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ABSTRACT
Principal component analysis (PCA) has been extensively
applied in data mining, pattern recognition and information
retrieval for unsupervised dimensionality reduction. When
labels of data are available, e.g., in a classification or regres-
sion task, PCA is however not able to use this information.
The problem is more interesting if only part of the input data
are labeled, i.e., in a semi-supervised setting. In this paper
we propose a supervised PCA model called SPPCA and a
semi-supervised PCA model called S2PPCA, both of which
are extensions of a probabilistic PCA model. The proposed
models are able to incorporate the label information into the
projection phase, and can naturally handle multiple outputs
(i.e., in multi-task learning problems). We derive an efficient
EM learning algorithm for both models, and also provide
theoretical justifications of the model behaviors. SPPCA
and S2PPCA are compared with other supervised projec-
tion methods on various learning tasks, and they show not
only promising performance but also good scalability.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Content Anal-
ysis and Indexing—Indexing methods

General Terms
Algorithms, Theory, Measurement, Performance

Keywords
Principal component analysis, Supervised projection

1. INTRODUCTION
Data mining problems often suffer from the high dimen-

sionality of the data, for the reason of learnability or com-
putational efficiency. Therefore dimensionality reduction,
which is also called feature transformation or document in-
dexing, is of great importance and has been extensively stud-
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ied (see, e.g., [6, 2]). The most popular method is probably
the principal component analysis (PCA), which performs a
singular value decomposition (SVD) to the data matrix and
obtains the sub-eigenspace with large singular values [8].

Traditional dimensionality reduction methods are unsu-
pervised, i.e., they only focus on observations or input data.
However, in discriminant analysis where the prediction value
or output is available, it would be more helpful to incor-
porate this information into the mapping and derive a su-
pervised projection for input data. Since this projection is
designed for the specific prediction problem, it could be sub-
stantially different from unsupervised projection. A more in-
teresting setting is semi-supervised projection where we have
only part of input data labeled, along with a large number
of unlabeled data. This is often true in real world prob-
lems because labeling is expensive, or unlabeled data are
very easy to obtain. An ideal projection method should be
able to take into account both the observed labeling infor-
mation and the unlabeled inputs. There exist many super-
vised projection algorithms in the literature such as linear
discriminative analysis (LDA), partial least square (PLS)
and many others (see, e.g., [6] for an overview). However,
these methods cannot incorporate the unlabeled data into
the mapping, which will cause problems when we have only
very few labeled points.

In this paper we propose a supervised PCA model called
SPPCA, which extends the probabilistic PCA model [17]
to incorporate label information into the projection. SP-
PCA takes into account not only the inter-covariance be-
tween inputs and outputs, but also the intra-covariance of
both. It can naturally handle multiple outputs, and there is
no limitation on the number of projected dimensions. More
interestingly, the model can be further extended to model
unlabeled data as well, which we call a semi-supervised PCA
or S2PPCA. This model allows us to elegantly use all the
information we have to define the mapping. We derive an ef-
ficient EM learning algorithm for both models, and provide
some theoretical justifications for the model behaviors. Ex-
perimental results on various learning tasks show promising
performance for both SPPCA and S2PPCA models.

This paper is organized as follows. After reviewing some
previous work in Section 2, we formally introduce SPPCA
and S2PPCA models in Section 3 and derive an EM learning
algorithm in Section 4. We then presents some theoretical
justifications in Section 5 with further discussions. Finally
Section 6 illustrates experimental results and Section 7 con-
cludes the paper.



2. PREVIOUS WORK
In this section we review some previous work on unsu-

pervised and supervised projections. In what follows we
consider a set of N objects (e.g., images), and each object
n is described by an M -dimensional feature vector xn ∈
X ⊂ RM . For dimensionality reduction we aim to derive a
mapping Ψ : X 7→ Z which maps the input features into a
K-dimensional space (K < M).

2.1 Unsupervised Projection
Probably the most popular unsupervised projection is prin-

cipal component analysis (PCA). Let X = [x1, . . . ,xN ]>

denote the input matrix after centralization, i.e., we sub-
tract the sample mean from each input. In PCA we want
to find the principal components which illustrate the direc-
tions with maximal variances of the data. Let X = VDU>

be the singular value decomposition (SVD) of X, where V
and U are N ×N and M ×M column orthogonal matrices,
respectively, and D is N ×M diagonal matrix with singular
values sorted in descending order along the diagonal. Then
it is known that the first K columns of U, which we denote
UK , defines the mapping Ψ. The projections of X onto the
principal component space are given as VKDK , where VK

contains the first K columns of V, and DK is the top left
K ×K sub matrix of D.

Unlike PCA which is maximizing the global covariance
of the data, there also exist “local” projection algorithms
such as locally linear embedding [15], which tries to preserve
the local structure of the data after projecting into a low
dimensional space.

2.2 Supervised Projection
When each data point n is associated with not only low

level features xn but also some outputs yn ∈ Y ⊂ RL

(i.e., classification or regression targets), unsupervised pro-
jection such as PCA may be not able to project the data into
useful directions (see Figure 2). Therefore many supervised
projection methods are introduced to make use of the output
information. Linear discriminant analysis (LDA) focuses on
multi-class classification and finds projection directions that
separate the data best (see [3]). The number of projection
dimensions is however limited by L−1. Partial least squares
(PLS) [18] originates from regression analysis and finds the
directions of maximal covariance between inputs and out-
puts sequentially. It however ignores the intra covariance of
either inputs or outputs, and its generalization performance
on new dimensions of outputs is restricted (see discussions in
[5]). Other related works include [7, 12, 1, 19, 10, ?] which
consider this problem from different perspectives.

In the situations where we have few labeled points and
a large amount of unlabeled data, all these supervised pro-
jection methods are however not able to use the unlabeled
data. This is often the case in computer vision, informa-
tion retrieval and bioinformatics, where labeling is expen-
sive and unlabeled data are sufficient and cheap to obtain.
We call this setting the semi-supervised projection, and we
will propose a model in the next section which can deal with
semi-supervised projection naturally.

3. THE SPPCA MODEL
We first review a probabilistic model for PCA, and then

present our supervised models.

3.1 Probabilistic PCA (PPCA)
While PCA originates from the analysis of data variances,

in statistics community there exists a probabilistic explana-
tion for PCA, which is called probabilistic PCA or PPCA
in the literature [17, 14]. PPCA is a latent variable model
and defines a generative process for each object x as (see
Figure 1(a) for an illustration)

x = Wxz + µx + εx,

where z ∈ RK are called the latent variables, and Wx is
a M × K matrix called factor loadings. In this probabilis-
tic model, latent variables z are conventionally assumed as
a Gaussian distribution with zero mean and unit variance,
i.e., z ∼ N (0, I), and εx defines a noise process which also
takes an isotropic Gaussian form as εx ∼ N (0, σ2

xI), with σ2
x

the noise level. Additionally, we have parameters µx ∈ RM

which allow non-zero means for the data.
It is shown that PPCA has strong connections to PCA.

In particular when σ2
x → 0, the projections of data x onto

the K-dimensional principal subspace in PCA are the latent
variables z up to a rotation factor [17]. We summarize the
related results in the following proposition without proof,
since this is simply a corollary of Theorem 2 in Section 5.

Proposition 1. Let Sx = 1
N

∑N
n=1(xn −µx)(xn −µx)>

be the sample covariance matrix for data {xn}N
n=1, and λ1 ≥

. . . ≥ λM be its eigenvalues with eigenvectors u1, . . . ,uM ,
then if the latent space in PPCA model is K-dimensional,

(i) The maximal likelihood estimate of Wx is given as

Wx = UK(ΛK − σ2
xI)

1
2 R,

where ΛK = diag(λ1, . . . , λK), UK = [u1, . . . ,uK ],
and R is an arbitrary K ×K orthogonal matrix.

(ii) The mean projections z∗ for new input x∗ is given as

z∗ = R> (ΛK − σ2
xI
) 1

2 Λ−1
K U>

K(x∗ − µx).

As a probabilistic framework, PPCA provides additional
benefits over PCA such as a fast EM learning procedure, a
principled way of handling missing entries, and a possibil-
ity of considering mixture of PCA models. PPCA is also
closely related to factor analysis models, but the modeling
perspectives are different (see [17] for more discussions).

3.2 Supervised PPCA (SPPCA)
The key point of PPCA model is that all the M dimen-

sions of x are conditionally independent given the latent vari-
ables z, due to the isotropic property of the noise process.
This indicates that the principal components in PPCA are
the K latent variables which best explain the data covariance.

When supervised information is available, each object x is
associated with an output value y ∈ Y, e.g., y ∈ R for regres-
sion task and y ∈ {+1,−1} for classification task. In general
we believe there are covariances between input space X and
output space Y (since otherwise the supervised learning task
is not learnable), and it is reasonable to extend PPCA to
model this covariance as well. Furthermore, when there are
more than one learning tasks (i.e., in a multi-task learning
setting [4]), the covariances between different tasks can also
be modeled by latent variables.



(a) PPCA (b) SPPCA (c) S2PPCA

Figure 1: Illustrations of the three models PPCA, SPPCA and S2PPCA. X and Y denote respectively the
input and output matrices, where each row is one data point. f1

x , . . . , fM
x are the M input features, and

f1
y , . . . , fL

y are the L outputs. On the top f1
z , . . . , fK

z are the K latent variables in each model. They are all in
circles because they are variables in the probabilistic models. The arrows denote probabilistic dependency.

We now formally describe our proposed model family which
we call the supervised probabilistic principal component anal-
ysis (SPPCA). Let the number of outputs be L, and each ob-
ject x be associated with an output vector y = [y1, . . . , yL]> ∈
Y ⊂ RL. In SPPCA the observed data (x,y) is generated
from a latent variable model as

x = Wxz + µx + εx,

y = f(z,Θ) + εy,

where f(z,Θ) = [f1(z, θ1), . . . , fL(z, θL)]> encode the val-
ues of L deterministic functions f1, . . . , fL with parameters
Θ = {θ1, . . . , θL}. Here z ∼ N (0, I) are the latent variables
shared by both inputs x and outputs y, and the two noise
models are independent to each other and both defined as
isotropic Gaussians: εx ∼ N (0, σ2

xI), εy ∼ N (0, σ2
yI). We

use two noise levels σ2
x and σ2

y for inputs and outputs, re-
spectively, and it is also straightforward to define different
noise levels for different outputs if desired. See Figure 1(b)
for an illustration of the model.

In SPPCA model we keep the nice property of condi-
tional independence, i.e., all the input and output dimen-
sions are conditionally independent to each other given the
latent variables. If we integrate out the latent variables z,
the likelihood of observation (x,y) is obtained as

P (x,y) =

∫
P (x,y|z)P (z) dz =

∫
P (x|z)P (y|z)P (z) dz,

where z ∼ N (0, I), and from the latent variable model,

x|z ∼ N (Wxz + µx, σ2
xI), y|z ∼ N (f(z,Θ), σ2

yI). (1)

After observing N pairs, the likelihood of all the observa-
tions D = {(xn,yn)}N

n=1, with i.i.d. assumption, is simply

P (D) =
∏N

n=1 P (xn,yn).
In the following we consider the simplest model in this

family, i.e., we assume each function f`, ` = 1, . . . , L, is
linear in z:

f`(z, θ`) = w`
y

>
z + µ`

y,

where the parameters θ` = {w`
y, µ`

y} include the linear co-
efficients and intercept. Then we can group all the f`’s and

write

f(z,Θ) = Wyz + µy,

a similar form as the generative model for x where Wy =
[w1

y, . . . ,wL
y ]> and µy = [µ1

y, . . . , µL
y ]>. The reason why

we choose this form for f is that the EM learning is simple
(see the next section), and we have closed form solution (see
Section 5). We will discuss other forms of f in Section 5.3
which may need special approximation techniques.

Let us denote

W =

(
Wx

Wy

)
, µ =

(
µx

µy

)
, Φ =

(
σ2

xI 0
0 σ2

yI

)
,

then based on the model assumption, it is easily seen that
(x,y) are jointly Gaussian distributed, with mean µ and
covariance Φ + WW>. All the parameters for the SPPCA
model are Ω = {Wx,Wy, µx, µy, σ2

x, σ2
y}.

3.3 Semi-Supervised PPCA (S2PPCA)
In SPPCA model, we assume we observe both the inputs

x and outputs y for every data point. In many real world
problems, however, we may only observe the outputs for
a small portion of data, and have many unlabeled data in
which only inputs x are known. This may be because some
measures are unobservable, the labeling cost is too high, or
simply we have too many unlabeled data available. Learning
in this situation is in general called semi-supervised learning.
For learning a projection, an ideal model would incorporate
both the unlabeled inputs and the partially labeled outputs
to define the mapping.

This can be easily done under the SPPCA framework. Let
the number of labeled and unlabeled data points be N1 and
N2, respectively, with N = N1 +N2. The whole observation
is now D = D1

⋃
D2 = {(xn,yn)}N1

n=1

⋃
{xn′}N

n′=N1+1. The
likelihood, with the independence assumption of all the data
points, is calculated as

P (D) = P (D1)P (D2) =

N1∏
n=1

P (xn,yn)

N∏
n′=N1+1

P (xn′),



Figure 2: Projection directions for a toy data. They
are fully labeled on the left, and only partially la-
beled on the right.

where P (xn,yn) is calculated as in SPPCA model, and
P (xn′) =

∫
P (xn′ |zn′)P (zn′) dzn′ . Due to its applicabil-

ity to semi-supervised projection, we call it semi-supervised
PPCA or S2PPCA in this paper. Figure 1(c) illustrates this
model.

Under the additional assumptions that all the f`’s are
linear, it can be easily checked that all the likelihood terms
in this product are Gaussians. This makes the model easy
to learn. Other forms of f will be discussed in Section 5.3.

When N2 = 0, S2PPCA degrades to SPPCA which is
purely supervised. This means one can view SPPCA as a
special case of S2PPCA model with no unlabeled data. From
the perspective of probabilistic modeling, S2PPCA can also
be viewed as an SPPCA model where all the y’s for the N2

unlabeled points are missing. Due to this close relationship,
in the following we use SPPCA to denote both models unless
clearly specified.

3.4 Projections in SPPCA Models
Analogous to the PPCA model, in SPPCA models the

projection of data point x is directly given in the latent
variables z. If we know all the parameters Ω, calculating this
projection is simply an inference problem. To do this we can
apply Bayes’ rule and calculate the posterior distribution of
z. Therefore we can obtain not only the mean projection
vector, but also the uncertainty of the projection.

3.4.1 Projection for Fully Observed Data
When both inputs x and outputs y are observed, we can

calculate the posterior distribution of z given (x,y) as

P (z|x,y) ∝ P (x,y|z)P (z) = P (x|z)P (y|z)P (z). (2)

Since all the three terms on the right hand side are Gaus-
sians, this distribution is also Gaussian N (µz,Σz) with

µz = A−1

[
1

σ2
x

W>
x (x− µx) +

1

σ2
y

W>
y (y − µy)

]
, Σz = A−1,

where A is a K ×K matrix defined as

A =
1

σ2
x

W>
x Wx +

1

σ2
y

W>
y Wy + I. (3)

This means that the projection is µz with uncertainty Σz.

3.4.2 Projection for Pure Input Data
For a test data x∗ that has no output information, what

are the most likely latent variables z∗? This is our ultimate

goal in projection, and can also be done using Bayes’ rule

P (z∗|x∗) ∝ P (x∗|z∗)P (z∗). (4)

This turns out again to be a Gaussian N (µz|x,Σz|x), with

µz|x = (W>
x Wx + σ2

xI)
−1W>

x (x∗ − µx),

Σz|x = σ2
x(W>

x Wx + σ2
xI)

−1.

This result looks similar as that in PPCA model, but the
projection now is supervised because the learning of Wx is
influenced by those observed outputs. This is clarified in the
next section and will be theoretically proven in Section 5.

4. LEARNING IN SPPCA MODEL
Learning in probabilistic models reduces to maximizing

the data (log) likelihood with respect to all the model pa-
rameters. In the case of SPPCA model, the log likelihood
of the whole observation D is

L =

N∑
n=1

log

∫
P (xn|zn)P (yn|zn)P (zn) dzn,

which is however difficult to maximize directly. S2PPCA
has the same situation as well.

In this section we describe an expectation-maximization
(EM) learning procedure for both SPPCA and S2PPCA
models. EM iterates the two steps expectation (E-step) and
maximization (M-step) until convergence, and it is guaran-
teed to find a local minima of the data likelihood. In the
E-step, we fix the model parameters (Ω for SPPCA models)
and calculate the expected distributions of latent variables
(all the zn’s for SPPCA models), and in the M-step we fix
this distribution and maximize the complete data likelihood
with respect to the model parameters. As will be discussed
later, EM learning for SPPCA models is important because
it can deal with very large data sets, and it has, in particular
for SPPCA model with no unlabeled points, no local minima
problem up to a rotation factor (see Section 5). For simplic-
ity we only outline the update equations in the following
and omit details (see [17] for a similar derivation).

4.1 EM Learning for SPPCA
In the E-step, for each data point n, we estimate the distri-

bution of zn given observation (xn,yn). This is done using
(2), and we calculate the sufficient statistics as

〈zn〉 = A−1

[
1

σ2
x

W>
x (xn − µx) +

1

σ2
y

W>
y (yn − µy)

]
, (5)

〈znz>n 〉 = A−1 + 〈zn〉〈zn〉>, (6)

where 〈·〉 denotes the expectation under the posterior dis-
tribution P (zn|xn,yn) given in (2).

In the M-step, we maximize the complete log-likelihood

L̃ =

N∑
n=1

∫
P (zn|xn,yn) log

(
P (xn|zn)P (yn|zn)P (zn)

)
dzn

with respect to the model parameters, holding P (zn|xn,yn)
fixed from the E-step. This can be done by setting the
partial derivatives with respect to each parameter to be zero.
For means of x and y we have

µ̃x =
1

N

N∑
n=1

xn, µ̃y =
1

N

N∑
n=1

yn, (7)



Algorithm 1 Learning in SPPCA Model - Primal Form

Require: N data points {(xn,yn)}N
n=1 with inputs xn ∈

RM and outputs yn ∈ RL. A desired dimension K < M .
1: Calculate the sample means (7) and center the data by

xn ⇐ xn − µx, yn ⇐ yn − µy.
2: Initialize model parameters Ω randomly.
3: repeat
4: {E-step}
5: for n = 1 to N do
6: Calculate sufficient statistics (5) and (6);
7: end for
8: {M-step}
9: Update Wx and Wy via (8);

10: Update σ2
x and σ2

y via (9) and (10);
11: until the change of Ω is smaller than a threshold.
12: return Parameters Ω and projection vectors {zn}N

n=1

which are obtained from E-step. For test data x∗, the
mean projection z∗ = (W>

x Wx + σ2
xI)

−1W>
x (x∗ −µx).

which are just sample means. Since they are always the same
in all EM iterations, we can center the data by subtracting
these means in the beginning and ignore these parameters in
the learning process. So for simplicity we change the nota-
tions xn and yn to be the centered vectors in the following.

The mapping matrices Wx and Wy are updated as

W̃x = X>ZC−1, W̃y = Y>ZC−1, (8)

where for clarity we use matrix notations X = [x1, . . . ,xN ]>,
Y = [y1, . . . ,yN ]> and Z = [〈z1〉, . . . , 〈zN 〉]>. Matrix C is
defined to be a summation of all second sufficient statistics
of the data, i.e., C =

∑N
n=1〈znz>n 〉. Finally the noise levels

are updated as

σ̃2
x =

1

MN

[
N∑

n=1

‖xn‖2 + tr(W̃
>
x W̃xC)− 2 tr(XW̃xZ>)

]
(9)

σ̃2
y =

1

LN

[
N∑

n=1

‖yn‖2 + tr(W̃
>
y W̃yC)− 2 tr(YW̃yZ

>)

]
(10)

where ‖ · ‖ denotes vector 2-norm, and tr(·) denotes matrix
trace. The whole algorithm is summarized in Algorithm 1
for clarity.

4.2 EM Learning for S2PPCA
The log likelihood of the observations in S2PPCA model

is a sum of two parts: L1 = log P (D1) which contains all
the labeled points, and L2 = log P (D2) which includes all
unlabeled points. Therefore in E-step we need to deal with
them differently. For a labeled points (xn,yn) ∈ D1, the
latent variables zn are estimated as (5) and (6), the same
as in SPPCA model. For an unlabeled point xn′ ∈ D2, the
distribution of zn′ is only conditioned on input xn′ , which
can be calculated via (4), with sufficient statistics (the data
are assumed centered already):

〈zn′〉 = (W>
x Wx + σ2

xI)
−1W>

x xn′ , (11)

〈zn′z
>
n′〉 = (W>

x Wx + σ2
xI)

−1 + 〈zn′〉〈zn′〉>, (12)

where here 〈·〉 denotes the expectation under the posterior
distribution P (zn′ |xn′) given in (4).

The M-step is similarly obtained by setting the partial
derivatives of the complete log likelihood with respect to

Algorithm 2 Learning in S2PPCA Model - Primal Form

Require: N1 labeled data points {(xn,yn)}N1
n=1 and N2 un-

labeled points {xn′}N
n′=N1+1, with inputs x ∈ RM and

observed outputs y ∈ RL. A desired dimension K < M .
1: Calculate the sample means (7) and center the data by

xn ⇐ xn − µx, yn ⇐ yn − µy, xn′ ⇐ xn′ − µx.
2: Initialize model parameters Ω randomly.
3: repeat
4: {E-step}
5: for n = 1 to N1 do
6: Calculate (5) and (6) for labeled data n;
7: end for
8: for n′ = N1 + 1 to N do
9: Calculate (11) and (12) for unlabeled data n′;

10: end for
11: {M-step}
12: Update Wx and Wy via (13) and (14);
13: Update σ2

x and σ2
y via (15) and (16);

14: until the change of Ω is smaller than a threshold.
15: return Parameters Ω and projection vectors {zn}N

n=1

which are obtained from E-step. For test data x∗, the
mean projection z∗ = (W>

x Wx + σ2
xI)

−1W>
x (x∗ −µx).

each parameter to zero. For the two mapping matrices, we
have the updates

W̃x = (X>
1 Z1 + X>

2 Z2)(C1 + C2)
−1, (13)

W̃y = Y>Z1C
−1
1 , (14)

where X1, Z1, C1 are defined for labeled data, i.e., X1 =
[x1, . . . ,xN1 ]

>, Z1 = [〈z1〉, . . . , 〈zN1〉]>, C1 =
∑N1

n=1〈znz>n 〉,
and X2, Z2, C2 are similarly defined for unlabeled data. It
is seen that the update for Wx depends on both labeled data
and unlabeled data, while Wy only depends on the labeled
data. Updates for the noise levels are similar to those in
SPPCA model, except that for σ2

x we need to consider both
labeled data and unlabeled data:

σ̃
2
x =

1

MN

[
N∑

n=1

‖xn‖2 + tr
(
W̃

>
x W̃x(C1 + C2)

)

− 2 tr
(
W̃x(Z

>
1 X1 + Z

>
2 X2)

)]
(15)

σ̃
2
y =

1

LN1

 N1∑
n=1

‖yn‖
2

+ tr(W̃
>
y W̃yC1)− 2 tr(YW̃yZ

>
1 )

 (16)

The whole algorithm is summarized in Algorithm 2. When
N2 = 0, i.e., we have no unlabeled data, the learning algo-
rithm reduces to SPPCA learning.

4.3 EM Learning in Dual Form
It is known that when the number of data points is less

than the number of features, i.e., N < M , it is more efficient
to consider the dual solution for PCA in which we perform
SVD to the Gram matrix K = XX>. The canonical PCA is
sometimes called the primal solution. For SPPCA we have
similar dual solution, and it can be directly derived from the
EM learning in previous subsections. To avoid the tedious
mathematics in the main text, we put the derivation details
into Appendix and summarize the algorithm in Algorithm 3.



Algorithm 3 Learning in S2PPCA Model - Dual Form

Require: N1 labeled data points {(xn,yn)}N1
n=1 and N2 un-

labeled points {xn′}N
n′=N1+1, with inputs x ∈ RM and

observed outputs y ∈ RL. A desired dimension K < M .
1: Calculate Gram matrix with Kij = x>i xj and center it

using (27). Let yn ⇐ yn − µy.
2: Initialize Z, C and model parameters Ω randomly.
3: repeat {The EM-step}
4: Calculate Z1 and C1 using (21) and (22);
5: Calculate Z2 and C2 using (23) and (24);
6: Update σ2

x and σ2
y via (25) and (26);

7: until the change of Ω is smaller than a threshold.
8: return Parameters Ω and projection vectors {zn}N

n=1.
For test data x∗, we first calculate the inner prod-
uct vector k(X,x∗) = [x>1 x∗, . . . ,x>Nx∗]> and cen-
ter it using (28). Then the mean projection z∗ =

C
(
Z>KZ + σ2

xC
2
)−1

Z>k(X,x∗).

Since SPPCA can be viewed as a special case of S2PPCA,
here we only give the algorithm for S2PPCA model.

One important observation in the dual solution is that all
the calculation involving input data X can be done via inner
product, e.g., in the Gram matrix K we have Kij = x>i xj .
This motivates us to consider non-linear PCA where we first
map the data into a new feature space (via, e.g., basis func-
tions), and then perform PCA in that space with a proper
definition of inner product. This is the idea behind kernel
PCA [16], and we put detailed discussion into Appendix.

4.4 Computational Issues
In the primal form (i.e., Algorithm 1 and 2), the time

complexity for both algorithms is O
(
m(M + L)NK

)
, with

m the number of iterations.1 It is linear in the number
of data points N and the input dimension M . The space
complexity is O

(
(M + L)N

)
, which is also linear both in N

and M . The projection for a test data point is just a linear
operation and costs O(MK) time.

In the dual form, the time complexity is O(mN2K) plus
O(N2M) which is the one-time calculation of Gram matrix,
and the space complexity is O

(
N2
)
. Both of them are now

quadratic in the number of data points N . The time for
projecting a test data point is now O(NM). As the case
for PCA, in situations where M > N , i.e., we have more
features than the number of data points, the dual form is
more efficient than the primal form.

5. THEORETICAL JUSTIFICATION
In this section we provide some theoretical analysis for

SPPCA model and show how the supervised information
influences the projection. For clarity we put all the proofs
in Appendix.

5.1 Primal Form Solution
Recall that matrix Φ is a (M + L) × (M + L) diago-

nal matrix with all the noise levels in diagonal, i.e., Φ =
diag(σ2

x, . . . , σ2
x, σ2

y, . . . , σ2
y). We obtain the following the-

orem for mapping matrix Wx and Wy in SPPCA model.

1Note that we only need to calculate the diagonal entries for
matrix trace in the updates for noise levels.

This makes it easier to compare SPPCA with related models
such as PCA.

Theorem 2. Let S denote the normalized sample covari-
ance matrix for centered observations {(xn,yn)}N

n=1,

S =
1

N

N∑
n=1

Φ− 1
2

(
xn

yn

)(
xn

yn

)>

Φ− 1
2 =

(
1

σ2
x
Sx

1
σxσy

Sxy

1
σxσy

Syx
1

σ2
y
Sy

)
,

and λ1 ≥ . . . ≥ λ(M+L) be its eigenvalues with eigenvectors
u1, . . . ,u(M+L), then if the latent space is K-dimensional,
the following results hold:

(i) In SPPCA model Wx and Wy are calculated as

Wx = σxUx(ΛK − I)
1
2 R, (17)

Wy = σyUy(ΛK − I)
1
2 R,

where ΛK = diag(λ1, . . . , λK), Ux (Uy) contains the
first M (last L) rows of [u1, . . . ,uK ], and R is an ar-
bitrary K ×K orthogonal rotation matrix.

(ii) Projection z∗ for centered new input x∗ is given as

z∗ =
1

σx
R> (ΛK − I)−

1
2

[
U>

x Ux + (ΛK − I)−1
]−1

U>
x x∗.

In the special case that L = 0, the model is unsupervised
and S = 1

σ2
x
Sx holds. Then (17) degrades to σxUx(ΛK −

I)
1
2 R, which recovers the PPCA solution. Ux is seen to be

column orthogonal in this case, and the mapping z∗ of x∗

is standard PCA mapping when σ2
x → 0 and R = I. This

proves Proposition 1 which is a corollary of this theorem.
When L > 0, SPPCA solutions explain not only the sam-

ple covariance of inputs Sx, but also the intra-covariance of
outputs Sy (if L > 1) and the inter-correlations between
inputs and outputs, Sxy and Syx. Therefore, one column
of Wx is the direction that best explains the whole system
from the perspective of inputs, and thus are biased by the
outputs. Unlike the case of PCA, the learned Wx in SP-
PCA needs not to be column orthogonal. This means we
are only learning an affine mapping for x. If necessary, it is
straightforward to find the orthogonal basis by performing
SVD to matrix Wx.

In both cases the learned Wx has an arbitrary rotation
factor R. This is due to the spherical noise model for x, and
the mapping is invariant under a rotation of latent space, as
can be seen from the equation for z∗. Therefore the SPPCA
model can only find the latent principal subspace, which has
been mentioned in [17] for PPCA. Thus the EM algorithm
in Section 4 can find different mappings with different ini-
tializations, but they define the same subspace and do not
change the structure of projected data. If necessary, this
ambiguity can be removed by eigen-decomposing

W>
x Wx + W>

y Wy = R>(ΛK − I)R

and uncovering the rotation factor R. A final comment is
that it is of theoretical importance but may be not applicable
to applications, since we have to solve an eigenvalue problem
for a square matrix of size M + L.

5.2 Dual Form Solution
In the dual form, we do not obtain the mapping matrix

Wx, but the projected vectors directly. The following theo-
rem gives the solution in the dual form.



Theorem 3. Let K̂ = 1
σ2

x
K + 1

σ2
y
YY>, and λ1 ≥ . . . ≥

λN be its eigenvalues with eigenvectors v1, . . . ,vN , then if
the latent space in SPPCA is K-dimensional,

(i) The projections of training data, which are encoded in
rows of matrix Z, are calculated as

Z =
√

NVK(I−NΛ−1
K )

1
2 R (18)

where ΛK = diag(λ1, . . . , λK), VK = [v1, . . . ,vK ],
and R is an arbitrary K ×K orthogonal matrix.

(ii) Projections z∗ for new input x∗ is given as

z∗ =
√

NR>D− 1
2

(
V>

KKVK + D
)−1

V>
Kk(X,x∗),

where D = I−NΛ−1
K .

It is seen from this theorem that when there is no out-
put in SPPCA, i.e., K̂ = 1

σ2
x
K, SPPCA reduces to the dual

form of PCA as desired. This theorem directly applies for
non-linear mappings if the inner product is defined in a re-
producing kernel Hilbert space (RKHS) [16], and leads to
the kernel PCA solution when L = 0.

Theorem 3 presents a nice explanation for SPPCA model:
We just use the output information to modify the Gram
matrix of input data, and control the trade-off via the ratio
of the noise levels. The complexity of the model remains
the same (i.e., quadratic in N) no matter how many output
dimensions we have.

5.3 Discussion
Previous two subsections give some theoretical results for

SPPCA model. There exists however no such a closed-form
solution for S2PPCA. One can only empirically analyze the
behavior of this model.

In the EM learning algorithm we are learning the maximal
likelihood (ML) estimate for the two mapping matrices Wx

and Wy. In probabilistic modeling we can assign a prior to
them to reduce overfitting. For instance, we can assign an
isotropic Gaussian prior for each column of Wx, and if we
consider the maximal-a-posterior (MAP) estimate this prior
corresponds to a smooth term in the update equations. For
simplicity we do not consider this prior here.

In this paper we mainly discuss the simplest form for func-
tion f , which is linear in z. One can define other forms for
specific tasks, but then we lose the nice closed-form solu-
tions described in Theorem 2 and 3, and in the E-step of
the EM learning the posterior distribution of z is no longer
a Gaussian (see (2)). To solve this problem we can ap-
ply the EM-EP learning algorithm [9] to approximate each
likelihood P (y`|z) = P (y`|f`(z,Θ), σ2

y) as a Gaussian for z
sequentially. Then the learning has higher time complexity
due to the expectation-propagation (EP) [13] step. Empir-
ically comparing this algorithm with the basic ones would
be part of the future work.

6. EXPERIMENTS
In this section we empirically investigate the performance

of SPPCA models. The supervised tasks here are multi-
class classification and multi-label classification. Our basic
setting is that we train a supervised projection model using
the input features and label information, and then test the
classification performance for test data using the projected

Table 1: Statistics of the multi-class data sets

Category # Data # Dim # Class
Yale Face 165 1024 15
ORL Face 400 1024 40
PIE Face 11554 1024 68

YaleB Face 2414 1024 38
11 Tumors Gene 174 12533 11
14 Tumors Gene 308 15009 26

Lung Cancer Gene 203 12600 5
20Newsgroup Text 19928 25284 20

TDT2 Text 8692 35452 20

Table 2: Statistics of the multi-label data sets

Category # Data # Dim # Class
Yeast Gene 2417 103 14
RCV1 Text 23149 15500 103

features. Since the test data are assumed known in the
training phase, for S2PPCA we will be able to use these
unlabeled data to train the mapping.

6.1 Data Sets
We test the proposed model on 9 multi-class and 2 multi-

label classification problems. These problems include face
recognition, gene classification and text categorization. Some
statistics of these data sets are shown in Table 1 and 2.

For face recognition we use four data sets Yale, ORL, PIE
and YaleB (the extended Yale Face Database B).2 The Yale
data set contains 165 grayscale images in GIF format of 15
individuals. There are 11 images per subject, one per dif-
ferent facial expression or configuration such as center-light,
left-light, happy or surprised. The ORL database contains
10 different images of each of 40 distinct subjects. For some
subjects, the images were taken at different times with vary-
ing lighting and facial details. The PIE databases we use
contains 170 images for each of 68 people. These images are
the five near frontal poses under different illuminations and
expressions. For YaleB we have 38 individuals and around
64 near frontal images under different illuminations per in-
dividual. All the faces are manually aligned, cropped and
resized to 32× 32 pixels. We then normalize each image to
have Euclidean distance 1.

We consider three gene expression datasets 11 Tumors,
14 Tumors and Lung Cancer for gene classification.3 11 Tumors
describes 11 various human tumor types, and 14 Tumors
describes 14 tumor types with 12 normal tissue types. For
Lung Cancer we need to classify 4 lung cancer types and
normal tissues. The characteristic of these data is that the
number of data points is small, but the input dimensionality
is very high.

The two textual datasets we use are taken from 20News-
group and TDT2. 20Newsgroup contains 20,000 news arti-
cles posted in 20 news groups. We remove the words that
occur less than 5 times, and obtain 19,928 documents with
25,284 words. The TDT2 corpus we use consists of the doc-
uments collected during the first half of 1998 and taken from
6 sources, including 2 newswires (APW, NYT), 2 radio pro-
grams (VOA, PRI) and 2 television programs (CNN, ABC).

2These data sets can be downloaded from
http://www.ews.uiuc.edu/ dengcai2/Data/data.html.
3They are available at http://www.gems-system.org.



Table 3: Results for Multi-class Classification Tasks. Bold face indicates lowest error rate. Symbols ? indicate
that the best method is significantly better than the competitors (p-value 0.01 in Wilcoxon rank sum test).

Task Full PCA LDA PLS SPPCA S2PPCA
Yale 0.5656± 0.0394 0.6690± 0.0333 0.6133± 0.0471 0.6440± 0.0383 0.7007± 0.0402 0.7121± 0.0393
ORL 0.3308± 0.0347 0.5593± 0.0263 0.5302± 0.0444 0.5505± 0.0294 0.5459± 0.0305 0.5287± 0.0286
PIE 0.6988± 0.0085 0.9325± 0.0032 0.7066± 0.0177 0.8781± 0.0058 0.8780± 0.0116 0.8452± 0.0037

YaleB 0.6360± 0.0160 0.9895± 0.0023 ?0.5328± 0.0251 0.9546± 0.0066 0.9701± 0.0088 0.9800± 0.0034
11 Tumors 0.3161± 0.0566 0.5409± 0.0490 0.4505± 0.0755 N/A 0.5226± 0.0636 0.5130± 0.0491
14 Tumors 0.6084± 0.0360 0.7363± 0.0286 0.7161± 0.0481 N/A 0.7312± 0.0371 0.7138± 0.0296

Lung Cancer 0.3680± 0.1148 0.3768± 0.0939 0.3225± 0.1658 N/A 0.4287± 0.1338 0.3896± 0.0923
20Newsgroup 0.6135± 0.0155 0.9070± 0.0177 0.9140± 0.0208 N/A 0.9030± 0.0162 0.9126± 0.0116

TDT2 0.1875± 0.0233 0.6664± 0.0657 0.7834± 0.0782 N/A 0.6236± 0.0739 ?0.3686± 0.0349

(a) Projection dimension K = 5.

Task Full PCA LDA PLS SPPCA S2PPCA
Yale 0.5656± 0.0394 0.5993± 0.0312 0.5279± 0.0460 0.5698± 0.0386 0.6101± 0.0447 0.5916± 0.0433
ORL 0.3308± 0.0347 0.4049± 0.0293 0.3625± 0.0468 0.4048± 0.0349 0.3832± 0.0409 0.3509± 0.0287
PIE 0.6988± 0.0085 0.8573± 0.0051 0.5496± 0.0185 0.8062± 0.0068 0.7105± 0.0161 0.6942± 0.0047

YaleB 0.6360± 0.0160 0.9308± 0.0046 ?0.3846± 0.0282 0.8762± 0.0108 0.7976± 0.0242 0.7986± 0.0117
11 Tumors 0.3161± 0.0566 0.3682± 0.0655 0.3926± 0.0667 N/A 0.3801± 0.0624 ?0.3297± 0.0664
14 Tumors 0.6084± 0.0360 0.6868± 0.0288 0.6212± 0.0430 N/A 0.6322± 0.0363 0.6120± 0.0331

Lung Cancer 0.3680± 0.1148 0.3493± 0.0996 0.3225± 0.1658 N/A 0.6235± 0.1520 0.3517± 0.1063
20Newsgroup 0.6135± 0.0155 0.9039± 0.0172 0.8943± 0.0292 N/A 0.8931± 0.0242 0.8548± 0.0138

TDT2 0.1875± 0.0233 0.5531± 0.0742 0.6878± 0.1068 N/A 0.5346± 0.0885 ?0.2794± 0.0327

(b) Projection dimension K = 10.

Task Full PCA LDA PLS SPPCA S2PPCA
Yale 0.5656± 0.0394 0.5437± 0.0414 0.5793± 0.0438 0.5216± 0.0435 0.5093± 0.0391 0.5001± 0.0589
ORL 0.3308± 0.0347 0.3323± 0.0310 0.2944± 0.0398 0.3366± 0.0331 0.3271± 0.0372 0.2755± 0.0286
PIE 0.6988± 0.0085 0.7999± 0.0060 0.4352± 0.0186 0.7454± 0.0092 0.5912± 0.0146 0.5361± 0.0090

YaleB 0.6360± 0.0160 0.8304± 0.0096 ?0.3004± 0.0227 0.7695± 0.0148 0.5619± 0.0276 0.5652± 0.0172
11 Tumors 0.3161± 0.0566 0.3267± 0.0635 0.3926± 0.0667 N/A 0.4470± 0.0691 0.3012± 0.0582
14 Tumors 0.6084± 0.0360 0.6379± 0.0360 0.5822± 0.0388 N/A 0.5669± 0.0347 0.5674± 0.0372

Lung Cancer 0.3680± 0.1148 0.3584± 0.0953 0.3225± 0.1658 N/A 0.6487± 0.1540 0.4092± 0.1107
20Newsgroup 0.6135± 0.0155 0.9160± 0.0220 0.8001± 0.0425 N/A 0.6254± 0.0420 0.6568± 0.0146

TDT2 0.1875± 0.0233 0.4582± 0.1441 0.1524± 0.0622 N/A 0.1566± 0.0509 0.1520± 0.0210

(c) Projection dimension K = 20.

It consists of 11,021 documents which are classified into 96
semantic categories. In our experiments, we keep the largest
20 categories and remove those documents that are assigned
to more than one categories. This leaves us 8,692 documents
with totally 35,452 words. For both of these datasets we use
TF-IDF features and normalize each document to have Eu-
clidean distance 1.

For multi-label classification we use Yeast and RCV1. The
Yeast dataset is formed by micro-array expression data and
phylogenetic profiles with 2,417 genes in total and 103 input
dimensions. There are 14 groups and each gene can belong
to multiple groups. The other data is a subset of the RCV1-
v2 text data set, provided by Reuters and corrected by Lewis
et al. [11]. We use the training set provided by Lewis, which
contains 103 labels, 23,149 documents with 15,500 words
after we remove words that occur less than 5 times. We also
extract TF-IDF features and normalize each document to
have length 1.

6.2 Experimental Setting
For the multi-class classification tasks, we randomly pick

up a small number of labeled data points for training (2
for those datasets with less than 500 data points, and 5
for the others), and test the classification error rate on the
unlabeled data. We will in general compare the following
six algorithms if applicable:

• PCA: Unsupervised projection. Note that in our ex-
periments we use both the labeled and unlabeled data
to perform the mapping.

• LDA: Linear discriminant analysis.

• PLS: Partial least squares.

• SPPCA: Supervised probabilistic PCA.

• S2PPCA: Semi-supervised probabilistic PCA. We al-
low S2PPCA to use the test data to train the mapping.

• Full: All the features are used without projection.

For all the projection methods, we project the data onto 5,
10 and 20 dimensional space, and train a nearest neighbor
classifier for the test points using new features with Eu-
clidean distance. For Full we directly train the nearest
neighbor classifier using original features. For PLS, SPPCA
and S2PPCA, we translate the one column output to the
“One of C” setting, i.e., each class has one column with
binary labels.

For multi-label classification, we pick up 5 positive exam-
ples from each label to obtain the training data. For all
projection methods we project to 5, 10 and 20 dimensions,
and then train a linear SVM classifier for each label. The
comparison metrics are F1-Macro, F1-Micro and AUC (Area
Under ROC Curve) score. The candidate algorithms are al-
most the same as multi-class setting, except LDA which is
not applicable to this task. The C in SVM is fixed as 100,
and from our experience it is not sensible for all these algo-
rithms.

In all these comparisons, the iteration number for SPPCA
and S2PPCA is set to 1000. Both the noise levels σ2

x and σ2
y

are set to 10−5 initially. It turns out that PLS gets memory



Table 4: Results for Multi-label Classification Tasks. Bold face indicates best performance.

K Model Yeast RCV1
F1-Macro F1-Micro AUC F1-Macro F1-Micro AUC

Full 0.3813± 0.0102 0.5161± 0.0154 0.5571± 0.0094 0.2796± 0.0055 0.5053± 0.0095 0.6030± 0.0063
PCA 0.2318± 0.0354 0.5600± 0.0220 0.5279± 0.0108 0.0467± 0.0063 0.3540± 0.0106 0.5208± 0.0072

5 PLS 0.3432± 0.0231 0.5795± 0.0233 0.5556± 0.0094 N/A N/A N/A
SPPCA 0.3823± 0.0120 0.5332± 0.0188 0.5641± 0.0087 0.1155± 0.0071 0.4433± 0.0089 0.5568± 0.0079
S2PPCA 0.3927± 0.0134 0.5890± 0.0126 0.5842± 0.0104 0.1312± 0.0118 0.4620± 0.0236 0.5762± 0.0162

Full 0.3813± 0.0102 0.5161± 0.0154 0.5571± 0.0094 0.2796± 0.0055 0.5053± 0.0095 0.6030± 0.0063
PCA 0.3113± 0.0304 0.5916± 0.0146 0.5493± 0.0101 0.0843± 0.0124 0.4003± 0.0162 0.5347± 0.0072

10 PLS 0.3756± 0.0154 0.5517± 0.0177 0.5610± 0.0095 N/A N/A N/A
SPPCA 0.3924± 0.0117 0.5459± 0.0180 0.5685± 0.0084 0.1797± 0.0112 0.4474± 0.0124 0.5872± 0.0087
S2PPCA 0.3985± 0.0103 0.5914± 0.0106 0.5896± 0.0107 0.1956± 0.0110 0.4735± 0.0198 0.6012± 0.0098

Full 0.3813± 0.0102 0.5161± 0.0154 0.5571± 0.0094 0.2796± 0.0055 0.5053± 0.0095 0.6030± 0.0063
PCA 0.3723± 0.0171 0.5537± 0.0204 0.5614± 0.0097 0.1320± 0.0086 0.4419± 0.0095 0.5504± 0.0061

20 PLS 0.3799± 0.0123 0.5208± 0.0158 0.5585± 0.0102 N/A N/A N/A
SPPCA 0.3859± 0.0133 0.5517± 0.0151 0.5640± 0.0097 0.2297± 0.0119 0.4690± 0.0126 0.6044± 0.0054
S2PPCA 0.3976± 0.0142 0.6012± 0.0190 0.5921± 0.0119 0.2536± 0.0117 0.4921± 0.0102 0.6090± 0.0076

problems when applied to large dimensions. We repeat each
experiments 50 times independently,4 and the results are
illustrated in .

6.3 Analysis of Results
The first observation is that in most cases the supervised

PCA model is better than unsupervised PCA model. This
means by using the output information, we are able to de-
rive a more meaningful projection for the supervised tasks.
When the dimensionality is larger (e.g., 20), SPPCA and
S2PPCA obtain the best results for most of the tasks.

When we compare SPPCA model with other supervised
projection methods, SPPCA is consistently better than PLS,
but in some tasks worse than LDA (e.g., for YaleB). The rea-
sons may be that SPPCA models are still based on the PCA
assumptions for input features, so the mapping is strongly
biased by PCA. When PCA projection directions are almost
useless for classification, like for YaleB dataset, the SPPCA
projections are also not informative enough. In this case
discriminative methods like LDA can often do a good job.
In other situations where PCA does help, SPPCA can in
general be better than pure discriminative methods.

When we compare SPPCA and S2PPCA, in most cases
S2PPCA gets better results. For some tasks the difference
is very big (e.g., for TDT2). This indicates that by incor-
porating the unlabeled data we can learn a better mapping.
But S2PPCA is in general slower than SPPCA because it
has to consider all the test data in the training phase. In this
case 1000 iterations may be not enough to get the algorithm
converge. This may also be part of the reason why S2PPCA
is inferior to other methods for some tasks like PIE.

Most of the supervised projection methods can get a bet-
ter performance than Full even if they only project the
data into a very low dimensional space. This is important
because we can not only speed up the system, but also im-
prove the performance. PCA in our experiments uses the
input features of both labeled and unlabeled data, thus it
sometimes can get better results than Full method (e.g., for
Yale and Lung Cancer).

The results for multi-label classification show that S2PPCA
is consistently better than other methods. S2PPCA also
shows very good scalability in our experiments, since for
20Newsgroup and RCV1 it need to handle 20,000 docu-

4For the four face recognition tasks we use the available split
versions.

ments with more than 15,000 features. Most of the other
algorithms fail on these large datasets.

7. CONCLUSION
We proposed a supervised PCA and a semi-supervised

PCA in this paper, and derived an efficient EM algorithm
for model learning. Empirical results show that the pro-
posed model obtain good performance and scale well for
large datasets.
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APPENDIX

A. DERIVATION OF DUAL FORM
We only focus on S2PPCA model here. Let C = C1 +C2,

and

X =

(
X1

X2

)
, Z =

(
Z1

Z2

)
, K = XX> =

(
X1X

>

X2X
>

)
=

(
K1

K2

)

then (13) can be written as W̃x = X>ZC−1. This leads to

W̃
>
x W̃x = C−1Z>KZC−1, (19)

W̃
>
x x = C−1Z>k(X,x), (20)

which are the building blocks for the non-linear extension.
The matrix K = XX> has each entry the inner product of
data points of corresponding row and column, Kij = x>i xj ,
and k(X,x) = Xx is a N -dimensional column vector with
the i-th entry x>i x.

In the E-step, we first rewrite A as

Ã =
1

σ2
x

C−1Z>KZC−1 +
1

σ2
y

C−1
1 Z>

1 YY>Z1C
−1
1 + I.

Applying (19) and (20) in sufficient statistics (5), we get

Z̃1 =

[
1

σ2
x

K1ZC−1 +
1

σ2
y

YY>Z1C
−1
1

]
Ã
−1

, (21)

by collecting 〈zn〉 in columns and transposing it. Sufficient
statistics (6) can be written in terms of C1:

C̃1 =

N1∑
n=1

〈znz>n 〉 = N1Ã
−1

+ Z̃
>
1 Z̃1. (22)

Similarly, we obtain the following two updates for unlabeled
data:

Z̃2 =
1

σ2
x

K2ZC−1

[
1

σ2
x

C−1Z>KZC−1 + I

]−1

, (23)

C̃2 = N2

[
1

σ2
x

C−1Z>KZC−1 + I

]−1

+ Z̃
>
2 Z̃2. (24)

In M-step, we only need to update variances σ2
x and σ2

y as

σ̃2
x =

1

MN

[
tr(K)− tr(Z̃

>
KZ̃C̃

−1
)
]
, (25)

σ̃2
y =

1

LN

[
tr(YY>)− tr(Z̃

>
YY>Z̃C̃

−1
)
]
, (26)

which can be easily verified from (9) and (10).
Therefore, it can be seen that all interesting terms in the

EM algorithm take input data into account only via the
inner product. This nice property allows us to extend the
SPPCA model to non-linear mappings by defining a kernel
function κ(·, ·) for each pair of input data instead of the
normal inner product [16].

Since we are now working on the centered data in the
feature space, we can achieve this by modifying the kernel
matrix K as

K̃ = K− 1

N
11>K− 1

N
K11> +

1

N2
11>K11>, (27)

where 1 denotes the all one column vector of dimension N .
For the kernel vector k(X,x∗) given test data x∗, it can also
be centered by

k̃ = k− 1

N
11>k− 1

N
K1 +

1

N2
11>K1. (28)

B. PROOF OF THEOREM 2
We give a sketch here. The mapping matrices are obtained

by finding a fixed point in the EM algorithm in Section 4.
For this proof we use notation W := ( 1

σx
W>

x , 1
σy

W>
y )>,

and (3) can be rewritten as A = W>W + I. Plugging this
and (5), (6) into (8) yields an update equation only related

to W: W̃ = SW
[
W>SW + W>W + I

]−1 (
W>W + I

)
.

At the fixed point, this simplifies to SW = WW>W + W.
Let W = UDV> be the SVD of W. Then each column
u of U satisfies Su = (1 + d2)u, with d the corresponding
singular value. Therefore, solving an eigenvalue problem for
S gives the mapping matrix W, and plugging them into (4)
gives the mapping t∗ for x∗. �

C. PROOF OF THEOREM 3
We give a sketch here. We define B = ZC−1 and rewrite

(21) and (22) using only B. This leads to NB
(
I + B>KB

)
=

KB. To solve B we denote the SVD of B>KB as QDQ>,
then we can obtain B>B = 1

N
QD (I + D)−1 Q> after some

mathematics. Then define U := BQ
√

ND−1/2 (I + D)1/2,
we have U>U = I and U>KU = N (I + D). This clearly
defines a SVD for K, so by definition we have Λ = N (I + D),
and then we can solve for B from U and Λ, which yields

B = 1√
N

U
(
I−NΛ−1

)1/2
Q>. This recovers (18) with

R = Q> and the update equation for new test data can
be easily obtained. �


