
Maximum-Margin Feature Combination
for Detection and Categorization

Gökhan H. Bakır, Mingrui Wu and Jan Eichhorn
Max Planck Institute for Biological Cybernetics
Spemannstraße 38, 72076 Tübingen, Germany

{first.last}@tuebingen.mpg.de

Abstract

In this paper we are concerned with the optimal combination of
features of possibly different types for detection and estimation
tasks in machine vision. We propose to combine features such that
the resulting classifier maximizes the margin between classes. In
contrast to existing approaches which are non-convex and/or gen-
erative we propose to use a discriminative model leading to con-
vex problem formulation and complexity control. Furthermore we
assert that decision functions should not compare apples and or-
anges by comparing features of different types directly. Instead we
propose to combine different similarity measures for each different
feature type. Furthermore we argue that the question: ”Which
feature type is more discriminative for task X?” is ill-posed and
show empirically that the answer to this question might depend on
the complexity of the decision function.

1 Introduction

The typical workflow in most detection and estimation tasks in machine vision is
to first agree upon a set of features and then in a second independent step to use
some decision technique to construct a model using these features. Often, however
one faces the problem that there is no unique set of features for a given task,
but that there are possibly multiple cues providing information about the task
at hand. For example, in [5] various methods for categorization based on Color,
Texture and Shape were investigated and it was concluded that for multi-class
object categorization multiple features and different combinations of features are
needed. In this paper we achieve this by using the multi-kernel learning (MKL)
framework[1, 8], see Figure 1.
We propose that the separate steps of choosing features and constructing the pre-
diction model should be combined into a single step. We would like to use a single
algorithm to construct a decision function and at the same time choose the best
combination of features. In addition, we investigate if the choice of feature and
the complexity of the decision function are dependent. By controlling the tradeoff
between training error and complexity of the final decision function, we will show
that the choice of features does depend on the complexity of the decision function.
This leads to our conclusion that the question of whether feature A is better than
feature B for a specific task can not be answered without specifying the complexity
of the involved decision function.

Figure 1: What is an optimal combination of Shape Statistics, Local image descriptors,
Color histograms and Texture filters to discriminate lemon from other fruits? MKL con-
structs a possibly sparse combination of arbitrary feature types such that the margin of
the resulting classifier is maximized. The resulting weights can be interpreted as relevance.
Images taken from the ALLOI database[4].

The paper is organized as follows. In section 2 we review the relevant work for fea-
ture combination. Thereafter, in section 3 we introduce our used MKL algorithms.
All our introduced algorithms are convex and thus all the determined feature weight-
ings are obtained as the global solution to a convex optimization problem. In section
4 we demonstrate the MKL algorithms in face detection and object categorization
tasks on some standard machine vision benchmark data. In section 5 we summarize
our results and conclude.

2 Background and Relevant Work

For further discussions, let us denote by f ∈ F a feature f belonging to the type
F . By a feature f we mean the instance of an observed entity in the image and by
the feature type we mean the nature of this entity. For example color is a feature
type and red is a feature. Typically one observes multiple features {f i

1, . . . , f
i
ri
}

per feature type Fi, where ri denotes the number of observed feature instances per
type Fi. For example if we consider for F1 local image descriptors and for F2 color
histograms, then typically r1 is in the order of hundreds to thousands while r2 is
one per image.
Usually, using all possibly available types of features is not necessary and thus
one prefers a sparse, task relevant subset of feature types due to computational
performance reasons. In general a favored subset of all feature types is chosen and
then they have to be combined and presented to a learning algorithm. Let us review
in the following how features of different type are combined.

2.1 Feature Combination for Detection and Categorization

In the following we describe three types of existing feature combination strategies:
Feature Stacking, Feature Dictionaries and Probabilistic Approaches.

Feature Stacking The most naive way of combining different types of features is
to simply stack all features {f i

j}
ri
j=1 of each type Fi into a single big feature vector

x = [f1
1 , . . . , f1

r1
, . . . , fm

rm
] ∈

⊕m
i F ri

i . The stacked vector can contain features from
different cues like color histograms, responses from Gabor filters up to 2 1

2D range
data. Due to the nature of such stacked feature vectors, all components will carry
a different amount of information that is relevant for the task at hand. Using then
the stacked feature vectors xi with corresponding class label yi one can use any
standard supervised learning technique for detection and categorization.
Unfortunately feature stacking is not always straight-forward. Consider the case
that the observed number of instances of one feature type varies while another
type generates always constant amount of features. For example the number of
most kind of local image descriptors or shape-context descriptors vary whereas

the number of global features in an image like intensity histogram stays constant.
Thus often stacking requires extra processing. Another issue with feature stacking is
that learning algorithms which perform non-linear transformations, such as support
vector machines with a non-linear kernel function, will lead to a mixing of the entries
and thus of the different types. This implies that the information on which feature
is essentially used might get lost and the result is not interpretable anymore. To
this end, if feature stacking is used one has to use all possible available feature types
since one does not know which feature type is essential in advance.

Feature Dictionaries An alternative approach is not to construct a single big
feature vector x but to use a fixed dictionary D with |D| = d overall number of
a-priori fixed features {f i

j}
ri
j=1 ∈ Fi with

∑m
i ri = d. Current approaches in vision

using feature dictionaries are mostly using a boosting training strategy [9, 11]. A
quite convenient property of boosting-based techniques is that the model remains
interpretable, since not necessarily all features in the dictionary will be selected for
the task at hand. On the other hand, a disadvantage of such approaches is that
they rely on early-stopping to control generalization behavior and thus might need
plenty of manual tuning. See [2, 7] for discussion.

Probabilistic Approach A quite different approach to feature combination is to
consider feature types as probabilistic information sources with a given prior belief
function p(f |θi). In this case prediction can be done by Bayesian inference yielding
the prediction equation

c(z) =
∫

y

p(y|z, θ0)
m∏

i=1

p(z|fi)p(fi|θi)dy.

In this probabilistic setting the learning algorithm is concerned in finding good
model parameters θ given some training data. Note that the parameters θi which
control the relevance of feature types are now parameters of probability distribu-
tions. These so called hyper-parameters, can be found e.g. by maximizing the
conditional posterior distribution function

θ∗i = arg max
θi

p(θi|y, z, f1, . . . , fl, θ0) (1)

From a mathematical perspective, we believe that this is the most rigorous approach
of all. Unfortunately, from a practical viewpoint this seems to be an inconvenient
approach since (1) often turns out to be a non-convex optimization problem. Stan-
dard approaches are based on Markov Chain Monte Carlo sampling or sequential
approximations.
Thus all existing approaches so far are hard to optimize, not interpretable or not
generally applicable to various kind of feature types. In the next section we describe
how to overcome these limitations using kernels.

3 Combining features: The kernel approach

In kernel methods usually the raw input features are first mapped into a reproducing
kernel hilbert space(RKHS) F via some nonlinear mapping φ : F → F . Let us
denote by Fi = Φi(Fi) the RKHS associated with feature type Fi. The linear
dot-product in this new feature space Fi is then typically evaluated using a kernel
function ki : Fi×Fi → R which can be interpreted as a similarity measure between
two features f i

u, f i
v ∈ Fi. In this paper we follow the assert that features of different

type are combinable but not comparable. To this end, we use a different similarity
measure for each type of feature Fi and thus have a kernel function for each type of
feature. A natural way to combine features of different type is then to use stacking

in the space
⊕m

i=1 Fi which results in the similarity measure

k(x, z) =
m∑

i=1

βiki(x, z). (2)

Here x, z are sets of features of arbitrary type. The only assumption is that both
sets have at least one instance for each possible type of features. The task of the
learning algorithm is now to choose in addition the weights β. This is the concern
of the MKL algorithm which considers decision functions of the form

c(x) =
l∑

i=1

αik(xi, x) + b,

where the kernel function k is given as positive weighted sum as in (2). Thus the
goal of MKL is to find the l + m variables {α, β} according to the learning task at
hand. The i-th entry of the α vector controls the participation of data point xi in
the decision function whereas the j-th entry of the β vector can be interpreted as
the relevance of feature type Fj . A zero weight βj would correspond to blend out
the feature space associated with the corresponding kernels similar as in feature
selection. Let us now review the detailed formulations of our used MKL algorithm.

3.1 MKL for detection and categorization

MKL was first explored in [12] for classification, regression and density estimation
hence it was shown not to be limited to classification. However, in the following we
will constrain ourselves on binary classification. We consider a linear model in the
feature space F =

⊕m
i=1 Fi and our aim is to build a maximum margin classifier

given a set of training data Dn = {xi, yi}n
i=1 where xi is a set of features and yi is a

class label. Thus our decision function c(z) takes now the form c(z) = w>φ(z) + b.
This can be formulated as follows

arg min
wi,ξ,b

1
2Ω[w1, . . . , wm] + C

∑n
i=1 ξi

subject to yi(
∑m

j=1 w>
j φj(xi) + b) ≥ 1− ξi, 1 ≤ i ≤ n.

where the weight vector of the classifier w is stacked as w = [w1, . . . , wm]. Note that
φj acts only on the elements of x that are of type Fj . The regularizing functional
Ω[w1, . . . , wm] measures the norm of the resulting classifier and can be chosen in
different ways, e.g. Ω2[w1, . . . , wm] =

∑m
i=1 ||wi||2 would lead to standard SVM

formulation. In [1] it was proposed to use Ω1[w1, . . . , wm] = (
∑m

i=1 ||wi||)
2, penal-

izing the one norm on the block level of w and thus favoring a sparse choice of
subspaces Φi(Fi). The dual derived in [1] was shown to be a convex second order
cone problem and therefore has quadratic constraints. Unfortunately, such prob-
lems are not easy to solve. This was the motivation for [8] to reformulate the dual
in [1] by replacing the quadratic constraint by infinitely many linear constraints
yielding a semi-infinite linear constrained problem:

arg max
θ∈R, β∈Rm

θ (3)

subject to
∑m

j=1 βj

(
1
2α>Hjα− α>1n

)
≥ θ for any α ∈ [0, C]n

and β>1n = 1, α>y = 0, β ≥ 0
where (Hj)rs = yryskj(xr, xs). Note that this optimization problem has a global
solution. This reformulation has the advantage that it can be efficiently solved using
the exchange algorithm for semi-infinite problems. This results in an alternating
sequence of standard linear programs and SVM optimizations. Due to space limits
we will not go into the details but give a description of the algorithm in figure 3.1.
For categorization we use the one-vs-all classification scheme which reduced the
multi-class problem to a pairwise binary problem.

Figure 3.1: Maximum Margin Feature Combination — The MKL algorithm.

Initialize t = 1, βj = 1
m , 1 ≤ j ≤ m.

Repeat until convergence
Train SVM to obtain αt ∈ [0, C]n with kernel function k(x, z) =

∑
βt

iki(x, z).
Calculate SVM objective for each kernel corresponding to each one of the m

feature types: Dt
j = α>Hjα− α>1n, 1 ≤ j ≤ m

Solve linear program (3) with the t linear constraints {D1, . . . , Dt} and
retrieve new βt+1 and margin θ.

t = t + 1

4 Experiments

In this section we demonstrate the application of MKL to several standard benchmark
datasets used for categorization and detection in machine vision. We start with a face
detection experiment, where our aim is to explore the combination of spatial features.
Afterwards we investigate the combination of features of very different nature: color his-
tograms and local image descriptors. In this case feature stacking in input space is not
applicable and MKL provides an easy way to combine these cues.

4.1 Face Detection

The first experiment is conducted over the MIT CBCL Face Data Set which comes with
an a-priori split into training and test set. The data set consists of 6977 cropped training
images (2429 faces and 4548 non-faces) and 24045 cropped test images (472 faces and 23573
non-faces). As a training set we used a randomly selected subset of 1000 face images and
1000 non-face images. Testing is performed on the whole test set. All images are rescaled
to 15 by 15 pixels and processed with histogram equalization.

According to the fragment idea from [10], it is reasonable to assume that different local
regions in an image might be of different relevance for face detection. The MKL algorithm
can provide a principled way to combine these fragments.

In this experiment we divide each image into 9 non-overlapping patches of size 5×5. Each
patch is considered as a different feature type. The kernel function ki (1 ≤ i ≤ 9) in
(2) between a pair of images is then simply defined as the Gaussian kernel restricted to
the i-th patch. Note that for simplicity we only use non-overlapping patches, but it is
straightforward to apply MKL to use arbitrary, possibly overlapping patches.

To further investigate the feature combination ability of the MKL approach, we provide
additional types of features. To this end, we calculate edge maps obtained by convolving
each image with horizontal and vertical Sobel filters. Then as for the raw images, each
of the two obtained edge maps is divided into 9 patches. So now there are overall 27
patches for each image: 9 patches from the raw image and 9 patches from the horizontal
and vertical edge maps each. As before the function ki (1 ≤ i ≤ 27) in (2) between a pair
of images is defined as the Gaussian kernel function restricted to the i-th feature type.

In contrast to MKL current SVM approaches adopt the simple feature stacking scheme.
In this case the kernel function between a pair of images is computed on the full images.

The comparison of the experimental results of the MKL algorithm and SVM approach are
presented in Figure 2. As can be seen in the ROC curves in Figure 2 adding additional
feature types can improve the classification accuracy of both MKL and SVM. But clearly
MKL outperforms the SVM approach: the result of SVM approach with edge maps is even
worse than the result of MKL algorithm without edge maps. A reason for this is that the
SVM approach simply performs feature stacking and thus suffer from typical problems
as described in section 2.1. On the contrary, MKL tries to handle different feature types
separately and puts different weights to different feature types.

The column (c) in the left part of Figure 2 shows weight maps illustrating the weights for
different patches. It can be seen that when only the raw image is used, the central patch

corresponding to the nose gets the highest weight. When edge maps are used, the central
patch in the vertical edge map gets the highest weight.

(a) (b) (c)

Figure 2: Left: (a) An example face image and its edge maps (b) An example non-face
image and its edge maps (c) Weight maps, patches with lighter intensities have larger
weight values. The first weight map is obtained without edge maps, the last three are the
weight maps obtained with both raw images and edge maps. Right: the ROC curves of
face detection on CBCL database.

4.2 Functional

The second experiment is a categorization task, which is performed on the ETH80-
database [5]. The feature types used for this task are SIFT-descriptors [6] and color
histograms. Due to the nature of local image descriptors (LID) (e.g. SIFT) and their
dependency on salient points in the image, this description normally results in a set of a
varying number of descriptor vectors. Therefore combining these two feature types in a
stacking approach is hardly applicable and might require preprocessing. In contrast, MKL
provides a natural approach to combine LIDs with color histograms via combining the
kernel functions.

The database contains images of 80 individual objects grouped into 8 equally sized classes.
We use a subset of 5 views of each object which leaves us with a total number of 5×80 = 400
images. Images come with a segmentation mask which allows masking out the background
for color histogram computation. All experiments are performed in a one-vs-rest multi-
class setting.

Color histograms are built via segmenting the three-dimensional color-space into 16
bins in each dimension and then computing a histogram over the image pixels while
masking out the background. As kernel function for this representation we applied
the χ2-kernel which is based on the χ2-distance: kχ2(f, f ′) = exp(−dχ2(f, f ′)) where

dχ2(f, f ′) =
∑

i

(
(fi − f ′

i)
2
)
/ (fi + f ′

i).

SIFT-features are computed from local regions around interest points which are identified
by an interest point detector (IPD) in a first step. Basically, the descriptor vectors them-
selves contain smoothed angular histograms of gradients from the region of interest. As
IPD we apply a Harris corner detector. Note that all found SIFT-features in an images
describes a set and therefore we use the Bhattacharyya-kernel for sets. For details on how
to use the Bhattacharyya kernel see [3]. Therefore, in our experiment one feature type is
a histogram and the other one is a set.

As already pointed out in [5] the performance of various feature-types may depend on
the particular structure of the objects to be categorized. For the images of ETH80 it
is very likely, that e.g. the tomato and the cup class will be very well discriminated by
color features. In contrast, using LIDs for tomatoes is probably not such a good idea
since there is not much structure in the object and only a few salient points are detected.
Consequently, the combination weights of the MKL solution should reflect this property.

Figure 3: Weightings of the two feature types (horizontal bar) and leave-one-out perfor-
mance of the combined kernel compared to the individual ones (vertical bars).

−10 −8 −6 −4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Change of β with ||w||2

log(||w||2)

β
/ P

er
fo

rm
an

ce

Sift Perf.

Color Perf.

Combined Perf.

β − Sift

β − Color

Overall Performance:

Combined Kernel 85.5%
Sift 76.5%

Color Histogram 77.0%

Figure 4: Left: Change of the weightings when varying the complexity of the classifier.
Right: Mean performance over all classes.

Figure (3) shows the weights of all classes for the two feature types in a horizontal bar. The
vertical bars indicate the performance of the combined kernel (middle) vs. the performance
of the individual kernels. The performance was computed with a leave-one-out scheme
where all views of a particular object were held out at the same time. In Figure (3)
you can see e.g. in the third column (tomatoes and cups) that, in agreement with our
expectations results in [5], the color histogram feature type gets all the weight due to the
above mentioned reasons.

The aim of the second experiment is to investigate any dependency between the relevance
of a feature and the complexity of the decision function. Therefore, we varied the regular-
ization parameter C of the SVM that is inverse proportional to the margin of the resulting
classifier and thus, using a nonlinear kernel, is related to the smoothness of the decision
boundary. We recorded the resulting combination weights βi and the test performance.
In Figure (4) these weights are plotted against the complexity of the resulting classifier
measured by the squared norm: ‖w‖2. Note that the combination weights vary dramat-
ically with complexity. For small ‖w‖2 (i.e. low complexity) the color feature type has
all the mass. This means that with low complexity classifiers (i.e. smooth boundaries)
color is the best feature type for discrimination. On the other hand, when more complex
boundaries are allowed (larger ‖w‖2) SIFT features become more relevant and finally lead
to an increase in performance.

5 Discussion and Conclusion

In this paper we have shown that multi kernel learning is an appropriate framework to
combine different feature types for detection and categorization. The three benefits from
this approach are: a) No a-priori selection of feature types is necessary. b) The combination
might lead to an improved performance. c) The final obtained relevance factors may give
insights on the task. The used approach is based on a convex optimization problem, thus
ensuring a globally optimal solution.

Furthermore we have discussed that the complexity of the decision function is a crucial
factor in choosing the right feature type for a particular task. Therefore the question:
”Which feature type is more discriminative for task X?” can not be answered without any
knowledge about the finally used classifier.

References

[1] F.R. Bach, Lanckriet G.R.G, and M.I. Jordan. Multiple kernel learning, conic dual-
ity, and the smo algorithm. In Proceedings of the 21st International Conference on
Machine Learning, Banff, Canada, 2004.

[2] Harris Drucker. Effect of pruning and early stopping on performance of a boosting
ensemble. Comput. Stat. Data Anal., 38(4):393–406, 2002.

[3] Jan Eichhorn and Olivier Chapelle. Object categorization with svm: kernels for local
features. Technical Report 137, Max-Planck Institute for biological Cybernetics, 2004.

[4] Jan-Mark Geusebroek, Gertjan J. Burghouts, and Arnold W.M. Smeulders. The
amsterdam library of object images. International Journal of Computer Vision, 61(1),
2005.

[5] B. Leibe and B. Schiele. Analyzing contour and appearance based methods for object
categorization. In Proceedings of International Conference on Computer Vision and
Pattern Recognition (CVPR’03), 2003.

[6] David G. Lowe. Object recognition from local scale-invariant features. In International
Conference on Computer Vision, pages 1150–1157, September 1999.

[7] G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine Learn-
ing, 42(3):287–320, March 2001.

[8] S. Sonnenburg, G. Rtsch, and C. Schfer. Learning interpretable svms for biological
sequence classification. In RECOMB 2005, pages 389–407. Springer-Verlag Berlin
Heidelberg, 2005.

[9] Antonio Torralba, Kevin P. Murphy, and William T. Freeman. Sharing visual features
for multiclass and multiview object detection. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Washington, DC, 2004.

[10] S. Ullman, M. Vidal-Naquet, and E Sali. Visual features of intermediate complexity
and their use in classification. Nature Neuroscience, 5:682–, 2002.

[11] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of
simple features. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), volume 1, pages 511–518, 2001.

[12] J. Weston, A. Gammerman, M. O. Stitson, V. Vapnik, V. Vovk, and C. Watkins.
Support vector density estimation. Technical Report CSD-TR-97-23, Royal Holloway,
1997.

