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Dirichlet Mixtures of Bayesian Linear Gaussian
State-Space Models: a Variational Approach

Silvia Chiappa, David Barber

Abstract. We describe two related models to cluster multidimensidinag-series under the assumption of
an underlying linear Gaussian dynamical process. In thenficslel, times-series are assigned to the same cluster
when they show global similarity in their dynamics, whildlire second model times-series are assigned to the same
cluster when they show simultaneous similarity. Both meadeé based on Dirichlet Mixtures of Bayesian Linear
Gaussian State-Space Models in order to (semi) autonigtaetermine an appropriate number of componentsin
the mixture, by biasing the components to a parsimoniouameaterization. The resulting models are formally
intractable and to deal with this we describe a determmegpiproximation based on a novel implementation of
Variational Bayes.

1 Introduction

Clustering is a large topic in machine learning and relateds and the aim of this report is to provide an additional
methodology which may be better suited to applications ifctvl dynamical system is believed to be underlying
the data. This situation is common in time-series based amalgphenomena, since the equations believed to be
describing the physical world can often be modeled as Maakostynamics on an underlying state-system.

Perhaps the most straightforward approach to performeringt of a set of time-series is to consider each time-
series as a ‘static’ vector, thereby transforming the tsages clustering problem into a more standard clustering-
of-vectors problem. For clustering vectors, any of a nunalberethods may be applied, ranging from K-Means [1],
to more recent methods based on probabilistic mixture nsd@eB, 4, 5]. However, for long or high dimensional
time-series, this approach becomes computationally proélic, and therefore features of the signal are used
instead, typically extracted from short windows of the tisegies. Each time-series is then represented by either
a single, or set of feature vectors, which may be then cledtby any standard static clustering technique [6].
However, it is not always clear what the appropriate featteaction method should be. For example, times-
series generated by the same dynamical system with diffeniéal conditions can look highly dissimilar (see Fig.
1a). In such cases, it not obvious which features should &é@ tasperform clustering. On the other hand, a method
which can explicitly model the dynamics of the time-seriesid be able to perform clustering without the need
of preliminary feature extraction.

Our method is therefore motivated by the desiderata to parédustering by explicitly modeling the dynamics
of the time-series. Furthermore, we are interested in tise @awhich the number of clusters is not known in
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(a) Unclustered Trajectories (b) Clustered Trajectories

Figure 1: (a) Thirty trajectories lengthh = 10 resulting from the dynamics of two different LGSSMs, bothttwhidden
dimensionH = 4. Plotted are the point§v:], ,[v:],). (b) The trajectories as labeled by our algorithm — all laksle
consistent with the generating mechanism.



— Clustering components of a vector time—series be
on their simultaneous component similarity.

Clustering a set of time—series based on their global similarity

Figure 2: (Top) Time-series clustering based on simultaseimilarity versus (Bottom) time-series clustering lobse global
similarity.

advance, and therefore in a model which can automaticaigrahéne an appropriate number of clusters. To prevent
overfitting, we would also like to encourage each clusteretddscribed by a parsimonious parameterization.
Recently, there has been considerable interest in Diti¢hiecess Mixture Models [2, 3, 4, 5] which provide
a (semi) automatic way to determine an appropriate numbelusfers. The Dirichlet mixture results in a Polya
distribution on the cluster assignments, enabling an gpate number of clusters to be found by the model. In
a continued theme of development of this class of technjquastime-series model will be based on a Dirichlet
Mixture of Bayesian Linear Gaussian State-Space modelsBDBBESMs). The Bayesian approach places a prior
on the parameters of each mixture component, encourageng tith have the smallest parameterization consistent
with the data.
We will give two main variants of the DMBLGSSM, in order to pam clustering based on eithgimultaneous
or globalsimilarity of the time-series dynamics. The distinctiortvibeen these two approaches will be spelled out
mathematically in Section 4, whilst an informal sketch isganted in Fig. 2:

Simultaneous Similarity Our simultaneous similarity clustering approach assigvts ttime-series to the same
cluster if they are derived from treame realizatiorof a dynamical process.

Global Similarity The global similarity method will assign two time-seriegitie same cluster if they are gener-
ated bydifferent realization®f the same dynamical process.

The resulting Bayesian time-series clustering model imfidly computationally intractable, and therefore ap-
proximations need to be considered. To the best of our krdy@lewhilst sampling methods have been applied
in a similar more constrained context [7], a Variational Bsign treatment of this class of models is new, as is
our application to clustering based on simultaneous dyoalnsimilarity. Variational Bayes is a deterministic
approximation scheme which has the potential advantageeafdsover sampling techniques.

We will first describe the BLGSSM in Section 2 and the generatedure of Dirichlet Process mixture models
in Section 3. We will then marry the two in Section 4 to form ttiestering methods based on simultaneous and
global dynamical similarity. In Section 5 we will give anufitrative demonstration of the performance of the two
approaches.

2 Bayesian Linear Gaussian State-Space Models

In a Linear Gaussian State-Space Model (LGSS]g) 9, 10], a sequence of observatiansy = vy, ..., vr IS
generated from an underlying dynamical systenhor according to:

Ut:Bht‘i‘nfa ﬁfNN(OWEVL ht:Aht—l +77£L7 nthNN(OHaEH)a hl NN(,M,E),

whereN (m, S) denotes a Gaussian with mearand covariancé, andOx denotes atX -dimensional zero vector.
The observation, has dimensioV' and the hidden statk, has dimensiorf{. Probabilistically, the LGSSM is
defined by:

T
p(vr.r, hir|©) = p(vrha)p(ha) [ [ p(velhe)p(helhe—s),
=2
with
p(velhe) = N (Bhy, Sy ) p(helhi—1) = N (Ahy—1, Xp) p(h1) = N(u, %)

Also called Kalman Filter/Smoother, Linear Dynamical ®yst



andwhere® = {4, B, Xy, Yy, u, ¥} denotes the model parameters. Thanks to the simple steumfttie model,
most quantities of interest, such as the posterior depéityjv,., ©) and likelihood

p(v1.7|0©) = /h p(vr.r, hi7|O©) 1)

can be computed efficiently i@(7") operations [11]. R R
In a Bayesian treatment of the model, a parameter p(i©10) is defined, wher® are the associated hyperpa-
rameters, resulting in the marginal likelihood

P(Ul:T|é)=/@h p(vrr, h1:7|©)p(©]6). 2

In a full Bayesian treatment we would define additional pdistributions over the hyperparametérs Here
we take instead the ML-1I (‘evidence’) framework, in whidietoptimal set of hyperparameters is found by maxi-
mizing p(v1.7|©) with respect t [12, 13, 14].

Whilst the integral required to compute the likelihood (Ed)) is tractable, the result of this integral couples
the parameter® in the integrand of the marginal likelihood (Eq. (2)). An ekanplementation of the Bayesian
LGSSM is then formally intractable. Recently Variationay®s (VB) has been applied to this model as a route to
a computationally efficient approximate implementatio?, [13, 14, 15, 16, 17].

The most challenging part of implementing the VB method iggrening inference oveh;.. Some authors
[12, 17] have developed their own specialized routinesetas Belief Propagation (see [18]), since standard
LGSSM inference routines appear, at first sight, not to bdiegdgde. However, in [15] is shown how the VB treat-
ment of the LGSSM can be implemented using any standard LG8f&k&nce routine, including those specifically
addressed to improve numerical stability [9, 19, 20]. Tipigraach can also be used for the Dirichlet Mixture case,
as we will see below.

For the parameter priors, here we define Gaussians on therigwfA and on the columns aB:

1/2
- 27]]”(141’1'*141‘]‘)2
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where A and B are hyperparameters defining our preferred values for gmsition and emission matrices. The
dependency of the priors diiy and ¥y renders the VB implementation feasible. The chaice= 0, B = 0
creates an Automatic Relevance Determination (ARD) biasitds a simple dynamics and eliminates unnecessary
parameters of the model [21]. This form of prior, in whichiwidual elements of the transitioA and columns

on the emissior3 are biased to be small, is appropriate for the global siityl@tustering of Section 421 For

the simultaneous similarity clustering of Section 4.2 wedifiothe emission prior by biasing elements Bfto

be small. The conjugate priors for general inverse covaa'afﬂ;i,1 and 2;1 are Wishart distributions. In the
simpler case of diagonal covarianceg' = dg (7)% andX;,' = dg (p) these become Gamma distributions (see
Appendix A.1). Foru, we definep(u|X) = N (u,, £,2), while for ¥ we define a Wishart or Gamma prior. The
hyperparameters to optimize are thers, 1., 2, and the parameters of Gamma or Wishart distributions.

3 Dirichlet Mixture Models

Given a set of observations'V = »!,..., v, the clustering task is to assign each observationo one of a
finite set of cluster labels = 1, ..., K. To do so, we introduce a cluster indicator variablec {1,..., K} for
each observation. To model the joint cluster allocationslefine

p (V) = /{Hp %} (7, @)

2A prior that prefer simultaneously thé&" row and column ofA to be small would be preferable. However, it is not
straightforward to make the VB feasible in this case.
3The notationdg () indicates diagonal matrix with the elements of the veeton the main diagonal.



wherep (2" = k|r) = 7, andp(r|y) is has symmetric Dirichlet distributiop(r|y) o [[i, #7/*~'. The
integral in Eq. (3) gives rise to the Polya distribution (#gendix A.3):
. L) 77 D0k +7/K)
Zl.N _ ’ 4
P = L e @

k=1

where N, = 22;1 I[z" = k] counts the number of times that stadteoccurs in the indicatofs The joint
distribution of all observations is then given by

CMCERIEDY) {Hp (U"IZ",GLK)}I? (=), (5)

21N

wherep (v"|z" = k, ©1K) = p (v"|©) denotes that the parameters of clustere used to determine the prob-
ability of observation™. In the limit of infinite &, the prior expected number of clusters for a seNafequences

is [22]
N

277 z'ylog(ﬁ—i—l),
oy tn— 1 5y
which remains finite for finitey. In our experiments will typically be treated as a hyperparameter and optimized
with respect to the marginal likelihood.

In our work, we will considerX to be finite. This is in contrast to Dirichl&rocessMixture Models [3, 4, 5],
in which the K — oo limit is formally taken. This can be achieved, for examplg writing down a sampling
algorithm for the finite dimensional case, and then takirglimit X' — oo. If the sampler is initialized with
a small number of clusters, the sampling algorithm gensnag¢gv clusters until sufficiently many are present to
explain the data well. In practice, since only a finite numdfenixture components is effectively used, we prefer
the finite K case. An advantage of this is that we retain an explicit esgioa for the marginal likelihood which is
then amenable to fast deterministic approximation schemes

Computing the resulting model likelihood in Eq. (5) is irttable, and a useful deterministic approximation is

to use a lower bound based on the ‘collapSediriational KL divergence KL(]'LJLV:1 q(z")|lp (z1:N|v1:N77))
[23]6.

4 Dirichlet Mixture of Bayesian LGSSMs

Our approach to clustering is to form a Dirichlet mixture afy@sian LGSSMs (DMBLGSSMs). This has the
advantage of determining the number of clusters, where elstter may also be biased towards a dynamical
system of a preferred form. We will start by describing a méafetime-series clustering based on global similarity.
We will then introduce a clustering method based on simelais similarity as a modification of this first model.

4.1 Clustering based on Global Similarity

The graphical representation of Dirichlet Mixture of Ba@sLGSSMs is given in Fig. 3. The likelihood term
p (v"|z", ©FF) for each temporal sequence = v]' ;- in Eq. (5)is defined by the likelihood of the LGSSM (Eq.
(1)). The approach we take to extend this to a Dirichlet mixtaf the BayesianLGSSMs is to introduce a
distributiong, for which we assume that the following factorizations hold

q (ZI:N’@I:K) = q(zl:N) q (@lzK)

N
q(z""N) =] a(z".
n=1

*Ila = b] = 1if a = b and0 otherwise.

®The ‘uncollapsed’ joint approximation of (2", |v"*V) is seductive since it is more straightforward to compute the
KL divergence in the jointz"*", ) space under the factorized assumption':™ )¢(). However, due to the strong implicit
coupling between ™™ and, this factorized approximation can be insufficiently aeter23]. However, we experimentally
observed that, in our model, the two different approache®pe similarly.

®Here and in the rest of the report (if this does not cause simfi), we omit the conditioning on the observationsdgor



Figure 3: Graphical representation of the Dirichlet Mixtwf Bayesian LGSSMs for performing clustering based onajlob
similarity.

We then consider the variational approximafion
N K
p (21N, B, 0K N, 01 ) ~ {H a(z") q(h’fﬂz")} [Ta(e").
n=1 k=1

Taking the KL divergence between the right and left handssaféhe above then gives the following lower bound
on the log-likelihood]og p (v};%é”ﬂ 7) >F (élﬁK, v, q), of the Dirichlet mixture of Bayesian LGSSMs:

K N K N K
F=Y Hy(0)+ 303 a (" = k) Hy (Wgle" = k) + X0 Hy (") + 3 (losp (64164))
k=1 n=1k=1 n=1 k=1
N K
+ (0gp (2" ))pp gy + D2 D" = k) (logp (v, it 10%) )y gy am i) ©)

n=1 k=1

whereH,(z) denotes the entropy of the distributigfr), and(-), denotes expectation with respecito

Variational Bayes then proceeds by iteratively maximizing lower bound with respect to thedistributions
for fixed hyperparametef®, v and vice-versa until no further improvement is found. Theuléng updates fog
are given by:

PR q(Z":k)(108p(v?:TahiTl®’“)>q(h,?_T‘zn:k)

q (Gk) oxp (®k|@k) e

Hq(hy.p|2"=k)+(log p(=" =" "))y q<zm)+<1°g1’(vﬁwh?m\ek)>q(h{‘.wzn:k)q(c—>k)

qg(z"=k)xe
q(hir)z" =k) < e<logp(UIL:T"h?:Tlek)>Q(@’“)

wherez"" indicates all indicator variables except fdt. We will discuss each specific update below. Full details
are given in Appendix B.2.
Missing Observations

One of the advantages using a LGSSM model for each clustee isadse with which missing observations can
be dealt with. Indeed if the multidimensional vectphas some missing components corresponding to unobserved

"From the assumptions op and ¢, it follows that theq that maximizes the lower bound™ (Eq. (6)) satisfies
q (MF ) =TI, ¢ (hLp]2™) andg (04F) =TT, ¢ (©") (see Appendix B.1).



or corrupted measurements, we can integrate these out likétibood. This can be formally introduced in our
model by the replacemeit < W;' B in the boundF, wherel;" is the identity matrix with diagonal elements
corresponding to missing observation components replageeros, and by replacing missing componentsjin
by zeros. We will give the updates for this general framework

Throughout, we assume théy{, is diagonalin the case in which there are missing obsematibhis assumption
makes the formula for the mean update independeRi,qfwhich is a computational convenience.

Updates for g (B’c (24 ] _1)

To simplify the notation, in the following (and elsewhereawé clear from the context) we will omit the dependency
of the model paramete* and hyperparamete@&" on the mixture:. The choice Normal-Wishart(Gamma) prior
p (B, Sy') give rise to a Normal-Wishart(Gamma) approximated poster( B, £, ):

"= o v ", ot A
q (372‘;1) x eEn 1 q(z"=k) Zr 1<1 gP( J|hy B, Xy, )>q(h?\zn:k)p (Blﬁa E‘;l)p (E;H@) )

In the following, we decompose the joip{ B, ') = ¢ (B|X") ¢ (57).

q (B|=y"): In Appendix B.2.1 we show that(ve (B) |Sy') = N (up, Sp) wheré:

-1

N T
Sp =g ®Iy) Z k) D ()T gy @ W+ dg (8) © Ty ©)
n=1 t=1
Hpm

N T
pp = Hppve Z Zth (hi)s q(hy|zn=k) + Bdg ()

=1 t=1

Np

We remind the reader that in the case of missing observationsn Eq. (7) is constrained to be diagonal.
For the case of no missing observations; = Iy, Eq. (7) simplifies, as shown in Appendix B.2.1.

q (2;1): For the case in which there are no missing observalifis= I, we may consider the general Wishart
prior p(3y! [vyv, Sv) = W(vv, Sv), for which the updates are (see Appendix B.2.2):

N T -1
=y = vy —|—TZ <S + Zq k)Zv?(v?)T — NgH5'N} + Bdg (6) BT> ,
n=1 t=1
with
N T
5= Z k) (hp(hp)" athp ey T 49 (5).
n=1 t=1

Under the simpler diagonal constraE@ = dyg (p), where each diagonal elemgntfollows a Gamma prior
G(b,b), the optimal updates are (see Appendix B.2.2):

N T
1
api) =G [+ = Z )0+ | D oalE=k) D[]} - (G, +Zﬂg ., 8
n=1 t=1
where
Gp = MpN}, Mp= NpHg' 9)

8uc (B) denotes the vector formed by stacking the columns of theixn&tr This column vector formulation simplifies
mathematical notations indicates the Kronecker product aig is the identity matrix of dimensioX x X.



For the case of missing observations, we are restrictecetatibve diagonal covariance constraint, in which
case we replac#/p in Eq. (9) by thel” x H matrix

Mgy = mec (Hgllwvc (NB))
wheremc (z) denotes reshaping the vector to form a matrix by reversenoolstacking.
Updates for g (A’“, [Z4] 71)
The optimaly (4, 27;') is given by:

e ST AB) )

q(A,ZI_fl) xe P A|a,ZI_{1)p(Eﬁl|é) .

As above, without loss of generality, we decompose thig d$% ;' )q(3 ;).

q (vr (A)|S5"): In Appendix B.2.3 we show that(vr (4) [S5') = N (14, £4) wheré:

Sa=bdg (Hiy [Brlyy s Hyy Salun)
A = vert (([NA]l/ HlA)T s (INal HI;}L‘)T)

where[N 4], indicates the-th row of matrix/V4, defined as

N
= qlz

T

<[h? 1] [hy]; >q(h" o + A
1:t

~+
no

In addition, we define

[HiA]jl

N T
;q(z Z< Ry 4] h? 1] >q(h1‘71\z”:k) + il

t=2

q (E;{l): For¥,' = dg(7), where each diagonal elementfollows a Gamma priog(a?, ab), the updates are
(see Appendix B.2.4):

N 1 N T R
q(ri) =G Z ,ah + 3 Z k) (I < > (o) —[Gal; + ) i A
n—1 n=1 t=2 J
Where[GA] [NA]Z’ H ! [NA]
Updates forq (H )

The optimaly (M, ) is a Gaussian-Wishart(Gamma) distribution given by:
2= n_ NTsv—1/pn_ .
q (u7 E_l) xe 2 Z —a(z" k)<(h1 ) X7 (hY #)>Q(h'1‘Zn:k)p(,uz|2_1)p(2_l|®)

q (u/=71): In Appendix B.2.5 we show that(p|X ) = N (1, X5) where

N e
uh—<z W) +%, ) Z ) (hY) + S g

Eh_<z_: k)Ig+%, >_12.

vr (A) denotes the vector formed by stacking the rows of the maitritdnlike for B, the choice of a row vector formulation
is more appropriate for simplifying mathematical notasiohig (z1, . .., x») indicates the block diagonal matrix with blocks
Z1,...,ZTn, Whilevert (z1,...,x,) stands for vertically concatenating the arguments . ., z,,



q (X7'): Forthe case in which (X7') = W (v, S) the updates are (see Appendix B.2.6):

N
W <u +Ya(" = k), ST —mpf + Z ) (R (RD)T) + E?Wl)
n=1

If each elemend; of £~ follows a gamma distributiop (X~!) = G (01, 0%), we have:

N N
1] o1 _
qNi) =6 <ai+52q(z"_k),cr§+§ (— muh Z < hYl; >+ [Zuluﬂﬂmii>>
n=1
Updates forq (2™)
The optimalg (2™ = k) is given by:

q(Zn _ k) ~ qu(h?:T‘Zn:k)JF(lOgP(Zn:MZﬂn-,'Y)>q(z-'n)JF<10gP(”?:Twh?:ﬂ@k»q(hﬁT‘zn:k)q(@k)

The first term in the exponent can be computed exactly as ibesicin the Appendix B.7. The average
(logp (2" = k|z™",7)) .-, Needs attention since, naively(z" = k|="",~) possesses little structure to enable
the average to be tractable. Whilst the naive exponentiaptexity can be reduced, we employ the second order
Taylor expansion approximation of [23], as shown in detah\ppendix B.3.

Inference ong (A} |2" = k)
The optimalg (h].1-|2" = k) is given by:

gl = k) oc B PET IO o) (10)

This term is closely related to a standard VB approximatmra tBayesian LGSSM. Clearly the structure of
q(hl.p|z" = k) is a pairwise Markov chain, and inference algorithms sucBelgef Propagation can be used
[12, 17]. However, we take the approach discussed in [15]chvieformulates the problem such that standard
LGSSM inference routines can be applied. This both simplifiee development and can be advantageous in
regimes of numerical instability. The central idea is to theefollowing decomposition:

(W =W BR)TSy (0 =W BRD)) ooy = (0 =W (B) b)) (Sy7) (uf =W (B) h!) + (b)) (Sp) 7 i,

mean fluctuation

and similarly

((hy = AP )TSE (b — Ah{ ) = (hf = (A hi )T (55") (B = (A) b)) + (B )T Sahi!y

a(Asy)

mean fluctuation

where
(Sp)f = (BTWPSG WIB) — (BT Wi (Sy) Wi (B), Sa = (ATSHA) — (A)T(351) (A).

The analytical expressions for these covariances are giveppendix B.5. The mean terms represent the contri-
bution of a standard LGSSM with parametelsB, 2;11 andE“,1 replaced by their average values.

The key observation is to consider the extra ‘fluctuationmt® as having been generated from fictitious zero-
valued observations. This way, we can see Eq. (10) as thenpusdf a standard LGSSM for which any of the
standard algorithms in the literature [11] may be appliedgdorm inference.

More specifically we want to represent Eq. (10) directly as plosterior distributionj(h?.,|07.) of an
LGSSM by augmenting]* and B as-*:

o7 = vert (v,05,0y),  BI' = wvert (W (B),Ua, (Us)}),

There are several ways of achieving a similar augmentaiéachose this since, in the non-Bayesian lithit = (Up)}' =
Om z, o numerical instabilities would be introducdl}i(;; is a H x H matrix of zero elements).
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Figure 4: Time-series clustering based on simultaneousasity.

whereU 4 is the Cholesky decomposition 8f;, so thatl/ U4 = S4 (similarly, (Ug)? is the Cholesky decompo-
sition of (Sg)7). The equivalent LGSSM(h%. |37 1) is then completed by specifyifg

1 ~

A=(4), Sy=(N"", EVEbdg(<thE‘_/1>7l,IH,IH)7 i=(u), S=(7)7

The validity of this parameter assignment can be checketidyisg that, up to negligible constants, the exponent
of this augmented LGSSM has the same form as the exponent.ifHy. We can now apply any standard
inference routine to computgh? [v7.,.) = G(h}o7.,) [8, 9, 20[2. In Appendix B.4 we describe the standard
predictor-corrector form of the Kalman Filter, togethetiwihe Rauch-Tung-Striebel Smoother [9] and we show
that a slight modification of the predictor-corrector aifun produces a more efficient procedure obviating the
need to consider fictitious outputs explicitly.

4.2 Clustering based on Simultaneous Similarity

In Section 4.1 we described a time-series clustering ajgprbased on global similarity of the dynamics. We
now introduce a different method, in which time-series dustered on the basis of their simultaneous dynamical
similarity. We will show that this can be achieved by a modifion of the previously described framework.

As a motivating scenario, consider a situation in which ahdamet, the stock prices of a set &f companies
is known. Making a model of the stock prices of the companies @ long time is a considerable challenge.
However, it is also suspected that certain stocks followralar underlying temporal profile, at least over a short
time-scale. For example, the stocks of high-tech companight be strongly dependent in the sense that their
movements are correlated. Similarly, the stocks of oil cam@s might be more strongly related to each other than
to companies outside the oil group. Our interest is theesforcluster the companies into groups of ‘correlated’
activities. Whilst making a model for the long-time resodtivector time-series of the companies is very complex,
grouping stocks together based on their simultaneous digagairehavior over a short time-scale may be much
simpler since we can compare at each time-point how the merntnof the stocks are correlated with each other.

For clarity, consider only the task of clustering a sefiotinidimensionatime-series}:¥;; the extension to
the multidimensional case is straightforward). Unlike tflebal clustering method, we are now interested in
simultaneous dynamical similarity, for which we assumé #iagime-series have the same lengtf¥. Itis useful to
compactly rewrite this set as ofedimensional time-series.; with component$vy.7];, = [v1], ..., [vr]; . i =
1,...,V. We are thus interested in clustering the compongntst is to assign thé” sequencév; .|, into one
of K clusters on the basis of its simultaneous dynamical siityilaith other sequences in the same cluster. In
order to do so, we considéf independent dynamical systems. Each unidimensional $ienies is then a one-
dimensional projection from one of the dynamical systemie @ssignment of an output to a latent dynamical
system is fixed throughout the time-series. See Fig. 4 fontormal sketch of this setup. More precisely, our
model assumes that the emission parameters of the LGSSM { B, Xy} do not depend on the clusterwhile
the transition paramete®&® = {A* >k 1,k $¥1 depend on the clustér. We may cluster components by using
an indicatorz’ for each component and defipd[v,], |h{ ", 2" = k,0.) = p ([ve]; |1}, O.). Thatis, wher:’ is

YAt time T, BY = vert(Wf (B),0uu,(Us)7)). Attime 1, BY = vert (W7 (B),Ua,(Us)},0y), 97 =
1 ~ _
vert (v?, 0w, Om, (<uT271u> — (,u)T <271> (1) ) 2>, Yy = bdg (<Wt”2(/1> ! A, I, 1).
2Note that, since the augmented LGSSW |07 1) is designed to match tHally clamped distributioq (A7 [v]. 1), the
filtered posteriog(h} |01.;) does not correspond tdhy [vT:,).
BFor synchronized time-series off differing lengths, inngiple one could treat this as a missing-data problem, albeg
lines previously described.



in statek, thei** component is drawn from the dynamics of #é LGSSM. More precisely, the emission term is
given by _
p ([vt]i |h’%:K7 z' = kv @e) = N (Bllh’fv [EV]H) ’

while the transition term is given by:
(hk|ht 1> ) N(Akhfflvzﬁl) .

The emissions and transitions over time give:

T
p ([rrl; I 2 = k,00) = [ [ p ([vil; Ihi™, 2" = £, ©.)
t=1
T
p (hlf:T|@lﬁ) =P (h]ﬂ@lﬁ) H (hk|ht 15 )
t=2

Each of theK linear dynamical systems proceeds independently of thegiemg:

K
p (miF1677%) = [[ » (hirl0F) -
k=1

The covarianc&y is constrained to be diagonal, so that

%

p (Ul T|h1 Ty R 1:V7 66) = Hp ([’UI:T]Z' |h}’11“<7 Zia 96) .
i=1

The graphical representation of this model is presentedgn 3= In the Bayesian version, we define the joint
density

p (Ul T7h1 Ty R 1 Vaeéa 91:K|é€7é}-:K1/}/)

_H{HP([vt1ilh%:szi,®e)H (hehi-, )}p(zlﬁvlv)p(eé@e)p(@1:K|é%“).
t i X

As in Section 4, we can automatically learn the number oftehsgs by placing a Polya distribution gp( 2" |)
(Eq. (4)), where nowV is replaced withl’. For the LGSSM parameters, we define Gaussian-Gamma priors,
similar to the one described in Section 2.

To form a tractable marginal log-likelihood bound, we use\hriational approximatidft

p (2,00, 05  |orr, 6,015 9) ~ g (BEE) a(="V )a(O., OFF),
and further make the factorization assumptignV') = [], ¢(z"). The independence assumptionspoandgq

imply q(h1%) = [1, ¢(h¥.;) andq(OFK) = [], ¢(©%). Then the lower bound olvg p(v1.7|O., OLK ~) is
given by:

F= Hylhhp)+ > Hy(z") + Hy(Oc) + ZHq<e’:>
k 7

—|—Z<10gp ([Ut]i|h%:K,Zi,®5)>( Dq(hl ) g(O,) +Z 1ng hk|ht 15 )>q(hf71:t)q(@’$)

it

i <10gp (21:V|7)>l_[i o) + <10gp (®E|®€)>q(@ ) + Z <1ogp (@f—|®]ﬁ)>q(®k) .
€ k T

“The factorizationy (hiif [2"") = ¢ (h1i7") is assumed in order to avoid the computational issue of baeiconsider all
possible combinations af**V.
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Figure 5: Graphical representation of the Dirichlet Mixtwf Bayesian LGSSMs for performing clustering based on kanu
neous similarity.

The resulting optimad distributions are:
1A > (logp(hy|hy_y.0%F
(4% (2l 1) ocp (4%, () k) U )
) i llogp([elilni ™2 0)) o) 1)

(
¢ (B, Sy < p (B, 2416,
( 3o a(z'=k) (log p([vel,|hF,©¢))

q((_)ﬁ)+2t<1°gp(hf ‘h§717®£)>q(95)

q hlf:T)O(e

q (zZ = k) x e<logp(Zi|Zﬂi)>Hj¢i zf+z‘<l°gp(vzIhf@s)h('lf)‘?““

The specific updates can be derived similarly as for the naetlescribed in Section 4.1. We point out that for
performing inference og(h%.,.) a similar approach as the one described in Section 4.1 capgied with the
replacementp;) «— q(2* = k){p;), Sp — >.;q(* = k)H;; for the case in which there are not missing
observations.

4.3 Relation to Previous Work

Older works based on temporal linear models include [24]icivluses a mixture of ARMA models with the
number of mixtures determined by the BIC criterion. A Bagesapproach based on Gibbs sampling has been
used in a model similar but more constrained than the DMBL&$E. However, in this model the number of
clusters was not determined automatically but using the &lt€rion, since no preference about a parsimonious
parametrization was build into the model.

5 Demonstration

We performed several experiments to test the two modelepted above on their clustering ability in ‘difficult’
situations. We will give some illustrative examples below.

5.1 Clustering based on Global Similarity

We tested the model on thirty synthetic sequences gendrgtiduiee LGSSMs with” = 2, H = 5 andT = 140.
The parameters were chosen so that all time-series hadlyidissimilar dynamical trajectories, see Fig. 6a. Our

11



dIe el oA 10]18]]

(a) Unclustered Trajectories

(b) Clustered Trajectories

Figure 6: (a) Thirty trajectories lengthh = 140 resulting from the dynamics of three different LGSSMs, ailtmhidden
dimensionH = 5. Plotted are the point§v:], , [v:],). Different colors correspond to different underlying LO&S (b)
Our method correctly identifies three clusters, with allstéu labels consistent with the known generating mechaniBne
trajectories belonging to the same cluster are plotteddérs#ime subfigure.

model with initial K = 5 clusters and & = 10 latent dimension perfectly clustered the data into threaigs
(see Fig. 6b). Thanks to the priors enforcing a low numbeilwdters, and simplicity of each cluster model, we
consistently found the same clustering using differeritahiK” and H, provided they are sufficiently large. This
illustrates that the DMBLGSSM is capable of clustering tisggies for which a common method based on feature
extraction would be more difficult to apply, since it is noéat which type of features can be used to group the
time-series.

5.1.1 Missing Observations

We generated fifty synthetic sequences from two LGSSMs Witk 2, H = 5 andT = 30. The dynamicsi”

of the two models where set to differ by a small amount (themiglues are close and have the same stability
properties). The mixing matrices, the noise covariancesmior means where set to be independent on the
LGSSM, thatisB* = B, ¥¥ = %, ©¥, = Xy and:}{, = %y Therefore the two models differ slightly only in the
deterministic part of the dynamict®. We removed randomly0% of the data from each channel (for a ta2ab%

of the available time values). In Fig. 7 we plot four samptes from LGSSM1 (blue) and two from LGSSM2
(red). Notice that, as expected from the setup, it is notiptesto visually identify a common structure for two
samples from the same cluster or a structure specific to dastec We run the DMBLGSSM with initial number
of mixture M = 8 and hidden dimensionalit]f = 7. The model could correctly learn the appropriate number
of mixture components and assigned all samples to the ¢aitester. However, when removing % of the data
from each channel, the model incorrectly assigned all sesipl one cluster only.

5.2 Clustering based on Simultaneous Similarity

As a simple illustration of the clustering method based onufaneous similarity, in Fig. 8 we plot a set of
V' = 6 output sequences of length T=250 which were generated hggireg from two independent LGSSM of
dimensionH = 6 (different colors correspond to different underlying LO&S. We trained our model on this
data, assuming’ = 4 latent linear dynamical systems, each of dimengioa: 8. Pleasingly, the method correctly
discarded two of the unneeded clusters, and identified thietliree outputs (from top to bottom) as belonging to
cluster 1, and the bottom three as belonging to cluster Zistamt with the way the data was generated.

12
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Figure 7: Four synthetic time-series generated from two 88S with V=2, H=5 and T=30. Different colors correspond to
different underlying LGSSMs. Plotted in the first and secontimns are the first and second component.afespectively.
No specific structure which identifies each cluster is vésibl

Figure 8: Clustering based on Simultaneous Similarity. @odel correctly identifies two clusters, assigning the toeé
output sequences to one cluster and the bottom three toeanoth

APPENDIX
A

A.1 Wishart and Gamma Distributions

Wishart Distribution

Let Y be as x s positive definite symmetric matrix of random variables agtcbl be a positive definite matrix of
sizes x s. Then,X has a Wishart distribution/ (v, S) if it has a probability density function given by:

1 v—8— _ -
p(Elv, ) = Z[5| 7 Pemdr s,

whereZ = 2”3/2|S|”/27Ts(s—1)/4 I, 1’\(1/+21—i)'
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Gamma Distribution

A random variabler has a Gamma distributidf(r1 , 1) if it has a probability density function given by:

Vi

p(g’|y1’ V2) = ﬁom—le—uzo"

A.2 Kullback-Leibler Divergence of Gaussian, Gamma and Wibkart Distributions

The Kullback-Leibler divergence Klg||p) = (logq/p), between twos-dimensional Gaussian distributions
qa(z|pq, Eq) = N (pg, Xq) andp(z|pp, Xp) = N (1p, £y) is given by:

1 det %, _ _
KL allo) = 5 (1o (ot ) 17 55 0] Gty = )5 oty = ) = ).

The KL divergence between two Gamma distributi@iis|q1, ¢2) = G(q1,¢2) andp(a|p1,p2) = G(p1,p2) IS
given by:

F(Ql)
F(pl)

p
KL (g|lp) = q1log g2 — p1 log p2 — log + (1 — p1)(W(q1) —logg2) — 1 (1 - —2) ,

q2

where)(-) derivative of the gamma function logarithm. The KL divergeretween twa-dimensional Wishart
distributionsq(X|v, Sy) = W(vg, S,) andp(X|vy, Sp) = W(vp, Sp):

Vg —

2

Zy v, 1 _
KL (qllp) = 1ogZ + L (I [Sl), + gty [S,18 — L],

vqSq

where(In X)), = 27, ¥(25=0) + slog2 + log |, .

A.3 Dirichlet Distribution

The Dirichlet distribution of ordek” > 2 with parameters., .. ., ax has a probability density function given by:
K K
Lo ) 10"“ H ,owith Yy = 1.
Hk 1 k=1 k=1

The factor=7=— (Ek 1 k) is the normalizing constant, thatil%M e 1f0 @+~ dr,. In order to see that,

o)l 20—
we first show thalr(f(ﬁ[; = fo L1 — x)P~Laxts,

I'(a)I(B) :/Oota—l —tdt/oo s e %ds

/ / (0 — 7' e “dodr
:/ / yo‘flxo‘flyﬁfl(l —x)ﬁflefyydyd:c
o Jo

1
:/ 271 — 2)P L dal (o 4 B),
0

This is the normalizing constant of the Beta distribution.
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with the change of variables= t + s, 7 = ¢, which implieso € [0 o0|,7 € [0 7] (s =0 — 7 > 0)and|J| = 1;
and the change of variables= Z, y = o, which gives|.J| = y. Using this result, we find:

oo o0
Ilay) = / (1 le=t gy, .. / F et
0 0
0 00 1 1 1 00
o a;—1 _ —tq K —2— 7tK 9 AR —1— ag—1 ax-1+axg—1_—o
—/ 17 e / Ty o / U (I—ug_1) / o e
0 0 0 0

K—-1 1 x K
= lH / ug’“_l(l — upp) = O‘J’l] r <Z ozk> .
k=170 k=1

Therefore we have to show thBl' " [\ w1 (1 — ) Z5=ee1 @1 = [T [1 2214z, This can be done
by induction. If we assume:

K—2 .1 1K 2 K—2 ax-1-1

ap—1 ZK7;1 1= ak 1
| | up " (1 — wy ) i=et = 1- E Ty dry.x 2,
k=170 0 k=1

K

k=1

then

K-2 .1 1K 2 K—2 ax-1tarx—1
- K -
e A 1 Kl (o) R e
0 0 P

k=1 —

A

and
1

A ST ) !
0

1 1 K—2 K—2 arg-1ter—1 )
:/ / H 1‘2"“71 1— Tk dl‘l;K_g/ U%KEI_ (1 —uK_l)O‘K_l
0 0 k=1 k=1 0
lK 2 K-2 AK -1 ag_—1—1 1
K _
/ / YRt ! (1 - Yk <1 Y ) S 176@1;;{—2,1{
0 k= k=1 1_Zk1yk 1_Zk1yk
1 K- 2 K K-2, ag-1-1
/ / vt (1 -y yk) dy1:K -2,k
k=1
with the change of variablegx = (1 — ZkK;lQ 2p)(1 —ug-1),51 = ®1,...,Yxk—2 = Tx_2, Which implies

|J| 1- Z 1yk'

Polya Distribution

Consider a multinomial distributiop(z1V|r) = HkK .+ and a symmetric Dirichlet distributiop(r) =

W Hk 1T WK '. From what we have seen above:

p (1Y) = / 7/K+Nk 1_ I'(7) Hszlr(Nk+”Y/K)
e |11 TR TN A

15



and

2 =1,2%N)
p(z>N)
LS TO/K + Ny) T(y+N—1)
L(y+N)  T(y/K+Ni— D[, T(/K + Ny)
_I'(y/K+N)) T(y+N-1)  ~v/K+N —1

P(y+N) T(y/K+N;-1) v+ N -1

p(zl _ 1|22:N) _ p(

A.4 Kronecker Product and Vectorization

The following properties of Kronecker product and matrixtegization hold:

tr [ATB] = vc (A) ve (B) = vr (A)" vor (B)
(A9 B)T=AT@ BT

(Ao B '=A1teB!

ve (ABC) = (CT @ A)ve (B)

ve (ABC)" = ve (B)T (C @ AT)

vr (ABC)T = vr (B) (AT @ C)

A® B)(C®D)=AC® BD

—~

B

In this Section we describe in details the model introduceBection 4.1. Details for the model introduced in
Section 4.2 are similar and thus omitted.

B.1 Independence Assumptions on the Distribution

The independence assumptions made og thistribution are the followingg(hi Y|z N, ©1:K) = g(hi ¥ |21:N),
q(z"N OVEY) = ¢(22N)g(01K) andg(1N) = T[2_, ¢(z™). The first two assumptions anand the assump-
tions onp imply that the optimaly satisfies:q(hl:N|22N) = T2, ¢ (h7.p]2") andq(©VK) = TTr_, q(O%).
Indeed the lower bound is given by:

K
F =H,(0VK) + Z g ("N = KUY Hy (RN 25N = BUN) 4 H (22Y) 4+ <Zlogp (@k|ék)>
kb k=1 CRE)

N
+ <1ng (Zl:N)>q(z1:N) + Z q(ZLN = kl:N) <Z logp (’U?:Ta h?T|@kn)>
kLN n=1 q(@hK)q(hii%zLN:kl:N)

By maximizingF with respect toy (h{}) andq(6"¥), we obtain:

g (NN = RENY o (e loer (i Ml O)) o1y

625:1 <10g p(v?:T!h?:T‘gkn)>q((_)k")

N

[T ozl = k"),

n=1
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and

p (@Hék e<ZfL1 Ing(”ﬁthﬁT|@kn)>q(h%§¥,z1=N:k1:N)

=

q(@LK) x

~
Il
—

(@k|ék) 625:1 q(Z":k)<logp(vﬁTahI‘:T\9’“)>q(h%T‘zn:k)

[
>

E
Il
—

q(©").

[
=

>
Il
—

Notice that, under these assumptions, the optiraal V) would be:

g(z"N = k") o p (MY = kM) e Hy (g |2 Y =k N ) +(Z00, logP(UﬁthﬁT|®kn)>q(elﬁK)q(h%i¥\zer:k“N)
which does not factorize becauséz'") does not factorize.

B.2 Parameter Updates

To simplify the notation, it is useful to use a column vectation for B, ve (B), and a row vectorization foA,
vr (A) for the respective distributions. For the same reason, Wewit the dependency of the model parameter
©F and hyperparamet&* on the mixturek.

Updates for g (B’“, (2% ] 71)
The optimaly (B, 2(,1) is a Gaussian-Wishart(Gamma) distribution given by:

1 o3 Tn G =R T (@] =W BR)TE (v — W BRY))
1278y | T Xal a(zr=k)

anel=n=1) p(B|3, 55 )p(S71©)
(11)

The exponent (excludir@E(/Hé)) is given by— 1€, where:

N T T T
E=> qz"=k) <Z(vt yuytop =23 () BTWrSg e+ <(hf)TBTWt"E;1Wt"Bh?>>
t=1

n=1 t=1 t=1

+3 (BJBJTE‘_,lBj — 2B, B, + B}E;léj) .
J

B.2.1 Determiningg (B’“I [E’\?]_l)

Optimally, ¢ (B|E;1) is a Gaussian. If we assume thay is diagonal for the case in which there are missing
observations, theWt"E(/th" = Wt"E(,l and, using the properties described in Appendix A.4, we cate the
quadratic term inB of £ as

bjz

T
k)> () BTWSU BRY) + Y 8BS B;
t=1

n=1 = J
N T
n=1 t:l
N T
Y aE"=k) D (h(h)) @ Wi +dg(B) @ Iv | (Tn @ 5y') ve (B),
n=1 t=1
Hpm
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that is the covariance af(vc (B) |=;,") is given by:
Y=g ®Iv)Hg),.

The linear term inB of £ is given by:

T
— 2tr Z q(z" = Z MTEGWEB 4+ dg (B) BTS, B
n=1 t=1
T
N T
=—2vc | S, | W Z Z vy T+ Bdg (8) ve(B),
n=1 t=1
Np

that is the mean of(ve (B) [,') is given by:
g = Ypuc (E‘_,lNB) = HBT}WUC (Np).
In the case in which there are not missing observat{®¥fi8 = Iy), the formula for the covariance reduces to:

-1

N T
doaEm =k (hrBHT) +dg(B) | @ v,
n=1 t=1

Hp

and the mean becomes:

up = vc (NBHél) .

B.2.2 Determiningq([E’éTl)

In Section B.2.1, we have shown the¢B|%;') is Gaussian with exponent:

1 _
3 (ve(B) = pup)" £5' (ve(B) — ) . (12)
The part of Eq. (12) which is not explicitly present in Eq. (islgiven by:
1

_ 1 _
—§u;231u3 =—5tr [MpNLSy'] .
whereMp = NBHg1 for the case in which there are not missing observationdewliiz is theV x H matrix
formed by the vectng}wvc (Np) for the case of missing observations. The negative of this,ttogether with
the part in the exponent of Eq. (11) which contains a deperyden, gives as exponentf@(E;l) for the case in
which 2(/1 follows a Wishart distributionV (vy, Sy ) (which we permit when there are no missing observations):

1 1 AP R 1ocoion
St [MNERY'] = 5 Z =k)> (f)'Sy ey - 5B/ B) — Str[Sy syt
n=1 t=1

l\D

The terms that contain dependency|Bky | are given by:

—1|(vw=V-1)/2 _ eV —1)/2
= !21dg (9) RIS R g () 1R
Sy |7 Znm a="=R) 5y | H/2 1Sy |F S aGr=h)

That means that if;,* follows a Wishart distributionV (v, Sv) the updates are:
T . oy -1
a(%y) = <VV +T Z B, (st + Z k)Y o (o) — G + Bdg (5) BT) ) ,
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whereGp = NBHglNg. Instead, for the constrailit(,1 = dg (p), where each diagonal elememntfollows a
Gamma prioiG (bi, b%), the optimal updates are:

T N 1 N T
a(pi) =G 5; k), b5+ 5 Z:j Zj GB“+Z@ :
Updates for g (A’“, [Z4] 71)
The optimaly (A, 2;11) is a Gaussian-Gamma distribution given by:

1 —§ ner (" =R) S (A = AR TS (= AR D) o) 1 LA
1) p(Ale, SEP(E O
2| o R plAle, By p(Xy 10)

(13)
B.2.3 Determiningq (A|Xx)

Optimally, ¢ (A|E;11) is a Gaussian. In order to obtain independence of the meaathadquantities front !,

here we have to assume tlié;gl is diagonal (this will not be the case for other choices ofgtier p(A|«, 2;11)).
The quadratic term il of the exponent of Eq. (13) is given by:

N T
> az"=k)> (- )TATSF AR )+ aq AT (25 Ay
n=1 t=2 ij
N T '
=tr [Z q(z" = Z AT A +or (A)T bdg ([Z5 ] dg (agr), ... [EI_JI]HH dg (ag:)) vr (A)
n=1 t=2 DA

N T

:vr(A)T<EHl®Z k) (b (b )T +DA>m~(A)
=1 t=2

=vr (A) bdg ([S5'], Hiay- oo B3]y Hea) vr (4)

where[H;];, = S0 a(z" = k) ¥, <[h111],- [hiy] l>q ey Tl

(hi—s

This means that the covarianceggbr (A) |X5;') is given by

Y4 =bdg ([EH]ll Hl_Alv o [BHl g H;I}Ll) .

The linear term is given by:

T

k) (TS5 AR )+ s AT (S5 Ay
t=2 iJ

N T
=tr [Z q(z" =k) Z <h?_1(h?)T> El_{lA
=2

+or (A)T D pqvr (A)

3
Il
-

o

=or (EHl Z q(z" = k) Z <h?(h?l)T>> vr (A) +or (A)T D vr (A),
(

that is the mean of(vr (A) |£3;) is given by:

N T
b))
( NA lvHiy) - ([NA H/HH114) )

Where[NA]ij = Zn 192" =k) Zt 2 <[h? 1} [ht]; > + aiinj

a(hy_y.4)
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B.2.4 Determiningq ([Ek ]71)
The missing part ofvr (A) — pa)S ;" (vr (A) — ) in the exponent of (A, ¥ ;") (Eq. (13)) is given by:

Z (S5 [Naly Hiy [Nall -

i

ForX ;' = dg (), where each element follows a Gamma priog (a}, a}), the updates are:

T
qm):g(m%zq(z”— )b+ %( =0 3 (1) - Gal + ))

t=2

an

T

i’

Where[GA] [NA] HzA [NA]
Updates for g (u’“, [ZF] )
The optimaly (u, E—l) is a Gaussian-Wishart(Gamma) distribution given by:

1 SN qE =R () TS (R ) L1y a1 A
e n= Q(h1\2":k)p(u|2 )p(z |@)
|27TE| Zn 1q(zn k)

The exponent (excluding(21)|0) is given by—%g, where:
N
=Y q(z" = k) ((B)TSTRY) = 2uTS7H (B + 0TS )+ (= ) SIS (- ) -
n=1
B.2.5 Determiningq (uk| [Ek]fl)

Optimally, ¢ (1|>~") is a Gaussian. We can write the quadratic termy iof £ as> " q(z" = )T+
pTEE  , that is the covariance af(.[$ 1) is given by:

N -1
Eh—<z k) In+3, ) 5.

N
The linear term inu of £ is given by—2,">~1 Z ) (h1) + S,y |, that is the mean of (u|%1)

is given by:
N -1
<Z q(z k) Iy + X, ) m
n=1

B.2.6 Determiningq([Ek]fl)
For the case in which (£71) = W (v, 5), the exponent of (1) is given by:

5;&2 Im — 5 Zq(z = k) ((h] D> 1h1> — 5””2 12 Py — itr B D)) 1}
n=1
1 N
= tr [— <mul + a(z" = k) (b (h)T) + 2, ), + Sl) 21]
n=1
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The terms that containing:| are given by| %~ 1\ voH oL (" =h)/

N N
4% <V+Zq(z” =k),S —muh—l-z ) (R} (RY) >+EH1/L#ML>
n=1 n=1

In the case in which each elementof £~ follows a gamma distributiop (1) = G (0%, 03), we have:

N
qg(Ni) =G (Ui + % Zq(z" =k), o} —|—% < muh Tt Z < hYl; >+ [E;luuu;]ii>>

B.3 Updates forg(z)

The averag€logp(z" = k|zﬁ",7)>l—[ L a(zm) is approximated using a second order Taylor expansion. More
specifically:

®. That means that the updates are:

eon TR — (N ), 14
e = f(Ne) (14)

whereNy, ., = Nj, — I[z™ = k] is the number of times is in statek, excludingz". The quantitiesV;, -, are
sums of Bernoulli variables and may be approximated with asSian with mean and variance given by:

p(z" = k[z7"7) =

N N
My, = Z q(z™ = k), Sk,—n = Z q(z"™ =k)(1 —q(z™ =k)).
m=1,m#n m=1,m#n

We then approximatéf (Ny. —,,)) in Eq. (14) by using a second order Taylor expanion

(FNen)) = F (M) + 3 5" (M) S5

B.4 Inference ong(hi.r)

In this section we describe a standard algorithm the stamatadictor-corrector form of the Kalman Filter, together
with the Rauch-Tung-Striebel Smoother from the LGSSM ditere, which can be used for performing inference
on terms such as:

q(hi.r) o ellogp(vir,hi7[0)) (o)

This requires defining a new set df B, >, Xy, i, > parameters of the type described in Section 4.1. We
also give a slight modification of the predictor-correctigioaithm which obviates the need to introduce fictitious
outputs.

Algorithm 1 describe the standard predictor-correctarfof the Kalman Filter, together with the Rauch-Tung-
Striebel Smoother [9] for computing h¢|v1.7) = G(ht|01.7).

There are two variants of the FORWARD pass. Either we mayprattedure FORWARD in Algorithm 1 with
parametersi, B, Xy, Yy, fi, & and the augmented visible variablasin which we use steps 1a, 2a, 5a and 6a.
This is exactly the predictor-corrector form of a Kalmariéi[9]. Otherwise, in order to reduce the computational
cost, we may call procedure FORWARD with the parameters3) , Xy, <E‘71>71 . i1, > and the original visible
variablev,*” in which we use steps 1b (Whet&, ;Uap = Sa + Sp'®), 2b, 5b and 6b. The two algorithms are
mathematically equivalent, as shown below. Compuiifig|v1.7) = ¢(h+|01.7) is then completed by calling the
common BACKWARD pass.

The important point here is that the reader may supply amdsta Kalman Filtering/Smoothing routine, and
simply call it with the appropriate parameters. In some pat@r regimes, or in very long time-series, numerical
stability may be a serious concern, for which several stadallalgorithms have been developed over the years, for
example the square-root forms [9, 19, 20].

®The potentially more accurate procedure of using Quadgdaiis in this case, since the arguments under Gaussiarr@uad
ture take the function out of defined regions.

At time 1, we need to useéB = wvert ((B) 70;1)1 o7 = wvert (v{‘7 (</LT271;1,> — ()T =1 (u))%), Yy =

bdg ((=71) " 1),

BAt time 7', we need to defin& 4 such thal/} ;Uap = Sg.
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Algorithm 1 LGSSM: Forward and backward recursive updates. The smdgibsterion(h.|vi.7) is returned in
the mearh? and covarianc#? .
procedure FORWARD
laP «— %
1b: P — DX, whereD = I — XU, (I + UapSUL )~ Uap
2a:h0 —
2b: }Al(l) «— Dpu
3: K « PBY(BPB" + )1, P} — (I — KB)P, h! — 19 + K (v, — BhY)
fort — 2,7 do
4: p/7t — APITAT + 2y
5a:P «— P/™!
5b: P — D, P!, whereD, = I — P UL, (I+UapP! 'UL,) " Uag
6a:hi ™! — Ahl~1
6b: Al — D, Ah~!
7: K — PBT(BPBT 4+ %y) !, Pt — (I — KB)P, ht — ht™' + K (v, — Bh!™Y)
end for
end procedure
procedure BACKWARD
fort — T —1,1do
—
Ay — PIAT(PL )t
Pl — P} + E(Ptj-;l - Ptt+1)/<TtT
hi —h+ Zﬁ(ﬁtTH — Ah})
end for
end procedure

Equivalence of Algorithm 1« and b

The filtered covarianc®/ obtained from Algorithms L andb are equivalents. Indeed, let suppose that we have
demonstrated the equivalence at titme 1, then by repetitive application of the matrix inversion eat® we
obtain:

Pl = Ptt—l _ Ptt—IBT(BPtt—léT + SV)*lptt—l
— (P 4 BTSB)
— () Sat Se (B () (B))
p-1
=P-P(B) ((B)P(B) + (51 ) (B P

whereP can be written a® = P/ ' — P/~ U z(Uap P/ ‘UL + 1) 'UapPf .

Matrix inversion lemma: if the matriced, B, C, D satisfyB~t = A~! + C"D~'C, where all inverses are assumed to
exist, thenB = A — ACT(CACT 4+ D)"'CA.
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The contribution from the observations to form the mé@is equivalent in the two algorithms, indeed:
2 )

- (p;—l — PN I+ (P TYBTSB) )T )B 5

PITUBT(BRTUBT + Sy) T = PUUBT (S - SUUB(BTSS B + (P 1) 1

BT
_ (Pttfl _PttfléTi‘;lé(BTE LB 4 (PY )

_ (Pttfl _ Pttfl(Pttfl + (BTi‘le)_ )" Pt I)E i

— (Y + BT, B) T BTS

= P!B"™S,!

— vert (P; (BT (571, PUT, P;U;)

=vert (P(B)T ((B)P(B)T + (")) ™, PIUL, PUE)

The first element in vert is equivalent to the contributionAdgorithm 1 b, while the second and third do not
contribute given that the corresponding elements iare zeros. Finally, the contribution frodn!~ | to form the

meanh! is

(1=P/ ' BT(BP BT+ Sv) " B)PUPL) ™ = (1-P(B)T ((B) P(B) +(z") ') ™ (B) ) P(PL) !

(1=PB)T (B)P(B+(2") ) (B) ) DL (P

B.5 Parameter Covariance

The parameter covarian®g; introduced in Section 4.1 is given by:

v

[(SB)?]jl =tr |:<E\71th(Bl - <Bl>)(BJ - <Bj>)T>q(B 2*1)}
']

1%
- s W s CDHHG-D ) oo ]
zozp—1|:<[ v p BBl r-1)arnG-1) o=y
1%
= < v Z In] Ir [Xv] Pq HBM}WH(T 1),i+H(j— 1)>
io,p—l
_Z BIW i+H(l—1),i+H(j—1) °

In the particular case in which there are not missing obsiensthis reduces to:
Sp = VHgl.
AnalogouslySs = )", H;a. Indeed:

[Sal;; =tr [<EB1(AJ‘ — (A;)(A = (A)T)]

—Z< EH kz [HkA] >
= Z [HiA]jl :

23



B.6 Hyperparameter Updates

Updates for 5¥
If we compute the derivative of Eq. (6) with respect to thedrygarametef;, j = 1,..., H and set it to zero we
obtain:
v
ﬁ] = A o1 - )
<(Bj = B))TEy(B) — Bj)>
where

((B; = B)'S0 (B - By)) = ((B; — (B;)'S (B — (By)))
[SBl;;

+(By)" (3y) (By) — 2(B}) (=) B + B] (2,") B;.

Updates for o},
If we compute the derivative of Eq. (6) with respect to thedrygarametet;;, i, = 1,..., H, and set it to zero
we obtain:
1
Q5 = ) N 5
<[2H Lz( 1) _AZJ) >
where

Updates for b, bk

For the constrainEy;' = dg (p), each diagonal elemept follows a Gamma priog (b}, b3).
In order to constrain’ to be positive, we sét. = b%. The derivative of Eq. (6) with respect tas given by:

2blog b, — 26 (b%) + 2b (10g pi) .1

where

g1

q 1 —qgop
<1ngi>q(pi) = F(qu) /p»p;_n te= %P log p;
7 9 T(q)
L(q1) 01 g5

=1(q1) — log ga.

Given that we cannot obtain a closed form updatebforwe have to use some optimization method. Setting to
zero the derivative of Eq. (6) with respectig we obtain:

b
(Pi) g1

Similar updates can be obtained fdranda5.
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Updates for vy, S¢
If 32,,* follows a Wishart prior distributiop(3! [vy, Sv) = W (vv, Sy), the derivative of Eqg. (6) with respect
to vy is given by:

1% .
V 1 vy +1—1 1
¥ log2 — Slog|Sv| - Y v <f> + (108 [ )yt

=1
where

— 1 o _ vg—V-—-1 1 7‘571271
<1Og|EV1|>q(E(/1) - Z_q/10g|2vl||zvl| s e 1S e
_ 204
Z4 Oy
+1—3
= Zd’ (%) + Vlog2+ log |S,|.
Setting to zero the derivative of Eq. (6) with respecﬁ‘t,a we obtain:

Sy = —2 L
vy
Updates for %, %%
Setting to zero the derivative of Eq. (6) with respecttoandX,, we obtain:

Py = ()
Sp= (up STy = ) g, (57 = g ()T (ST + g, (571)

N —1
= <Z (2" = k) Im + 2;1> + (i = ) (o = )" (571)

n=1
Updates foroy, oo
The updates are similar to the updatestfoandb, described above.

Updates forv, S
The updates are similar to the updatesifprand.Sy, described above.

Updates for v
In order to constrain to be positive we set = §2. The derivative of Eq. (6) with respect &ds given by:

9 <¢(52) — (N +6%) -9 < >) + 2— Z Y(Nk + 52/K)>Hg:1 a(zm)

which does not give a close form update 4or

B.7 Computing the Log-likelihood Bound
The log-likelihood bound (Eg. (6)) can be rewritten as:

N K N
F= ZZCI(Z =k)Hy(hi.r|2" = k)+ZHq(Z")
n=1 k=1 n=1
< Q(AIE?)> < < q(Bl2;1)> u < g (4> 1)>
— lo — lo - lo
1;< * (AR g(A25) ; S (Bm) (B2 kz::l O (=)
= Q(2§1)> X q(261)> u < Q(21)>
— lo - lo - lo
N K
+ (logp (")) psr gomy + D2 D (=" = k) (1080 (Vi B 1O%)) 0 o)
n=1k=1
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Each entropic element in the first term can be computed as:

T-1
log det(P, — A H_lAtT)

N =

t+1|”1:T)

h Shy v
<21 Mﬂogq(h%vm>

q(h{b:Th)l:T,z":k) =1

—logdet(PL) + H(l + log(2m)),

[\DP—‘w

whereP] is the covariance of (h}|v1.7), A, = PfAT (APIAT + ) ~! and where we have used the property

A B _
det( o D ) =det (AD — BD™'CD).

Terms such adlog ¢ (A|S5;'") /p (A|E,}1)>q( 1y can be computed as:

AN,

1 det 33, _ —
2 (1 o <det2 ) U+ =)' (% gz o = 1) = H2> 7

where i, and X, are the mean and covariance @fA|X ), andy, and X, are the mean and covariance of
p(A|X#). Notice that this simple formula comes form our choice far fhior, which make&, andX, to have a
common dependency @i and the meang, and,, not dependent ok ;.

Notice also that when(z" = k) = 0 for a givenk andn = 1,..., N, thatis when no sequences are assigned to
component, we havey (A|S5") = p (AIS4'), ¢ (BIEVY) = p (BISVY), ¢ (25') = p (E5') andg (531) =
p (3y'). As a consequence!;, 3% — oo. This can be seen from the updates in Appendix B.2 and Appdhéi
C

C.1 Uncollapsed Model
Consider the model described in Section 4.1. If we do nogiaite outr from the model, we have the approxima-

tion:
K N K
p( N thaG)lK mlv 1f€rva@1:K) ~ {HQ(Zn)‘J( 711T|Zn)} HQ(Gk
n=1 k=1

which gives the following lower bound on the log-likelihaod

K N K N K .
F= Y HAON) + 303 a (" =) Hy (" = k) + 30 Hy () + Hy (m) + 3 (loep (€4164)),
k=1 n=1k=1

n=1 k=1

N K
+ <1ng (7T)>q(ﬂ') + <1ng (Zl:N|7T)>Hn q(z™)q(m) + Z Z Q(Zn - k) <1ng (U{L:Tv h;’lL:T|®k)>q(@k)q(h;z_T|zn:k) .
n=1k=1 ‘

The updates for the distribution are:

N n__ og U'n. n k
g (©") xp (leék) (ot ATl ( T W 1O)), 1 on )

S = k) qu<h1iT\z":k>+<logp(z":k|w>>qw+<logp(v;ﬁT,hliT\e’“)>q(hh‘zn:k)q(@k)

q(hir)z" =k) x e<logp(UIL:T"h?:Tlek)L(@’“)

q(m) o< p () Loer G M) g ey

The update forr gives a Dirichlet distribution with parameteks = /K + ij:l q (2™ = k). The different
terms in the bound can be computed as follows:
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£ (52)

(logp (ﬂ')>q(ﬂ_) = log % + Z <log (7Tj)'V/K71>q(ﬂ)

— 1o I'(v) L) oo ()1 K-1 e
_1gF(w/K)K+HiF(/\i)zj:/ﬁlg(a) ]:[(z)

L2 N) o TL,T ()

— log L) N N ,
e T e (- (5))

N
<10gp (21:N|7T)>q(21:N)q(ﬂ.) = Z Z q\z 1ng (Z - k|7T)> ()
k

Z q(m)

)
)
%izi Mray 2 [ ese T

vy -3 »-w(&))
C.2 Priors on the Hyperparameters

Consider the model described in Section 4.1. Instead ofilegithe hyperparameters with the ML-II approach,
we could put a prior distribution. Under the assumptig®' %, 01:5) = ¢(01K)q(01X), the lower bound on
the log-likelihood is given by:

= —log

M=

K R N K N
F= Hq(@’f)+ZHq(@’f)+ZZ o (Wplz™ = k) + Y Hy (2")
k=1 n=1k=1 n=1

(10 (66')), 0. o z< <@k>>q<@k>+<logww>>m

k=1

>
Il

1

+

+

M= [

K
Z = ) (logp (v, hi.r|© )>q<@k>q(hgmzn:k) '
k=1

Il
A

The updates fog are given by:
( k) xp (@k) (108p(0%16)) ot
( k) e (log p(©%|6%)) (ék)ezgzlq(zn:k)<logp(viT)hIL:T‘@k)>q(h%T‘zn:k)
(=" = k) qu(hl’"iTIz":k)+(logp(z“:k\z“‘xy))nm#nq(zm)+<logp(v;ﬁT,h1n:T|@k)>q(h?:T‘zn:k)q(®k)
g (hlpl2" = k) 0B (vL B2 10%)) ey
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This approach can be taken faf; and3}. However, foru{;, 5§, v, Sty  v%, S (af, a5, b, b5, 0F, 05) andy
we need to use the ML-Il approach, sirq:éék) would be a unknown distributidA The ML-Il approach has to
be used also for; andX”, since, unless heavy constraints are imposed, we canna finidrp (1%, $%) which
results in a known distributioq(,.;, £F).

Determining ¢(5})

p(B3;) = G(61, 32), where1 and 32 are fixed to certain values.

(loep(BIZ018:)) (5 1)

q(Bj) xe p(B5)

~ %e*%<(Bj*Bj)TE;l(Bj*Bj)>ﬁj@1—lefﬁ2ﬁj

P14y (8243 ((Bi-8;) 5y (B, -B5)) ) 85

B;
B;
G <51 + %,52+ % <(Bj —Bj)Tgy (Bj _Bj)>)

Determining g(a¥,)
Similarly,

g(oi) =G (al + %,a? + % <[E;{1]ii (Aij - Aij)2>>

Forg (Bk| [2"3]71) andgq (A’“| [E’}_I]*l), the updates are similar to the ML-Il case, with the diffeethat

the optimal values for the hyperparameters are replacetidynean values p1+V/2 - and
P yperp Placefeme S () 5 (B, )

. Notice that for31, 52, a1, a2 — 0 the optimal values for the hyperparameters obtained

al+1/2
a2+3{[=5],, (A —4i)?)
by ML-II and these mean values are the same. That is using dlMpproach is equivalent to defining Gamma
priors ong} andaf; with 51, 32, a1, a2 = 0.

20For example, using an inverse-Gamma and Gamma priods andas respectively, would result in a Gamma distribution
q(a2) and in an unknown distribution(a. ).
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