY =1|X =2z],1 —P[Y =1|X = z])
= (@)
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Approximation/Estimation

e Bayes risk
R" = inf R(g) .
g

Best risk a deterministic function can have (risk of the target function,
or Bayes classifier).

e Decomposition: R(g*) = inf,cg R(g)

R(gn) — R" = Blg) ~ R* + R(gn) - R(g")

Approximation Estimation

e Only the estimation error is random (i.e. depends on the data).
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Intermediate noise

Instead of assuming that |n(x)| = 1 (i.e. n(x) = 0), the
deterministic case, one can assume that n is well-behaved.
Two kinds of assumptions

e 7 not too close to 1/2

e 7 not often too close to 1/2
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Massart Condition

e For some ¢ > 0, assume

1
In(X)| > — almost surely
c

e There is no region where the decision is completely random

e Noise bounded away from 1/2
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Tsybakov Condition

Let o € [0, 1], equivalent conditions

(1) 3Jec >0, Vg e {—1,1}",
Plg(X)n(X) <0] < c(R(g) — R)"

(2) Je>0, VA C X, /AdP(:c) < c(/A In(2)|dP ()

(3) 3IB>0, Vt >0, P[n(X)| < t] < BtT-a
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Equivalence
e (1) & (2) Recall R(g) — R* = E [|n(X)|1gn<0]. For each
function g, there exists a set A such that 1;4 = 1j4,<q
e (2)= (3) Let A= {x:|n(x)| <t}
Pllnl <t = [ dP@) < o[ [n@)dP()”
< et'([ dP@)"
A

1 o
> Plln| < 4] < Pt
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e (3) = (1)

R(g) — R =E [|n(X)] 1ign<o]
> tE [1gn<oilin>1]
tP[|n| > t] — tE [1igyso0)Ln>y]

> (1 — BtTa) — tP[gn > 0] = t(P[gn < 0] — BtT-a)

Take t = (<1—a>ﬂ;[gng01) (1-a)/a

11—«

= Pgn < 0] < 1 o)1 _a)ar
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Remarks

e « isin [0, 1] because

R(g) — R" =E [In(X)[1gn<o)] < E [1jgn<a]

e o = (0 no condition

e o = 1 gives Massart's condition
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Consequences

e Under Massart's condition

E [(1[9(X)7£Y] — 1[t(X)7£Y])2] < c(R(g) — R")

e Under Tsybakov's condition

2 *\ QY
E [(1[9()()751/] — Lp(x)%£v]) ] <c(R(g)— R
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Relative loss class

e F is the loss class associated to G

® T he relative loss class is defined as

F={f-1:fer}

e |t satisfies
Pf* < c(Pf)"
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Finite case

e Union bound on F with Bernstein’s inequality would give

8c(Pf, — Pf*)*log %4—4 log &

n 3n

e Consequence when f* € F (but R* > 0)

1
] N\ 2—«a
an—Pf*§C<Og5>

n

always better than n 1% for a > 0
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Local Rademacher average

e Definition

R(F,r)=E sup R,f
fEF:Pf2<r

e Allows to generalize the previous result

e Computes the capacity of a small ball in F (functions with small

variance)

e Under noise conditions, small variance implies small error
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Sub-root functions

Definition
A function 7y : R — R is sub-root if

® 1 is non-decreasing

® 1 is non negative

e (r)/+/7 is non-increasing
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Sub-root functions

Properties
A sub-root function

® Is continuous

e has a unique fixed point ¥ (r") = r*

3

X
— phix)

25}
ok ]
15F -

1F e

1~
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Star hull

e Definition
*F ={af: feF, ac|0,1]}

e Properties
Rn(xF,r) is sub-root

e Entropy of xF is not much bigger than entropy of F
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Result

e 1 fixed point of R(xF, r)
e Bounded functions

logi + logl
Pf—PnfSC( P Var [f] + 28 08 Ogn)

e Consequence for variance related to expectation (Var [f] < ¢(Pf)?)

1 logi
pPf<cC (Pnf ()T 4 B T8 log”>

n
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Consequences

e For VC classes R(F,r) < C1/ hence r* < CL

e Rate of convergence of P,f to Pf in O(1/+/n)

e But rate of convergence of Pf, to Pf”" is O(l/nl/(2—a))

Only condition is t € G but can be removed by SRM /Model selection
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Proof sketch (1)

e Talagrand’s inequality

sup Pf—P,f <E |supPf — P,f
fer fer

+c\/sup Var [ f] /n—f—c//n
ferF

e Peeling of the class

Fr = {f : Var[f] € [z", ")}
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Proof sketch (2)

e Application

sup Pf—P,f <E lsup Pf—P,f —I—C\/a:Var [f] /n+c'/n

fej:k; fEfk

e Symmetrization

Vf € F, Pf—Puf < 2R(F, aVar [f])+cy/aVar [f] /ntc /n
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Proof sketch (3)

e \We need to 'solve’ this inequality. Things are simple if R behave like
a square root, hence the sub-root property

Pf—P,f <2y/r*Var[f] + c\/a:Var [f] /n+c'/n

e Variance-expectation

Var [f] < e(Pf)"

Solve in P f
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Data-dependent version

e As in the global case, one can use data-dependent local Rademcher
averages

Rn(fa T) — Ea [ sSup Rnf]
fEF:Pf2<r

e Using concentration one can also get

Pf<C (Pnf § (ryra 4 0B T 108 log”>

where 7 is the fixed point of a sub-root upper bound of R, (F, r)
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Discussion

e |mproved rates under low noise conditions
e Interpolation in the rates
e (Capacity measure seems 'local’,

e but depends on all the functions,

e after appropriate rescaling: each f € Fis considered at scale 7“/Pf2
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Take Home Messages

e Deviations depend on the variance
e No noise means better rate of convergence
e Noise can be related to variance = noise can be quantified

e Rademacher averages can be improved with variance = localized
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Lecture 3

Loss Functions

e Properties
e C(Consistency
e Examples

® Losses and noise
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Motivation (1)

e ERM: minimize > 1", 1jg(x.)2y; in a set G

Y

Computationally hard

|

Smoothing

* Replace binary by real-valued functions

*x Introduce smooth loss function
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Motivation (2)

e Hyperplanes in infinite dimension have

* infinite VC-dimension

* but finite scale-sensitive dimension (to be defined later)
= It is good to have a scale
= This scale can be used to give a confidence (i.e. estimate the density)
e However, losses do not need to be related to densities

e (Can get bounds in terms of margin error instead of empirical error
(smoother — easier to optimize for model selection)
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Take Home Messages

e Convex losses for computational convenience
e No effect asymptotically
e Influence on the rate of convergence

e (lassification or regression losses
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Margin

e It is convenient to work with (symmetry of +1 and —1)

£(g(z),y) = ¢(yg(x))

e yg(x) is the margin of g at (z, y)

® loss

L(g) = E[6(Yg(X)], Lulg) = — > 6(Vig(Xy)

® Lossclass F = {f : (z,y) — ¢(yg(x)) : g € G}
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Minimizing the loss

e Decomposition of L(g)

%E [E[(1+n(X))e(g(X)) + (1 —n(X))p(—g(X))|X]]
e Minimization for each x
H(n) = inf (1 +n)¢(a)/2 + (1 —n)p(-a)/2)

e L":=inf, L(g) = E[H(n(X))]
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Classification-calibrated

e A minimal requirement is that the minimizer in H (7)) has the correct
sign (that of the target ¢ or that of n).

e Definition
¢ is classification-calibrated if, for any n # 0

a:ia%fgo(lJrn)cb(a)Jr(l—n)(b(—a) > inf (14n)d(c)+(1-n)d(-a)

e This means the infimum is achieved for an o of the correct sign (and
not for an « of the wrong sign, except possibly for n = 0).
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Consequences (1)

Results due to (Jordan, Bartlett and McAuliffe 2003)

e ¢ is classification-calibrated iff for all sequences g; and every proba-
bility distribution P,

L(g;)) = L" = R(g:)) > R

e When ¢ is convex (convenient for optimization) ¢ is classification-
calibrated iff it is differentiable at 0 and ¢'(0) < 0
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Consequences (2)

o Let H™(n) = infaunso (1 +1)$(a)/2 + (1 — 1)d(—)/2)
e Let v(n) be the largest convex function below H™ (n) — H(n)

e One has
Y(R(g) — R") < L(g) — L~
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Examples (1)

T
— 01

— hinge
—— squared hinge
3.5 —— square M
—— exponential
3r 4
25F q
2 i
151 q
1 /
05 L / .
0 1 1 Il 1
-1 -0.5 0 0.5 1 1.5 2
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Examples (2)

e Hinge loss
¢(xz) = max(0,1 —z), P(z) ==

e Squared hinge loss
¢(x) = max(0,1 — z)*, ¥(z) = 2

e Square loss
$(x) = (1 — ), (z) =2

e Exponential

¢(z) = exp(—z), ¢(z) =1—- V1 —2?
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Low noise conditions

e Relationship can be improved under low noise conditions
e Under Tsybakov's condition with exponent a and constant c,

c(R(9) — R)"$((R(g) — B")'""/2¢) < L(g) — L’
e Hinge loss (no improvement)
R(g) — R" < L(g) — L’
e Square loss or squared hinge loss

R(g) — R < (4e(L(g) — L"))7=
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Estimation error

o Recall that Tsybakov condition implies Pf? < c(Pf)* for the
relative loss class (with O — 1 loss)

e What happens for the relative loss class associated to ¢ ?

e Two possibilities
* Strictly convex loss (can modify the metric on R)

* Piecewise linear
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Strictly convex losses

e Noise behavior controlled by modulus of convexity

e Result

s < Py

with K Lipschitz constant of ¢ and § modulus of convexity of L(g)
with respect to || f — gHLQ(P)

e Not related to noise exponent
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Piecewise linear losses

e Noise behavior related to noise exponent

e Result for hinge loss
Pf* < CPf"

if initial class G is uniformly bounded
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Estimation error

e With bounded and Lipschitz loss with convexity exponent -y, for a
convex class G,

X L2 lo L4 loglogn
L(g)—L<g>§0(<r>’v+ 55T 05 06 )

e Under Tsybakov's condition for the hinge loss (and general G)
Pf?< CPf™

1

n

O. Bousquet — Advanced Statistical Learning Theory — Lecture 3 79



Examples

Under Tsybakov's condition

e Hinge loss

* * % * 1 10 l—|—10 lO n
R(g)—R* < L(g")—L +c(<r>2—a+ 55T 0808 )

e Squared hinge loss or square loss § (x) = cz®, Pf* < CPf

1
) . . .. logi+loglogn \*°
R(g)—R §C<L(g>—L + O (4 22 T 2808 >>
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Classification vs Regression losses

e Consider a classification-calibrated function ¢
e It is a classification loss if L(t) = L*

e otherwise it is a regression loss
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Classification vs Regression losses

e Square, squared hinge, exponential losses

* Noise enters relationship between risk and loss

* Modulus of convexity enters in estimation error
e Hinge loss

* Direct relationship between risk and loss

* Noise enters in estimation error
= Approximation term not affected by noise in second case

— Real value does not bring probability information in second case
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Take Home Messages

e Convex losses for computational convenience
e No effect asymptotically = Classification calibrated property

e Influence on the rate of convergence = approximation or estimation,
related to noise level

e Classification or regression losses = depends on what you want to
estimate
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Lecture 4

SVM

e Computational aspects
e (Capacity Control
o Universality

e Special case of RBF kernel
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Take Home Messages

e Smooth parametrization
e Regularization

e RBF: universal, flexible, locally preserving
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Formulation (1)

e Soft margin

min §|IWII +CZ£Z

yi({w, x;) +b) > - &i
§& >0
e (Convex objective function and convex constraints
e Unique solution

e Efficient procedures to find it

— Is it the right criterion 7
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Formulation (2)

e Soft margin

min = ~ lwlf? +CZ&

yi(<W,X7;> + b) 2 1 — 'gza gz Z 0
e Optimal value of &;

§; = max(0,1 — y;({w, x;) + b))

e Substitute above to get

1 m
min — [wl® +C > max(0, 1 — il(w, x;) + b))

W.b .
1=1
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Regularization

General form of regularization problem

1 n
min — > e(yif (1)) + A | £II°
1=1

feF n 4

— Capacity control by regularization with convex cost
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Loss Function

(Y f(X)) = max(0,1 — Y f(X))

e Convex, non-increasing, upper bounds 1y r(x)<o]
e (lassification-calibrated

e Classification type (L™ = L(t))
R(g) — R" < L(g) — L
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Regularization

Choosing a kernel corresponds to

e Choose a sequence (ay)

e Set

I£11? = Zak/ 702

k>0

=> penalization of high order derivatives (high frequencies)

—> enforce smoothness of the solution
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Capacity: VC dimension

e The VC dimension of the set of hyperplanes is d + 1 in R,
Dimension of feature space ?
oo for RBF kernel

e w choosen in the span of the data (w = > a,y:x;)
The span of the data has dimension m for RBF kernel (k(., x;)
linearly independent)

e The VC bound does not give any information

h
— =1
n

= Need to take the margin into account
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Capacity: Shattering dimension

Hyperplanes with Margin

If ||zl < R,
ve(hyperplanes with margin p, 1) < R*/p?
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Margin

e The shattering dimension is related to the margin
e Maximizing the margin means minimizing the shattering dimension

e Small shattering dimension = good control of the risk

=> this control is automatic (no need to choose the margin beforehand)

—> but requires tuning of regularization parameter
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Capacity: Rademacher Averages (1)

e Consider hyperplanes with ||w|| < M

e Rademacher average

\/_ Zk(wz,az@) <R, < — Zk(azz,az@

e Trace of the Gram matrix

e Notice that R,, < 1/ R?/(n2p?)
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Rademacher Averages (2)

= [S“PuwngM n Zj:l oi (W, 5”ji>]
= kK :Supllwl\SM <w’ z Zj:l ‘”5‘”@'>:

" Zj:l 70z, ]
%E [\/<Zj1 7i0a;, Zj:l Ji6$i>]

IA

E |supju)<m Jwl|
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Rademacher Averages (3)

My N (3" o3 a@-a%.}]
< MRl 00> ois,)]
= %\/E >, 0005 (8260, |
_ %\/Zjlk(wi,m)
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Improved rates — Noise condition

e Under Massart's condition (|| > no), with ||g||,, < M

E[(6(Yg(X)) = $(YH(X))’| < (M=1+2/n0)(L(g)—L").

— If noise is nice, variance linearly related to expectation

— Estimation error of order r* (of the class G)
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Improved rates — Capacity (1)

e 1 related to decay of eigenvalues of the Gram matrix

e Note that d = O gives the trace bound

e 1 always better than the trace bound (equality when A; constant)
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Improved rates — Capacity (2)

Example: exponential decay
e >\z — €
e Global Rademacher of order %

n

e 1 of order
logn

n
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Kernel

Why is it good to use kernels ?

e Gaussian kernel (RBF)

2
lz—yll

b(z,y) = ¢ 207

e o is the width of the kernel

— What is the geometry of the feature space 7
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RBF

Geometry

e Norms
2 0
[@(2)||” = (P(x), ®(x)) = e =1
— sphere of radius 1
e Angles

_ o lle=ulr20? S

P(z) @(y) >
[@(@)|" @)
— Angles less than 90 degrees

o &(z) =k(x,.) >0
— positive quadrant

cos(B(2), B(y)) = <
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RBF
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RBF

Differential Geometry

e Flat Riemannian metric

— 'distance’ along the sphere is equal to distance in input space

e Distances are contracted

— 'shortcuts’ by getting outside the sphere
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RBF

Geometry of the span

Ellipsoid

XA2/at2 + yM2/b"2 = 1

—
N

—<
-

o K = (k(xi, x;)) Gram matrix

e Eigenvalues A\q,..., Ay

e Data points mapped to ellispoid with lengths v/ A1, ..

O. Bousquet — Advanced Statistical Learning The
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RBF

Universality

e Consider the set of functions

H = span{k(x,-): © € X}

e H is dense in C'(X)

— Any continuous function can be approximated (in the ||||_ norm) by
functions in ‘H

—> with enough data one can construct any function
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RBF

Eigenvalues

e Exponentially decreasing

e Fourier domain: exponential penalization of derivatives

e Enforces smoothness with respect to the Lebesgue measure in input
space
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RBF

Induced Distance and Flexibility

e 0 — 0
1-nearest neighbor in input space
Each point in a separate dimension, everything orthogonal

® 0 — OO
linear classifier in input space

All points very close on the sphere, initial geometry

e Tuning o allows to try all possible intermediate combinations
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RBF

Ideas

e Works well if the Euclidean distance is good

e Works well if decision boundary is smooth

e Adapt smoothness via o

e Universal
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Choosing the Kernel

e Major issue of current research
e Prior knowledge (e.g. invariances, distance)
e Cross-validation (limited to 1-2 parameters)

e Bound (better with convex class)

—> Lots of open questions...
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Take Home Messages

e Smooth parametrization =- regularization and smoothness parame-
ters

e Regularization = soft capacity control

e RBF: universal, flexible, locally preserving =- trust the structure
locally and do sensible things globally
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