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Abstract.
We introduce a problem we call Cooperative cut, where the goal is to find a minimum-cost graph cut but where

a submodular function is used to define the cost of a subsets of edges. That means, the cost of an edge that is
added to the current cut set C depends on the edges in C. This generalization of the cost in the standard min-cut
problem to a submodular cost function immediately makes the problem harder. Not only do we prove NP hardness
even for nonnegative submodular costs, but also show a lower bound of Ω(|V |1/3) on the approximation factor
for the problem. On the positive side, we propose and compare four approximation algorithms with an overall
approximation factor of min

{
|V |/2, |C∗|, O(

√
|E| log |V |), |Pmax|

}
, where C∗ is the optimal solution, and Pmax

is the longest s, t path across the cut between given s, t. We also introduce additional heuristics for the problem
which have attractive properties from the perspective of practical applications and implementations in that existing
fast min-cut libraries may be used as subroutines. Both our approximation algorithms, and our heuristics, appear
to do well in practice.

1 Introduction
The standard minimum cut (min-cut) problem asks to find a minimum-cost cut in a graph G = (V,E). This is
defined as a set C ⊆ E of edges whose removal cuts the graph into two separate components with nodes X ⊆ V
and V \X . A cut is minimal if no subset of it is still a cut; equivalently, it is the edge boundary

δX = {(vi, vj) ∈ E | vi ∈ X, vj ∈ V \X} ⊆ E.

of X ⊆ V and partitions the graph into two connected components. The cost f(C) of the cut C is traditionally
measured as the number of edges in C, or as a sum of edge weights w(e): ftrad(C) =

∑
e∈C w(e). We extend the

class of cost functions from such modular (or sometimes called linear) functions to the broad class of submodular
set functions. Submodular functions allow a form of “cooperation” to exist between subsets of edges — this
cooperation may reduce the cost of the entire subset compared to the (modular) summed cost of the single edges.

A function f : 2E → R on subsets of edges is submodular if for all sets A, B ⊆ E, it holds that

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

A modular function, such as ftrad, satisfies this equation with equality. An alternative definition of submodularity
refers to diminishing marginal returns: adding an element e to A ⊂ E increases the cost no more than adding e to
a smaller subset B ⊆ A, i.e.,

f(A ∪ {e})− f(A) ≤ f(B ∪ {e})− f(B).

A set function is monotone if f(B) ≤ f(A) for all B ⊆ A ⊆ E. It is normalized if f(∅) = 0. Here, we
always assume the cost function to be normalized. Unlike arbitrary functions, submodular functions are attractive
in that they are quite general and widely applicable, yet there are often efficient algorithms for their either exact
or approximate optimization. For more details about submodular functions and their optimization, the reader may
refer to the surveys by Lovász [33], Fujishige [13], Narayanan [34].

Bestowed with these definitions, we can formally state the problems we address.

Problem 1 (Cooperative cut (CoopCut)). Find a partition (X,V \X) of the nodes that minimizes the cost f(δX)
measured by a submodular function f : 2E → R defined on subsets of E.

The (s, t) cut version of CoopCut seeks for a min-cost cut that separates two distinct nodes s and t.
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Problem 2 (Cooperative (s, t) cut (Coop-(s, t) Cut)). Given s, t ∈ V , find a partition (X,V \ X) of the nodes
with s ∈ X , t /∈ X that minimizes the cost f(δX) measured by a submodular function f : 2E → R.

Submodular functions occur in various contexts, and submodularity has been an important concept in com-
binatorics, economics, operations research, and game theory. Recently, it has also enjoyed increased attention
in Machine Learning [29, 30, 31]. One prominent example of a submodular function is entropy. Furthermore,
“discounted price functions”1 of the form f(A) = h

(∑
e∈A w(e)

)
for a concave, increasing function h and non-

negative weightsw(e) [33], occur in economics and illustrate diminishing returns. Other examples include matroid
rank functions and label cost functions, where we count the number of different labels in a set of labeled elements;
this sum can also be weighted. In general, one may also think of submodular costs as “cooperative” costs: the
cost of a set of elements can be significantly smaller than the sum of the single-element costs. The additional cost
contributed by a newly chosen element e strongly depends on the elements that have been chosen so far and may be
far less than the cost f(e) of the single element.2 We will refer to this cost reduction as cooperation between e and
the relevant edges in the chosen set. As an example, cooperation for entropy corresponds to statistical dependence.
For the label cost, two elements cooperate if they have the same label, because that label is only counted once.
Often, cooperation can be related to similarity, but it can also be global and general as in the case of discounted
price functions. In any case, the interaction between elements, rather than being arbitrary, is limited to that which
is expressible by a submodular function f .

We wish to stress that the cost function is a submodular function on subsets of edges3. In contrast, the standard
(edge-modular cost) graph cut problem can be viewed as the minimization of a submodular function defined
on subsets of nodes. While modular edge costs lead to submodular node costs, submodular edge costs do not
necessarily lead to submodular node costs.

CoopCut also differs from submodular flows [13], (solvable in polynomial time), with a polynomial number of
calls to a submodular function minimization (SFM) oracle), where submodularity defines feasible flows but the
cost of an edge set is still modular.

CoopCut can be treated in either of two ways: 1) as a constrained minimization of a submodular function on
edges, where the constraint is that the solution must be a cut; or 2) as the unconstrained problem of finding a
“good” set of nodes ∅ 6= X ⊂ V . For this latter case, the cost function is g(X) , f(δX). As mentioned above,
however, this node-based function is in general not submodular. More interestingly, Section 3.1 illustrates that
the unconstrained problem with cost function g does not provide enough information about the structure of the
problem to yield any form of approximation guarantees without an exponential number of queries. Therefore,
we consider the first edge-based approach to be the fruitful path to approximation algorithms and heuristics. In
contrast, the standard minimum cut problem can be solved exactly by minimizing the corresponding cost function
on subsets of nodes [40]: modular costs apparently retain enough structural information when seen through the
lens g(X) , f(δX) to avoid loosing polynomiality, while submodular edge costs do not.

1.1 Contributions

The main contributions of this work are hardness results for CoopCut and a theoretical and empirical comparison of
approximation algorithms. We prove the NP hardness of CoopCut by a reduction from the graph bisection problem,
and also prove a lower bound of |V |1/3−ε/(1 + δ) on its approximation factor for monotone cost functions, for
any constant ε, δ > 0; for non-monotone cost functions, we show an inapproximability result (Section 2). On the
positive side, we propose four approximation algorithms (which we refer to as PMF, MBI, EA, CR) with different
upper bounds, as well as a heuristic greedy algorithm and a general heuristic improvement step (Section 3).

Table 1 summarizes the theoretical results of this paper. The approximation algorithms are based on two basic
strategies: first, an approximation of the cost function that is easier to optimize, and second, a relaxation with a
convex cost function. The first strategy includes three approaches: a local restriction of the submodularity that
yields a tractable dual problem (PMF), a modular approximation with an extended search space (MBI), and finally,
a geometric approximation of the cost function (EA). The three function approximations together with the convex

1The definition of “discounted price functions” is as used in [17].
2Subadditive functions also have this property, but, in contrast to submodular functions, general subadditive functions cannot

be minimized in polynomial time even without constraints. For the example in Section 3.1, no approximation factor can be
guaranteed in general, and neither for a minimization with cut constraints. Monotone submodular functions allow for linear
approximation guarantees (in n), and non-monotone submodular functions too if we remove the minimality constraint.

3For this reason, we referred to CoopCut as “edge-submodular cut” in a contribution to the NIPS 2009 workshop on Discrete
Optimization in Machine Learning.
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Table 1: Summary of our results for monotone submodular costs (all normalized and non-negative). In this paper, C∗ ⊆ E
is the optimal cut, ∆s(C

∗) the nodes on the s side of C∗ that are incident to a cut edge, and ∆t(C
∗) the correspondent on

the t side. The longest path (by number of edges) between s and t is Pmax. For the min-cut, the s and t sides of the cut are
assigned arbitrarily. The better upper bound for Algorithm III holds only for matroid rank functions or, with a constant factor,
for bounded integer-valued polymatroid rank functions.

Problem Lower Bound Upper Bound
Alg. PMF Alg. MBI Alg. EA Alg. CR

(s, t) cut Ω(n1/3) min{∆s(C∗),∆t(C∗)} |C∗|
√
m+ 1 or |Pmax| ≤ n− 1

monot. (rank fcts.) ≤ n/2 O(
√
m log n)

min-cut min{∆s(C∗),∆t(C∗)} |C∗|
√
m+ 1 or mins,t separ. by C∗ |Pmax|

monot. ≤ n/2 O(
√
m log n) ≤ n− 1

relaxation (CR) make up the four approximation algorithms. The last, heuristic algorithm is a greedy method. This
algorithm as well as a generic improvement step only considers submodular interactions with a reference set.

In a range of experiments (Section 4), we show that some of the algorithms already perform well on many
instances. To push specific algorithms to their theoretical limits, we present some worst-case instances of CoopCut
and empirical results for them.

1.2 Notation and minimality
We denote by G = (V,E) an undirected graph with n = |V | nodes and m = |E| edges. The cost function
f : 2E → R is monotone submodular and normalized, unless stated otherwise. Sets of edges are denoted by
capital letters A,B,C,Q,R ⊆ E; sets of nodes by X,Y ⊆ V . The letters s, t, x, y stand for nodes, the letter
e for an edge. Edge-wise weights are denoted by w(e), and the respective (modular) cost of a set A of edges is
w(A) =

∑
e∈A w(e). The set C denotes the set of all minimal cuts in a given graph: in short, a CoopCut finds an

element in argminC∈C f(C).
The indicator function 1[·] is one if the argument is true, and zero otherwise.

1.2.1 Minimality
Problems 1 and 2 ask for a cut that is the boundary of a set of nodes and partitions the graph into two connected

components. For a normalized, monotone cost function (which is always nonnegative), there is always a min-cut
C∗ that is such a minimal cut, since the cost of any cut B ⊂ A that is a subset of C∗ cannot be higher than f(C∗).
Thus, there is always a min-cost cut that is an edge boundary δX for some connectedX ⊂ V . For a non-monotone
cost function, this minimality does not necessarily hold, since non-monotonicity allows that f(B) < f(δX) for a
superset B ⊃ δX of a cut. If the solution only has to partition the graph, but may be a superset of a minimal cut,
then the non-monotone problem can be approximated to within a factor of n− 1 by our Algorithm CR.

The same issue arises if negative edge weights are allowed in the standard min-cut problem and make ftrad non-
monotone. For the resulting cost, the solution has commonly been constrained to be a (minimal) multi-cut, that is,
it must lie in the cut polytope [11], as for example asked for in [6, 10, 21, 37]. As opposed to the standard min-cut,
the (multi-cut) version with arbitrary edge weights is NP hard [21]. We can adapt our problems to the multicut
constraint as well, but we do not provide further details in this paper.

Our algorithms and experiments mostly focus on monotone submodular cost functions, such as rank functions,
entropy and nondecreasing discounted price functions.

1.3 Motivation and applications
Our initial motivation for CoopCut comes from the problem of finding good separators in probabilistic graphical
models, for which there are several applications (e.g. [4]).

A completely different application comes from the analysis of attack graphs in computer security (see [48] for
references). The problem here is an (s,t) cut problem in a directed graph, where the nodes s and t represent the
initial and the success state of an intruder, respectively. The edges are state transitions, labeled by the respective
action (or “atomic attack”) of the attacker. The protector can hinder each type of atomic attack for a specific cost,
the cost of that particular label. An (s-t) min-cut gives the cheapest set of actions whose blockage will prevent an
intrusion and thereby protect the system.
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Several other applications, for instance in image processing, arise from targeting the cooperation to subsets of
specific elements.

1.4 Graph cut problems with submodular costs: an overview
Not only the min-cut problem, but many standard cut problems can be generalized to have submodular costs.
Before we start with details about edge-submodular min-cuts, we introduce generalized versions of several standard
graph cut problems, where we replace the linear cost function on edges by a submodular cost function on subsets
of either edges or nodes. Only some of the node-based extensions have been analyzed in [44]. Here we only list
the problems as an overview, and in the sequel analyze two particular cases, namely edge-submodular min-cuts
and (s, t)-cuts.

The first type of generalization replaces the modular cost function on subsets of edges, that is, the sum of edge
weights, by a submodular cost function on subsets of edges. This is the direction we take in this paper. Table 2
lists the edge-based extension for a number of well-known problems. It shows both the general min-cut version
and the (s, t) cut version. The latter has the additional constraint that specified nodes s, t must be separated by the
cut. The “(s, t)” version of a multicut problem (often called a “multiway cut” [45]) demands that each of the k
partitions created by the cut must contain exactly one of k specified terminal nodes.

The second type of generalization refers to the modular edge cost function as a particular submodular function
on subsets of nodes and replaces this particular function by an arbitrary submodular function on subsets of nodes.
The resulting problems are listed in Table 3. The node-based extension is not a cut in the strict sense, since it
might not involve the structure of a graph at all (if the common cost is replaced by something independent of the
edges). Still, Svitkina and Fleischer [44] call their extended problems “cuts”. We retain this name, but, as opposed
to them, we restrict “cut” problems to have a symmetric cost function, that is g(X) = g(V \X) for all X ⊆ V .
Table 3 shows a collection of generalizations for the node-based cost. The algorithms in [44] for Sparsest Cut and
Min-Quotient Cut can be extended to (s, t) cuts in a straightforward way, as we show in Appendix A.

For node-based submodular generalizations, the (simple) (s, t) cut problem may be much harder than its min-cut
version. The latter, which is an unconstrained minimization of a symmetric submodular function, can be solved in
O(n3T ) time [40], where T is the time to evaluate f on any set4. The (s, t) cut, on the other hand, is as hard as
general submodular function minimization [40], for which the best known algorithm has complexity O(n5T +n6)
[38]. With the traditional cost ftrad, the difference in complexity is not as pronounced. The edge-based submodular
cost functions might again show a tendency similar to that of the node-based generalization: our lower bound is
stronger for the (s, t) cut problem than for the general min-cut. In the (s, t) case it holds even for matroid rank
functions, the simplest case of submodular functions. The observation about (s, t) cuts being harder goes along
with the fact that min-cut can be reduced to (s, t) cut via at most O(n) (s, t) cuts, whereas the other direction is
not as straightforward.

4In the value-oracle model, T is treated as constant.
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Name Cost Constraints (s, t) cut Min-cut
LB UB LB UB

Standard Min-cut f(δX) =
∑
e∈δX w(e)

modular
– 1 1 1 1

CoopCut f(δX) matroid rank – n1/3−ε

(1+δ) [H] min{n/2, |C∗|,
. O(

√
m), |Pmax|} [H]

? min{n/2, |C∗|, O(
√
m),

. mins∈X,t/∈X |Pmax|} [H]

CoopCut f(δX) nonneg., mono-
tone submodular

– n1/3−ε

(1+δ) [H] min{n/2, |C∗|,
O(
√
m log n), |Pmax|} [H]

? min{n/2, |C∗|, O(
√
m),

. mins∈X,t/∈X |Pmax|} [H]

Coop Min-
quotient Cut

f(δX)
min{|X|,n−|X|} – NP hard NP hard

Coop Ratio/ Nor-
malized Cut

f(δX)

w(X)w(X)
; w(X) = |X|

or w(X) = deg(X)

– NP hard NP hard

Coop Sparsest
Cut

f(δX)P
i:|X∩{si,ti}|=1 di

– NP hard NP hard

CoopCut, modu-
lar normalization

f(δX)
h(X) , h modular NP hard NP hard

CoopCut, sub-
modular normal-
ization

f(δX)
h(X) , h submodular NP hard NP hard

Coop b-balanced
Cut

f(δX) min{w(X), w(X)} ≥ bn NP hard NP hard

Coop load balanc-
ing

maxi fi(δXi) ? NP hard

Coop Multicut f(
⋃
i δXi) NP hard [9] NP hard for arbitrary k, open

for fixed k

Table 2: List of submodular generalized cut problems where the cost is a function defined on subsets of edges, [H] means that the result is proved in this report. Here, δX ⊆ E denotes
the set of edges between X and V \X , and f(δX) the cost function. In addition, there is the multi-agent version of each of these problems, analogous to the versions in [16]. If there
is no specification, f is a general submodular function. An asterisk means that the algorithm is randomized. Here, n = |V |, m = |E|, Pmax is the length of the longest path between
s and t. The problems are NP hard if their modular correspondent is NP hard, since submodular functions include modular ones. Multicut for fixed k is in P with traditional costs
ftrad [19], thus the generalized version cannot “inherit” NP hardness. The Coop b-balanced min-cut is in P for at least one specific submodular function: f(A) = maxe∈A w(A) [23],
however, the general problem is still NP hard since it is so for a modular f .
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Name Cost Constraints (s, t) cut Min-cut
LB UB LB UB

Standard min-cut g graph cut function – 1 1 1 1

NCoop Min-cut g(X), g symmetric sub-
modular

– like general non-symmetric SFM
[40, Sec. 4]

1 1 1 1

NCoop Min-
quotient Cut

g(X)
min{|X|,n−|X|} – NP hard O(

√
n

lnn )∗ [44] (see text) NP hard O(
√

n
lnn )∗ [44]

NCoop Ratio/
Normalized Cut
(sub-case of Sp.
Cut)

g(X)

w(X)w(X)
; w(X) = |X|

or w(X) = deg(X)

– NP hard O(
√

n
lnn )∗ [44] (see text) NP hard O(

√
n

lnn )∗ [44]

NCoop Sparsest
Cut (NCSC)

g(X)P
i:|X∩{si,ti}|=1 di

– NP hard O(
√

n
lnn )∗ [44] (see text) NP hard O(

√
n

lnn )∗ [44]

NCoop cut,
modular normal-
ization

g(X)
h(X) , h modular – NP hard O(

√
n

lnn )∗ [44] (NSSC) NP hard O(
√

n
lnn )∗ (NSSC) [44]

NCoop cut, sub-
modular normal-
ization

g(X)
h(X) , h submodular NP hard NP hard

NCoop b-
balanced Cut

g(X) min{w(X), w(X)} ≥ bn NP hard NP hard b′-balanced cut, with cost
within O

( √
n√

lnn(b−b′)

)∗
of

any b-balanced cut, b′ <
b ≤ 1/2; b′ ≤ 1/3 [44]

NCoop load bal-
ancing

maxi gi(Xi) – NP hard O(
√

n
lnn )∗ [44]

NCoop Multicut
∑
i g(Xi) – NP hard 2−2/k (monot. or symm.

g [41, 49]), k − 1 (g ≥ 0)
[49]

NP hard? 2−2/k (monot. or symm.
g [41, 49]), k − 1 (g ≥ 0)
[49]

Table 3: List of submodular generalized cut problems where the cost is defined on subsets of nodes with the help of a symmetric submodular function g(X) – we refer to them as
“node-cooperative” (NCoop). An asterisk means that the algorithm is randomized. Here, n = |V | and m = |E|, and “SFM” is submodular function minimization. For references for
unconstrained SFM, see [13]. Note: Svitkina and Fleischer [44] solve the problems for a more general, non-symmetric nonnegative g, but symmetric nonnegative g are included in the
upper bounds. Their lower bounds hold for non-symmetric g, and not trivially for a symmetric g.
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1.5 Other related work

A variety of previous work relates to our problem. The traditional min-cut and (s, t) cut problems are special
cases of CoopCut, since modular functions are also submodular. A lot of work has been devoted to these problems
and lead to efficient polynomial-time algorithms (see e.g. [1, 27]). Both the traditional (s, t) cut and its dual, the
max-flow problem, have been generalized in certain directions, but different from ours. Apart from traditional cuts,
we are only aware of one special case of CoopCut in the literature. We summarize next the related generalizations
of the primal and dual cut problem.

First, Hassin et al. [22] extend the cost function in the min-cut problem to non-submodular set functions of the
form f(A) = maxi fm(A∩Pi) for a known partition {P1, . . . Pk} of the edge set E and a modular function fm. If
each Pi is interpreted as a color, then a min-cut with respect to f minimizes the maximum number of edges of the
same color in the cut. A submodular cost could, on the other hand, minimize the total number of colors or labels
in the cut and thus aim for a “uniform” cut. This latter, possibly with weights for labels, is the cost of Label Cuts,
a special case of CoopCut. Zhang et al. [48] prove the NP hardness of such label (s, t) cuts and a lower bound

of 2(logn)1−(log logn)−c

, which is weaker than our bound of Ω(n1/3) for general nonnegative submodular functions.
Regarding upper bounds, their approximation guarantee of O(

√
m) is achieved by our (general) Algorithm EA if

the cost is integral.
In general, a recent interest has arisen to replace modular functions with submodular ones in standard combi-

natorial problems. For example, Svitkina and Fleischer [44] consider submodular load balancing, sparsest cut and
balanced cut. Submodular vertex cover, spanning trees, shortest paths, and matchings are addressed by Goel et al.
[16, 17]. These works contain many examples how submodular costs render the combinatorial problem harder,
even if the traditional modular-cost version is already NP hard. The function approximation in [18] makes al-
gorithms for linear costs amenable to approximately solve problems with submodular costs, as exploited in our
Algorithm EA. Further recent work considers submodular minimization with set cover constraints [25], uncapaci-
tated facility location with submodular constraints [8], or submodular maximization with matroid constraints [46].

Second, several extensions have addressed the dual problem of the traditional min-cut, the max-flow problem.
In the submodular flow problem (see references in [13]), a submodular function generalizes the “Kirchhoff laws”
and defines feasible flows by restricting the net outflow out of a set of nodes. The cost, however, is still modular,
and the problem solvable in polynomial time. Polymatroidal max-flow (PF) [32] comes closer to CoopCut, since
it generalizes capacity constraints to be determined by locally submodular functions: two submodular capacity
functions at each node restrict the in- and outflow of that node, respectively. The inflow (resp. outflow) must lie
within the submodular polyhedron associated with the corresponding inflow (resp. outflow) capacity. We use PF
for a polynomial-time approximation to CoopCut (Algorithm PMF).

1.6 More preliminaries about submodular functions

Next, we briefly provide a few additional definitions and details that will be used in the sequel.
First, our algorithms work for both directed and undirected graphs. Algorithms PMF, CR and the greedy algo-

rithm are formulated for directed graphs. We transform an undirected graph into a directed one by replacing each
edge {vi, vj} by two opposing edges (vi, vj) and (vj , vi) with equivalent (parallel) cost.

A useful object is the characteristic vector χA ∈ {0, 1}E of a set A ⊆ E. It has entries χA(e) = 1 if e ∈ A and
χA(e) = 0 otherwise.

The most basic class of submodular functions are matroid rank functions, which are normalized, monotone,
integral and satisfy f(e) ∈ {0, 1} for all e ∈ E. We mostly consider polymatroid rank functions that are normalized
and monotone but may be nonintegral and may have f(e) > 1.

The class of subadditive functions is a superset of the class of submodular functions. A function is subadditive
if for all A,B ⊆ E, it holds that f(A) + f(B) ≥ f(A ∪B).

An important concept in combinatorics is the submodular polyhedron

Pf = {x ∈ RE | x(A) ≤ f(A) for all A ⊆ E}.

For any submodular f , it holds that f(A) = maxy∈Pf y ·χA. The Lovász extension f̃ of f is the convex extension
f̃ : (R+

0 )E → R with f̃(x) = maxy∈Pf y · x, so f̃(χA) = f(A) for all A ⊆ E [33]. This definition shows that
g = argmaxg∈Pf g · x is a subgradient of f̃ in x [13, Lemma 6.19], because it implies that g · x′ ≤ f̃(x′) for all
x′ ∈ R+

0 , and, in consequence, f̃(x′) − f̃(x) ≥ g · (x′ − x). The vector g can be found via the greedy algorithm
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[12, 33]: sort the elements in x so that x(π(1)) ≥ x(π(2)) ≥ . . . ≥ x(π(m)), then g(ei) = f({eπ(1), . . . , eπ(i)})−
f({eπ(1), . . . , eπ(i−1)}).

2 Hardness
We start by proving that submodular edge weights render CoopCut NP hard, as opposed to the standard modular-
cost min-cut problem. We then prove that no polynomial-time algorithm can guarantee an approximation factor
better than Ω(n1/3) for Coop-(s, t) cut with a monotone cost, and that essentially none can guarantee any approx-
imation factor for non-monotone cost functions. All hardness results hold for Coop-(s, t) cut with nonnegative,
monotone costs. If we relax the monotonicity condition, then the lower bound also holds for Coop min-cut by
adding an edge (s, t) like in the proof of NP hardness.

The proofs here work for both directed and undirected graphs.

2.1 CoopCut is NP hard
It is well known that the common min-cut problem with nonnegative, modular edge weights becomes hard if edge
weights can also be negative, or if size constraints are added on the partitions [47].

If we allow an arbitrary submodular function f to determine the edge costs, then it is immediately clear that the
CoopCut problem becomes NP hard. For example, a simple modular edge-cost function with both positive and
negative weights is submodular. Another example is correlation clustering [3] (CC), where a graph’s edges are
marked with either + or − corresponding to the case where the adjacent nodes are “similar” or “different”, and
the goal is to cluster the nodes to minimize the number of differences within the clusters and the similarities across
clusters. A version of CC corresponds to CoopCut with a modular f that takes positive and negative values (see
Appendix B). CC for a fixed number of partitions is NP hard [42] but does have a PTAS on complete graphs, and
an O(

√
log n) approximation algorithm for a 2-partition [15]. With strictly negative modular f , CoopCut becomes

the max-cut problem, also NP hard but with a constant-factor approximation [27].
In the sequel, we prove that even with a nonnegative f , CoopCut is hard, by using a reduction from graph

bisection5.
Theorem 1 (NP hardness for nonnegative costs). CoopCut is NP hard for nonnegative submodular costs. Coop-
(s, t) cut is NP hard even for monotone, nonnegative, integer-valued submodular costs (that is, integer-valued
polymatroid rank functions).
Definition 1 (Graph Bisection (GB)). Given an undirected graph G = (V,E) with weights w : E → R+

0 , find a
partition V1, V2 ⊂ V of the nodes, such that |V1| = |V2| = |V |/2 and

∑
e∈E∩(V1×V2) w(e) is minimal.

GB is NP hard [14] and does not have a PTAS [26]. Let GB = (VB , EB)

s t

v1

vn

Es Et

Figure 1: Reduction graph. The
vertical subgraph with dashed
edges is GB .

be an instance of GB with n nodes. We create an auxiliary graph G and sub-
modular function f whose minimum CoopCut C∗ bisects GB optimally. That
is, the restriction of C∗ to EB is the optimal solution to the GB of GB . G has
two additional nodes s, t and 2n + 1 additional edges. To form G, retain GB
with the costs on EB and connect the additional nodes s and t to every vertex in
GB with corresponding new edge sets Es and Et. Also connect s with t. Thus,
G = (VB ∪ {s, t}, EB ∪ Es ∪ Et ∪ {(s, t)}). The minimum CoopCut will (i)
separate s and t, (ii) separate the nodes in VB into two equal-sized partitions by
assigning them to either s or t, that is, cut n/2 edges of each Es and Et, and (iii),
have minimum cost with respect to the edges EB . We will enforce the structural
constraints (i) and (ii) with submodular penalty functions f1 and f2, respectively,

and then add the original cost f3(A) =
∑
e∈A∩EB w(e). The penalty functions will be defined below. The overall

cost is
f(A) = α1f1(A) + α2f2(A) + α3f3(A),

defined on E(G) with αi > 0 to be specified later. First, let

f1(A) =

{
0 if (s, t) ∈ A
|A| if (s, t) /∈ A.

This function is submodular and favors (i.e., is zero for) the inclusion of edge (s, t). Together with a large weight
α1, f1 ensures that any good cut must separate s and t. This separation implies that at least n edges in Es ∪ Et
must be cut as well.

5Only after completing our proofs we came to know about [48]. They address a sub-case of CoopCut, hence their proof of
NP hardness of (s, t) label cuts implies the NP hardness of ES (s, t) cuts. We still include our proof since it is different and
illustrates the expressive power of submodular costs. The lower bound for the special case of label cuts in [48] is weaker than
the one we prove here.
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Constraint (ii) addresses the equipartition. First, any (s, t) cut must include at least n edges from Es ∪ Et. A
balanced cut of VB assigns n/2 nodes to s, cutting their edges to t, and the other n/2 nodes to t, cutting their edges
to s. Hence, our penalty function should reach its minimum when the cut includes as many edges from Es as from
Et, namely n/2 = |Es|/2 = |Et|/2, and not both edges (s, v) and (v, t) for a node v. The straightforward solution
would be a function f2(A) = g(|A|), where g is a convex function that reaches its minimum at n/2. However, for
f2 to be submodular, g must be concave [33] and thus cannot reach its minimum at an arbitrary value. We could
define two functions, each acting on half of Es, that reach their minimum at their boundary. But this strategy will
favor a particular subset of size n/2, and we want only the size to be relevant. The rescue comes in combining
structure and cost, and in randomizing over functions that favor a specific configuration. “Randomization” means
to use the expectation over drawing one such function uniformly at random. This expectation is proportional to the
sum over the values of all possible such functions. We will derive the following solution in the next section:

f2(A) = (|As|+ |At|)D(n)− (|As||At| − |As∩t|)D′(n− 1),

where D(n) and D′(n − 1) are suitable constants depending on n. The first term (involving |As| + |At|) when
minimal ensures that we cut no more than n edges in Es ∪ Et, which is the minimum required (the negative term
cannot change this fact: below, we argue that f2 is monotone). Therefore, for the right D(n), we may assume
that |As|+ |At| = n is constant. We also need to ensure that the sizes are appropriate (each n/2) which is where
the rest of the derivation comes in. The term |As||At| is maximal if |As| = |At| = (|As| + |At|)/2. Finally, the
penalty for As∩t disfavors the “overlap” of As and At, that is, cutting off both (vi, s) and (vi, t) for a node vi.
Thanks to the choice of D(n) and D′(n − 1), the function f2 is nonnegative and monotone and minimal for any
cut that cuts exactly half of the edges to s and to t, with no “overlap”.

If D(n) is the number of derangements of n elements, and D′(n) is the number of “derangements” where one
specific element is allowed all mappings (including σ(i) = i), then f2 can be derived as a sum of D(n) rank
functions (see next subsection), and is thus nonnegative, submodular and monotone. The monotonicity implies
that a cut with more than n edges in Es ∪ Et will have a higher cost than the optimal bipartition that cuts n edges
inEs∪Et. In this case, the constants areD(n) = n!

∑n
k=0(−1)k/k! [43], andD′(n−1) =

∑n−1
k=0(n−2)!(n−1−

k)!(−1)k (see Appendix C). Both are computable in polynomial time, which is necessary for a polynomial-time
reduction.

Lastly, we choose α3 = 1, α2 = 10
∑
e∈EB w(e) and α1 = 5α2n

2D(n).

2.1.1 Derivation of f2

For the interested reader, we derive the function f2 as a sum of matroid rank functions. Since rank functions are
monotone submodular, f2 must be so as well.

Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be two sets of n linearly independent vectors, depicted as
nodes in Figure 2(a). Each xi has a linearly dependent correspondent in Y , illustrated by a connecting line. The
connections form a mapping X → Y – actually a permutation σ : {1, . . . , n} → {1, . . . , n}, xi 7→ yσ(i). Each
edge (vi, s) ∈ Es corresponds to an element φ((vi, s)) = xi in X , and equally, each edge in Et to an element in
Y via φ((vi, t)) = yi. For each permutation σ, we get a rank function

rσ(A) = r̂σ(φ(As) ∪ φ(At)).

The rank r̂σ measures the rank of the set of vectors in X ∪ Y chosen by A, based on the dependencies determined
by σ. This rank is the total number of vectors, |As|+ |At|, minus the number of coincidences (vector pairs across
φ(As) and φ(At) that are dependent) under the current permutation; see also Figures 2(b), 2(c). That is,

r̂σ(φ(As) ∪ φ(At)) = |As|+ |At| −
∣∣{(xi, yσ(i))

}n
i=1
∩ (φ(As)× φ(At))

∣∣︸ ︷︷ ︸
coincidences

. (1)

It can also be seen as the number of connected components in the subgraph defined by φ(As ∪At).
Consider now a fixed permutation σ. For a fixed size of As ∪At, the rank r̂σ(φ(As) ∪ φ(At)) is minimal if the

number of coincidences is maximal, that is, φ(At) = σ(φ(As)), which implies |As| = |At|.
However, a single permutation restricts the minimizing At to satisfy φ(At) = σ(φ(As)). For more freedom, we

consider a large set of permutations: the set S of all derangements, that is, all permutations with σ(i) 6= i for all i.
Then f2 is

f2(A) =
∑
σ∈S

rσ(A).
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x1 x2 x3 xn

y1 y2 y3 yn

σ

(a) Mappings via σ.

φ(As)

φ(At)

(b) One coincidence.

φ(As)

φ(At)

(c) Many coincidences.

Figure 2: Mappings and coincidences. (a) Mappings between elements xi = φ(vi, s) and yi = φ(vi, t) via the derangement
σ: the vectors xi and yσ(i) are linearly dependent. (b,c) Illustration of coincidences: The rank function r̂σ for the permutation
depicted here is 4 + 4 − 1 = 7 in (b), and 4 + 4 − 4 = 4 in (c). The coincidences, that is, linearly dependent vectors across
φ(As) and φ(At), are marked in red. They can only contribute one to the rank, but are counted once in |As| and once in |At|,
thus the negative correction is needed.

φ(As)

φ(At)

x3 x6

Figure 3: Counts of coincidences and forbidden mappings. The set φ(As∩t) is shaded in light blue. The vector x3 can have
coincidences σ(3) with all yj ∈ φ(At), indicated by black arrows; vector x6 ∈ φ(As∩t) is never mapped to y6 ∈ φ(At). The
forbidden connections are red, whereas the possible ones for x3 and x6 are black.

Normalized by |S|, this quantity is the expected rank if a derangement σ is chosen uniformly at random from S.
Why derangements? Derangements are exactly those permutations for which σ(φ(e)) 6= φ(e), that is, including
(s, v) never favors the includion of (v, t). This restriction from general permutations will contribute a penalty for
any cut that separates a node from both s and t.

As mentioned above, f2(A) is submodular since it is a sum of rank functions. From Equation (1), this sum of
ranks can be seen to consist of two terms:∑

σ∈S

rσ(A) = |S|
(
|As|+ |At|

)
−
∑
σ∈S

∣∣{(xi, yσ(i))
}n
i=1
∩ (φ(As)× φ(At))

∣∣
= |S|

(
|As|+ |At|

)
−

∑
xi∈φ(As)

∑
σ∈S

∣∣(xi, yσ(i)) ∩ ({xi} × φ(At))
∣∣ (2)

The first term is the total number of derangements, |S| = D(n), times the total number of vectors in φ(As)∪φ(At).
This quantity would be the sum of ranks if all vectors were linearly independent in all derangements. To correct
for the dependencies, we subtract the total number of coincidences in all derangements as above.

We will count the total number of coincidences as the sum of the number of coincidences for each xi in φ(As),
as shown in (2). Consider a given xi ∈ φ(As). How many derangements map it to an element in φ(At) to yield
a coincidence? We know that any xi ∈ φ(As) cannot be mapped to its correspondent yi ∈ φ(At) by any σ. To
account for this restriction, partitionAs into a setAs∩t andAs\As∩t as in Figure 3. Each element in the projection
φ(As \ As∩t) of the latter set can be mapped to any element yk ∈ φ(At). For each such (fixed) pairing (xi, yk),
any of the remaining n − 1 elements xj can be mapped to any y` with j 6= `. In fact, the element xk can be
mapped to any remaining target in Y , since its counterpart yk is already “taken” by xi. Let D′(n − 1) denote the
number of such permutations of n− 1 elements (pair (xi, yk), i.e., σ(i) = k, is fixed), where one specific element
xk can be mapped to any other of the n − 1 elements, and the remaining elements must not be mapped to their
counterparts (σ(j) 6= j). Then there are D′(n − 1) derangements σ realizing σ(i) = k, for each yk ∈ φ(At),
yielding |At|D′(n− 1) coincidences for each xi in φ(As \As∩t), so |As \As∩t| · |At| ·D′(n− 1) in total.

Each element xi in the remaining φ(As∩t) can be mapped to |At| − 1 elements in φ(At), since its counterpart
yi is in φ(At). This leads to another |As∩t| · (|At| − 1) ·D′(n− 1) coincidences. Hence, in total we get

f2(A) = (|As|+ |At|)D(n)−
∑

xi∈As\As∩t

∑
yk∈At

D′(n− 1)−
∑

xi∈As∩t

∑
yk∈At,k 6=i

D′(n− 1)

= (|As|+ |At|)D(n)−
(
|As| − |As∩t|

)
|At|D′(n− 1)− |As∩t|(|At| − 1)D′(n− 1)

= (|As|+ |At|)D(n)− (|As||At| − |As∩t|)D′(n− 1),
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withD(n) = n!
∑n
k=0(−1)k/k! [43], andD′(n−1) =

∑n−1
k=0(n−2)!(n−1−k)!(−1)k, as derived in Appendix C.

A similar construction with entropies yields the same cost function. Let the nodes xi, yi be random variables in
a graphical model, each with an entropy H(xi) = H(yj) = c for all i, j. All variables in X are mutually indepen-
dent, and so are the variables in Y . The linear dependencies of the vector above are now statistical dependencies
with H(xi, yσ(i)) = H(xi) = c and H(xi, yj) = 2c if j 6= σ(i). The rank rσ corresponds to the joint entropy of
the variables φ(As ∪At), and the rest is the same as above.

2.2 Lower bounds for Coop-(s, t) cut

In this section, we show lower bounds on the approximation factor of Coop-(s, t) cut.

Theorem 2 (Lower bound for Coop-(s, t) cut with nonnegative, monotone costs). For any fixed ε > 0, δ > 0, any
(randomized) approximation algorithm for Coop-(s, t) cut with monotone cost needs exponentially many queries
for an approximation factor of or better than n1/3−ε/(1 + δ).

2.2.1 Proof of Theorem 2
We prove Theorem 2 with the technique of [18] that was also used in

ts

Figure 4: Ladder graph

[16, 25, 44]. The proof shows a type of input where for a polynomial number
of evaluations, it is very unlikely that we can distinguish between two cost func-
tions f , h that may appear as input. Their optima differ by a large factor, say
α, and any solution for f that is within a factor of α of the optimum would be
enough evidence to discriminate f and h. Thus, no polynomial-time algorithm

can guarantee an approximation ratio better than α, since it would have to distinguish between the two functions.
To achieve a low probability of discrimination, we randomly pick a cut R ⊂ E and design f so that for a query
Q ⊆ E, f(Q) 6= h(Q) only if |Q ∩ R| is large, an event of exponentially small probability. By a union bound
argument, the probability of having f(Q) 6= h(Q) for any query in a set of polynomially many queries is still very
small — too small for an approximation guarantee better than α.

Consider the graph in Figure 4. It has k columns of edges, ` parallel paths from s to t, m = k` edges and
n = m − ` + 2 nodes. Any (s, t) separator cuts each path at least once. Thus, there are k` minimal (s, t) cuts.
To sample a random cut R ⊂ E with |R| = `, we choose one edge from each path uniformly at random with
probability 1/k. Let β = (1 + δ)`/k < ` and

h(Q) = min{|Q|, `}; f(Q) = min{|Q ∩R|+ min{|Q ∩R|, β}, `}. (3)

The functions f and h are equal on most queries, and differ only if f(Q) < h(Q). This is only the case if Q
overlaps with R in more than β edges, and with R in not too many edges (i.e., less than `− β). In particular on all
other cuts, f(Q) = h(Q) = `. We choose k = m1/3−ε and ` = m2/3+ε, so the ratio of the optima of h and f is
`/β = m1/3−ε/(1 + δ). Finding the optimum for f means to be able to distinguish h and f .

We will make these ideas more formal and compute the probability P (f(Q) 6= h(Q)) = P (f(Q) < h(Q)) for
a given Q ⊆ E. If |Q| ≤ `, then f(Q) < h(Q) only if β < |Q ∩R|, and the probability

P (f(Q) < h(Q)) = P (|Q ∩R| > β)

increases as Q grows. If, on the other hand, |Q| ≥ `, then the probability

P (f(Q) < h(Q)) = P (|Q ∩R|+ min{|Q ∩R|, β} < `)

decreases as Q grows. Hence, the probability of difference is largest when |Q| = `.
So let |Q| = `. Then we can distribute Q over at most d = ` and at least d > β paths to make P (|Q ∩R| > β)

nonzero. If Q covers b ≤ k edges of a path, then the probability that Q includes the edge in this path that is in R
is b/k. The expected overlap is E[ |Q ∩ R| ] = |Q|/k = `/k. Since the edges in R were sampled independently
from identical distributions, we can bound the probability of a large intersection via Hoeffding’s bound [24]:

P
(
|Q ∩R| ≥ (1 + δ)`/k

)
≤ exp(−2δ2`2/(dk2)) ≤ exp(−2δ2`/k2) = exp(−2m3εδ2).

Since the probability of f(Q) < h(Q) is exponentially small in m = n + ` − 2, the theorem holds for the bound
m1/3−ε/(1 + δ) and thus also for n1/3−ε/(1 + δ) < m1/3−ε/(1 + δ).
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Note that the proof only relies on nonnegative monotone submodular functions, in fact, truncated matroid rank
functions [18]. Rounding ` and β to the closest integer will make h and f true (integer-valued) rank functions, so
a rounded bound holds even for matroid rank functions.
2.3 Worst-case versus special case

We showed that going from modular to submodular cost functions makes the min-cut and (s, t) cut problems
much harder. However, it is not always the case that a submodular cost function makes the problem harder than
the modular-cost version. As an example, the “bottleneck” cost f(A) = maxe∈A w(e) is submodular but leads
to min-cut problems that are easy to optimize by a greedy algorithm: initially, each node is a cluster and then
greedily we merge the two clusters that are connected by the heaviest edge (see also Section 3.1). Even stronger,
the modular-cost graph bisection problem is NP hard [14], whereas graph bisection with bottleneck cost is in P
[23].

Nevertheless, for the general class of (monotone) submodular functions, our hardness results hold.

3 Approximation Algorithms

After showing the hardness of CoopCut, we will analyze four approximation algorithms and compare them to a
number of heuristics. All of them solve the (s, t) cut problem, and Algorithm MBI and EA also directly the min-cut
problem. The other algorithms solve the general min-cut by repeating the (s, t) cut for a fixed s with all possible t
and selecting the best of those cuts6.

Before delving into the details of the algorithms, some general thoughts will help to get a better picture of the
problem. First, we illustrate that an approximation algorithm must use the graph structure. Second, we briefly
introduce the general principles we use, and finally we devote a subsection to each algorithm and its guarantees.

In the sequel, C∗ ⊆ E denotes the optimal cooperative cut, and n = |V | the number of nodes. Unless stated
otherwise, in this section we assume f to be nonnegative and monotone.

3.1 Optimizing a mere node function is hard

A preliminary thought about algorithms addresses the need to use the graph structure. Queyranne’s algorithm for
minimizing symmetric submodular functions [40] finds the standard (modular) min-cut without explicitly using the
graph structure, which is only implicit in defining the node-based cost g(X) = f(δX). Instead of minimizing an
edge-based submodular function with difficult cut constraints, can we in general solve the unconstrained problem
minX⊂V g(X) for a nontrivial X 6= ∅, V ?

If f is nonnegative, normalized, and monotone, then g is subadditive, i.e., g satisfies g(X) + g(Y ) ≥ g(X ∪ Y )
for all X,Y ⊆ V . This has no general benefit though: The following example shows that not fully exploiting the
graph structure makes the minimization problem inapproximable at any arbitrary factor b > 0. Let R ⊆ V be an
arbitrary set of nodes and b > 1 a large number, and define a subadditive function g : 2V → R as

g(X) =


1 if X = R or X = V \R
0 if X = ∅ or X = V

b otherwise.

If R is unknown and the trivial solutions ∅, V forbidden, then only exponentially many evaluations of g can
guarantee a solution with a cost lower than b times the minimum. This difficult function is the node-based cost
g(X) = f(δX) of CoopCut with edge costs f(A) = maxe∈A w(e) and

w(e) =

{
1 if e ∈ δR
b otherwise.

Knowing the graph structure (thereby breaking apart g), however, we can find the optimum of this particular
example in polynomial time by greedily merging node pairs that are connected by “heavy” edges of weight b.

6If the adjacency matrix of the graph is not symmetric, that is, the cut direction matters, then we do 2(n− 1) (s, t) cuts by
also swapping s and t each time.
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3.2 Techniques

The difficulty of CoopCut lies in the non-locality of the edge cooperations with respect to the graph structure. That
is, the joint cost of two disjoint edge sets A,B can be much smaller than the sum of their costs: f(A ∪ B) �
f(A) + f(B). The cooperation may only become evident for large sets, as in the proof of the lower bounds –
and there are exponentially many such sets, of which only a few might enjoy cooperation. Exactly this reduction
in cost for specific edges, however, can determine the minimum cut, again as in the proof for the lower bound
(Section 2.2). The minimum cut can have a lot of edges (n2/4 in the examples in Section 4.2) that have a low joint
cost.

If submodular cooperations are restricted to the sets of edges that share an adjacent node, and the cost function
is modular on anything coarser, then the problem can be exactly solved in polynomial time (Section 3.5 and [32]).
Even simpler, the common min-cut problem with a modular cost completely lacks edge cooperations; they can
be viewed as limited to single edges. Two of our approximation algorithms, Algorithm PMF and MBI, rely on
a local approximation of the submodularity, that is, we split the set E into small local sets Ei (single edges or
neighborhoods). The new cost function may be submodular within a set, but behaves in a modular way across
sets, i.e., f̂(A) =

∑k
i=1 fi(Ei ∩ A). If the Ei are a particular improved version of edge neighborhoods δv of

single nodes v, then minimizing f̂ corresponds to the dual problem of polymatroidal network flows [32], a strategy
used by Algorithm PMF. Algorithm MBI reduces Ei to single edges, that is, a modular approximation f̂ , and then
tests a set of candidate cuts in the min-cost cut basis of the modular approximation. Another strategy, applied
by Algorithm EA, is to first approximate the cost function by a submodular function that is amenable to efficient
optimization [18]. The efficiency of the optimization again relies on algorithms for the modular case; in the end,
a modular function is minimized. Finally, f can be seen as a function on indicator vectors {0, 1}E . The Lovász
extension [33] extends this function to a convex function on (R+

0 )E . Algorithm CR solves this convex relaxation
of CoopCut, retaining the cut constraints.

3.3 A useful approximation Lemma

For Algorithms PMF and EA that rely on a simplifying approximation of the cost function, the following Lemma
will be useful.

Lemma 1. Let Ĉ = arg minC∈C f̂(C) for a global approximation f̂ with f(A) ≤ f̂(A) ≤ αf(A) for all A ⊆ E,
and C∗ = argminC∈C f(C). Then

f(Ĉ) ≤ αf(C∗).

In particular, it is enough if f(C∗) ≤ f̂(C∗) ≤ αf(C∗) holds for C∗.

Proof. Since f̂(Ĉ) ≤ f̂(C∗), it is f(Ĉ) ≤ f̂(Ĉ) ≤ f̂(C∗) ≤ αf(C∗).

3.4 A reference-based improvement step

Any solution C ⊆ E returned by any of the four algorithms might be improved upon by a post-processing step
that finds a cut minimizing the bounds [35]

f(B) ≤ h1(B,C) , f(C)−
∑

e∈C\B

ρe(E \ {e}) +
∑

e∈B\C

ρe(C) (4)

f(B) ≤ h2(B,C) , f(C)−
∑

e∈C\B

ρe(C \ {e}) +
∑

e∈B\C

ρe(∅), (5)

where the gain is defined as ρA(D) , f(A ∪ D) − f(D). In particular bound h1 includes the cooperations of
any edge in E \ C with the reference set C, and thus goes beyond the local restriction of submodularity in some
approximations.

The minimizer of h` can be found via a modular min-cut with modified edge weights. Set

w1,C(e) =

{
ρe(E \ {e}) if e ∈ C
ρe(C) otherwise;

w2,C(e) =

{
ρe(C \ {e}) if e ∈ C
ρe(∅) otherwise.
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With these weights, the modular weight of a cut B is∑
e∈B

w1,C(e) =
∑

e∈C∩B
ρe(E \ {e}) +

∑
e∈B\C

ρe(C) = h1(B)− f(C) +
∑
e∈C

ρe(E \ {e})︸ ︷︷ ︸
constant w.r.t.B

,

and analogously for w2,C . If the optimizer of hj has a lower f -cost than the initial C, we can take it as the next
comparison set C and iterate. The pseudocode for this iterative bound minimization is shown as Algorithm 1. To
improve on one solution C, we call Algorithm 1 with I = {C} and use the returned solution if it is better than C.
In Section 3.6, we will use a larger set I.

Algorithm 1: Iterative bound minimization
Input: G = (V,E); nonnegative monotone cost function f : 2E → R+

0 ; reference initialization set I =
{I1, . . . , Ik}, Ij ⊆ E; [source / sink nodes s, t]

Output: cut B ⊆ E
for j = 1 to k do

set weights w`,Ij for ` = 1,2.;
find [(s, t)-]min-cut C` for edge weights w`,Ij (·, Ij);
set C = argminC` f(C);
repeat

Bj = C;
set weights w`,Bj for ` = 1,2.;
find [(s, t)-]min-cut C` for edge weights w`,Bj ;
C = argminC` f(C);

until f(C) > f(Bj);

end
return B = arg minB1,...,Bk f(Bj);

The reference-based improvement helps most if ρe(E \ {e}) is larger than zero for most edges (this does not
hold, for instance, for truncated functions), and if the low cost of C∗ with respect to f is based on cooperations
that can be identified from small sets of edges. If the edges in C ∩ C∗ suffice to reduce the new weight ρe(C) of
any e ∈ C∗ \ C enough compared to the original weight f(e), then the minimizer of h1 will be close to C∗.

A tighter bound can be optimized by the algorithm for polymatroidal network flows, via the same construction
as the approximation for Algorithm PMF. Let C ⊆ E again be the comparison set, and {Pi}i a partition of E \C,
in conformity with the neighborhood sets δv ⊂ E, that means, each Pi ⊂ δv for some v ∈ V . The tighter bound is

f(B) ≤ h′1(B) , f(C)−
∑

e∈C\B

ρe(E \ {e}) +
∑
i

ρB∩Pi(C).

It is an upper bound since, by diminishing returns and subadditivity of f , it holds for any partition that

f(B) +
∑

e∈C\B

ρe(E \ {e}) ≤ f(B ∪ C) ≤ f(C) + ρB\C(C) ≤ f(C) +
∑
i

ρB∩Pi(C).

The cost function we minimize for this bound is

fC(B) =
∑
i

ρB∩Pi(C) +
∑

e∈B∩C
ρe(E) = h′1(B)− f(C) +

∑
e∈S

ρe(E \ {e}).

Since ρB∩Pi(C) is submodular for a fixedC, and the submodular interactions are restricted to local neighborhoods,
a tightened version of fC(B) can be optimized as the dual of a polymatroidal flow problem (see Section 3.5 for
details). The tightened version automatically chooses the partition that gives the lowest function value, i.e., the best
bound of the neighborhood type. If we prefer to use a fixed partition, we can use the trick outlined in Section 3.5.1.
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3.5 Algorithm I: Approximation via “polymatroidal network flows” (PMF)
As mentioned above, the intractability of CoopCut relies on the global, unknown interaction of edge sets. Here,

we relax this difficulty by restricting the submodular behavior to known, limited sets of edges. To do so, we
partition E into disjoint sets Ei and then use the approximation f̂(A) =

∑
i f(A ∩ Ei). For tractability, we make

the partition “local”. Let Π(A) = {A1, . . . , An} be a partition of an edge set A ⊆ E, where Ai only contains
edges incident to node vi ∈ V . With PA denoting the set of all such partitions, let

f̂PMF(A) = min
Π(A)∈PA

∑
i

f(Ai), (6)

that is, each edge is assigned to one of its incident nodes, and this is what defines the variants in the set of partitions
PA. Figure 5 illustrates an example of such a partition, where all the green edges are assigned to their tail node,
the blue edge is assigned to its tail node, and the red edges are assigned to their head node.

Similar to the traditional max-flow min-cut duality, the cut problem
e1

e2
e3

e4

e5

e6

Figure 5: Partition of the cut edges;
edges of the same color are in the
same set Ai. The approximation
here is f̂PMF(e1, e2, e3, e4, e5, e6) =
f(e1, e2, e3) + f(e4) + f(e5, e6).

with cost f̂PMF corresponds to the dual of a generalized, polymatroidal
max-flow problem [32] with the capacity function f at each node.

Polymatroidal network flows [32] generalize the capacity function of
the traditional max-flow problem as follows. At each node vi in the
directed graph, a submodular function f in

i defines the capacities of the
incoming edges δ−vi, and a submodular function f out

i defines the ca-
pacities of the outgoing edges δ+vi. The flow ϕ(δ−vi) into vi must be
in the submodular polyhedron of f in

i , that is, satisfy ϕ(A) ≤ f in
i (A) for

all edge sets A ⊆ δ−vi. Equivalent constraints hold for the in- and out-
flow of all nodes. An augmenting paths algorithm solves the maximum
(s, t) flow for these capacities exactly in O(|E|5d) time, where d is the
time to solve problems of the form minA⊆(δ−v)\e f

in
i (A) − ϕ(A). Let

f in be the direct sum of the f in
i , and f out the direct sum of the f out

i , then the dual of the polymatroidal max-flow
problem (PF) is a min-cut for the convolution cost (f in ∗ f out)(A) = minB⊆A(f in(B) + f out(A \ B)) [33]. The
convolution of two submodular functions is not in general submodular, and may thus be hard to optimize. The
specific function here, however, can be optimized exactly, thanks to local restriction of submodularity and the
combinatorial structure. The PF framework works for any submodular function.

To see how f̂PMF corresponds to the convolution (f in ∗ f out), let us look at a minimal cut C in a directed graph.
In f̂PMF, each edge e = (vi, vj) will be assigned either to its head node vj or tail node vi. Let, for a partition
Π(C), the set C in

i be the set of incoming edges that are assigned to vi, and Cout
i be the set of outgoing edges that

are assigned to vi. Since C is a minimal cut, at least one of C in
i and Cout

i must be empty. This sparseness follows
because C only includes edges that are directed from s to t (since, analogous to the modular-cost mincut-maxflow
duality, the “back-edges” are void in the flow problem). Then

f̂PMF(C) = min
Π(C)

∑
i

f(C in
i ∪ Cout

i )

= min
C in
i ,C

out
i

∑
i

f(C in
i ) + f(Cout

i )

= min
C in

f in(C in) + f out(C \ C in)

= (f in ∗ f out)(C).

Since we only care about the approximation at cuts, we can use f̂PMF(A) = (f in ∗ f out)(A).
All capacity functions f in

i , f out
i are set to f restricted to the particular domain δ−vi, δ+vi, respectively. The

corresponding f in, f out are modular across neighborhood sets, and the convolution automatically assigns edges to
their head or tail node to minimize the resulting cost, that is, to get the tightest approximation.

To solve the (s, t)-cut for f̂PMF as a PF, we transform the undirected graph into a directed one by replacing each
undirected edge e by two opposing directed edges e+, e− that are “parallel” with respect to the cost f (the signs
here are assigned arbitrarily); with a little abuse of notation we use the same f for the corresponding cost of the
directed edges. Edges e+, e− are parallel if

f(A ∪ {e+}) = f(A ∪ {e−})
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for all A ⊆ E; we also set f(A ∪ {e+, e−}) = f(A ∪ {e+}). The cost on the directed edges is equivalent to
that on the undirected edges: parallelism yields that a set of directed edges has the same cost as the union of the
undirected counterparts, regardless of whether both e+ and e− or only one of them is in the directed set.

The parallelism in f is lost in f̂PMF if e+ and e− are assigned to different neighborhood sets. In that case, both
edges are counted separately because f̂PMF is modular across neighborhood sets, and the underlying undirected
edge contributes doubly to the cost. Does this affect the approximation? At least the cost of any cut remains
unaffected, because for any (s, t) cut in the dual, the back-edges (direction t to s) across the cut must be void in
the primal flow solution [32], as we mentioned above. Thus, only one of e+, e− belongs to a blocking (tight) set,
and only those tight edges are counted in the cut. Therefore, the cost of the directed edges is still equivalent to the
cost of undirected edges in Equation (6), at least on all cuts.

For fixed s, t, let the set C∗ be the optimal directed (s, t) cut. Let further, for any cut C, ∆s(C) ⊂ V be the set
of nodes adjacent to C on the s side, and ∆t(C) ⊂ V its analogue on the t side.
Lemma 2. Let CPMF be the cut returned by Algorithm PMF. Then

f(CPMF) ≤ min
{
|∆s(C∗)|, |∆t(C∗)|

}
f(C∗).

Proof. We will use Lemma 1. By subadditivity and nonnegativity of f , we know that
∑
i f(Ai) ≥ f(

⋃
iAi) for

any collection of disjoint sets {Ai}i, and thus f(A) ≤ f̂PMF(A) for any A ⊆ E. Let δv denote the set of edges
adjacent to node v. To bound f̂PMF(C∗), we use the convolution:

f̂PMF(C∗) = (f in ∗ f out)(C∗)

≤ min{f in(C∗), f out(C∗)} (7)

≤ min
{ ∑
v∈∆s(C∗)

f(C∗ ∩ δv),
∑

v∈∆t(C∗)

f(C∗ ∩ δv)
}

≤ min
{
|∆s(C∗)| max

v∈∆s(C∗)
f(C∗ ∩ δv), |∆t(C∗)| max

v∈∆t(C∗)
f(C∗ ∩ δv)

}
≤ min

{
|∆s(C∗)|, |∆t(C∗)|

}
f(C∗). (8)

Relation (7) follows from the definition of the convolution, and (8) from monotonicity of f . For more generality,
we can bound min{|∆s|, |∆t|} ≤ n/2.

If we know that f(CPMF)/f̂((CPMF) = n−β , then we get a more specific ratio f(CPMF)/f(C∗) ≤ n1−β/2.
On dense graphs where m1/2 logm > n, the approximation factor for Algorithm PMF is better than the one for
Algorithm EA.

3.5.1 Aside: enforcing a particular edge assignment Π(E) in PMF
If, for some reason, we do not want to use the convolution in f̂PMF, but one specific partition Π(E) of the

edge set, then we can still solve the cut problem as a polymatroidal network flow. To do so, we use that a high
modular function h(A) = β|A| > mf(A), for all A ⊆ E, does not affect a convolution: (h ∗ f)(A) = f(A)
for all A. Here, we must fix the assignment of all edges beforehand. Let Ein

i be the incoming edges assigned
to vi, and Eout

i the outgoing edges assigned to vi. These sets form a partition of E. Then we set f in
i (A) =

f(A ∩Ein
i ) + h((A∩ δvi) \Ein

i ), and analogously for f out
i . Then f in(A) =

∑
i f(A ∩Ein

i ) + h((A ∩ δvi) \Ein
i ),

and equivalently for f out, that is, in f in ∗ f out each edge can either count in h or in f , and by the definition of h, it
is always better to assign an edge to its set under Π(E):

(f in ∗ f out)(A) = min
Ain⊆A,Aout=A\Ain

∑
i

f(Ain ∩ Ein
i ) + h((Ain ∩ δvi) \ Ein

i )

+
∑
i

f(Aout ∩ Eout
i ) + h((Aout ∩ δvi) \ Eout

i )

= min
Ain⊆A,Aout=A\Ain

(∑
i

f(Ain ∩ Ein
i ) + f(Aout ∩ Eout

i )
)

+ h(Ain \ Ein) + h(Aout \ Eout)

=
∑
i

f(A ∩ Ein
i ) + f(A ∩ Eout

i ).
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The last equality follows from h being much larger than f on any set, so the minimum is achieved forAin
i = A∩Ein

i

andAout
i = A∩Eout

i . To unifyAin
i andAout

i for cuts, we use the previous argument that a cut only contains outgoing
or incoming edges for a particular node, but never both.

3.6 Algorithm II: Modular minimum cut basis with reference-based improvements (MBI)
In this section, we use the modular approximation f̂MBI(A) =

∑
e∈A f(e) ≥ f(A). The minimum cut for f̂MBI is

simply the common modular cost min-cut (MC baseline in experiments). For a wider range of candidate solutions
that is still good with respect to f̂MBI, we construct the minimum cut basis for the graph with weights w(e) =
f̂MBI(e) = f(e). The cuts of a graph form a vector space over F2, and the minimum weight basis for this space can
be found by a minimum cut tree [7]. This Gomory-Hu tree is computable by solving O(n) min-cut problems [20].
The corresponding cut basis contains a minimum cut with respect to f̂MBI for any pair of vertices in the graph. Of
the n− 1 basis cuts, we pick the one with the minimum submodular f -cost (MB baseline in experiments).

Among the basis cuts is the minimum cut CM with respect to f̂MBI [7, 20] with the following guarantee, using,
as above, ρe(A) = f(A ∪ {e})− f(A).

Lemma 3. Let e′ = argmaxe∈C∗ f(e). Then

f(CM) ≤
∑
e∈C∗ f(e)

f(e′) +
∑
e∈C∗\e′ ρe(C∗ \ e)

f(C∗) ≤ |C∗|
1 + (|C∗| − 1)γ(C∗)

f(C∗)

for γ(C∗) = mine∈C∗ ρe(C∗ \ e)/f(e′).

The first bound shows how the quality of CM depends on the degree of subadditivity of f , that is, how much
ρe(A) differs from f(e) for any A that does not contain e. A modular function always satisfies ρe(A \ e) = f(e),
leading to an approximation factor of one. If ρe(C∗ \ e) is zero for many edges e, that is, γ(C∗) = 0, then the
denominator is much smaller than the numerator. Still, the fraction is never larger than |C∗|.

Proof. Thanks to the subadditivity of f and the optimality of CM for f̂MBI, it holds that

f(CM) ≤
∑
e∈CM

f(e) = f̂MBI(CM) ≤ f̂MBI(C∗) ≤ |C∗|f(e′). (9)

The last relation again follows from the subadditivity of f . To reach at an approximation factor, we lower bound
f(C∗):

f(C∗) ≥ f(e′) +
∑

e∈C∗\{e′}

ρe(C∗ \ {e}) (10)

≥ f(e′) + (|C∗| − 1) min
e∈C∗\{e′}

ρe(C∗ \ {e})

≥ f(e′) + (|C∗| − 1) min
e∈C∗

ρe(C∗ \ {e}). (11)

The first bound in Lemma 3 follows from dividing f̂MBI(C∗) from (9) by (10). Dividing (9) by (11) (and dividing
both by f(e′)) yields the looser bound.

To improve on the set of basis cuts for f̂MBI, we use each basis cut Cj as the reference for the bounds h1(A,Cj)
and h2(A,Cj) defined in Equations (4) and (5), respectively. That is, we call the iterative bound minimization,
Algorithm 1 in Section 3.4 for I = {∅, C1, . . . , Cn} (including ∅ ensures that CM is included in the search, it
will be the first cut found. The better one of the minimizers of h1(A,Cj) and h2(A,Cj) is the next reference set
until there are no more improvements. The algorithm usually stops after few steps. Both computing the basis and
minimizing the bounds h` only means that we solve standard modular min-cut problems for which very efficient
algorithms (and implementations) exist.

If we want an (s, t) cut, we remove s and t from the graph and compute a cut basis {C1, . . . , Cn−2} for the re-
maining graph. Finally, we set I = {∅, C1, . . . , Cn−2} for the full graph and use the iterative bound minimization.

A bit of reflection can explain how the basis and bound heuristics can work. Any edge in the graph is contained
in at least one cut in the minimum cut basis. Hence, any edge, in particular any edge in the optimal C∗, occurs
in at least one reference set Cj . Furthermore, if |C∗| � n, then there are basis cuts that include more than one
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edge from C∗, and potentially many. The more edges |C∗ ∩ Cj | contains, the more likely is h1(B,Cj) to reveal
critical cooperations of edges within C∗ that identify the complete set C∗. The experiments in Section 4 show that
this approximation works well in practice, but can reach the upper bound in Lemma 3 for the reasons mentioned
in Section 3.4. In general though, using an entire basis instead of one min-cut, and minimizing the bounds h` in
addition, does improve the solution, as the experiments show.

3.7 Algorithm III: Ellipsoid-based approximation of the cost function (EA)
Goemans et al. [18] present an approximation f̂EA of a submodular function f by using the relation f(A) =
maxy∈Pf y ·χA (χA is the characteristic vector of A, and Pf the submodular polyhedron of f ). They approximate
Pf by an ellipsoid E and set f̂EA(A) = maxy′∈E y′ · χA. As a result, the approximating function f̂EA is the square
root of a modular function, i.e., of the form f̂EA(A) =

√∑
e∈A w(e). Since the minimizer of f̂EA is the same as

that of f̂2
EA, we set the weight of each edge to w(e) and then solve a traditional min-cut (or (s, t)-cut) with edge

cost function f̂2
EA(A) =

∑
e∈A w(e). This problem can be efficiently and exactly solved.

Computing E is easier for matroid rank functions than for general monotone submodular functions, which re-
quire an additional approximation. For general non-monotone submodular functions, [18] only show a lower
bound. In essence, [18] give an approximation guarantee for their functions of f(A) ≤ f̂EA(A) ≤ αf(A)7,
with α =

√
m+ 1 for a matroid rank function and O(

√
m logm) for a general polymatroid rank function. We

add that for an integer-valued polymatroid rank function whose maximum cost of a single element is bounded
(i.e., maxe∈E f(e) ≤ c < ∞), we can replace the logarithmic factor by a constant: α = O(

√
cm) instead

of O(
√
m logm). To do so, we approximate the matroid expansion of the polymatroid (the construction of the

expansion is described in [34, Section 10.3]) to achieve the bound for a matroid function.
With Lemma 1, these α immediately yield approximation factors for Algorithm EA:

Proposition 1. Let CEA = argminA∈C f̂EA. Then

f(CEA) ≤ αf(C∗),

where α = O(
√
m) for an integer-valued polymatroid rank function, and α = O(

√
m logm) for an arbitrary

monotone submodular function.

For planar graphs, where the number of edges is O(n), the approximation factor becomes α = O(
√
n) or

α = O(
√
n log n). Note that the graph we used in the proof of Theorem 2 is planar. Therefore, for planar graphs

and matroid rank functions, the above procedure achieves a lower/upper bound gap of Ω(n1/3) versus O(n1/2).

3.8 Algorithm IV: Convex relaxation (CR)
A common technique to construct approximation algorithms for submodular function optimization is to view the
function f as a function from the indicator vectors {0, 1}E to R, and then extend it to a convex function f̃ :
[0, 1]E → R, the Lovász extension [33]. This extension leads to a convex relaxation of the edge-submodular (s, t)
cut problem as the following constrained convex optimization problem.

(P1) min f̃(x) (12)
s. t. π(vi)− π(vj) + x(e) ≥ 0 for all e = (vi, vj) ∈ E (13)

π(s) = 0
π(t) = 1

π ∈ [0, 1]n, x ∈ [0, 1]E

Problem (P1) is a variation of the Linear Program (LP) for the standard, modular-cost (s, t) cut (e.g., [39, Sec-
tion 6]). The graph partition is defined by node labels π ∈ {0, 1}V indicating the two resulting parts and the
cut indicator vector x ∈ {0, 1}E . Constraint (13) ensures that x(e) = 1 whenever the two incident nodes have
increasing labels, i.e., π(vj) > π(vi), and can be expressed via the adjacency matrix A ∈ {−1, 0, 1}|E|×|V |. To
make the problem easier, the integrality constraints on π and x were relaxed in (P1). For the standard (s, t) cut LP
with cost ftrad, unimodularity of A always guarantees an integral optimal solution. This guarantee, however, is lost
for problem (P1), thanks to the nonlinearity of f̃ . As a result, relaxing the integrality constraints does usually lead
to a non-integral solution.

7They use f̂ ≤ f ≤ α′f̂ , so simply divide their f̂ by α′.
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For an integral approximate solution x̂∗, we choose a threshold θ and round x∗ to one if x∗(e) ≥ θ−1, and to
zero otherwise. We select θ−1 to be the largest value such that x̂∗ is the indicator vector of a cut – the approximate
solution.

Any algorithm for non-smooth constrained optimization problems solves Problem (P1). Since subgradients
for f̃ are known [13, Lemma 6.19], a subgradient method is applicable, too. On a different problem involving
submodular costs, Chudak and Nagano [8], for instance, use [36] for an approximate solution with adaptable
precision.

Owing to the similarity with the standard cut LP, the dual of (P1) is a modified flow problem, where capacities are
submodular over sets of edges. This problem, once again, is difficult because of global submodular cooperations.
Restricting the cooperations leads to a problem similar to PF.

Let Ĉ = {e ∈ E |x∗(e) ≥ θ−1}. To ensure that the final solution is a minimal cut, we truncate Ĉ to a minimal
cut with the following procedure. This procedure will return Ĉ if Ĉ is already minimal. Define edge weights
w(e) = f(e) if e ∈ Ĉ, and w(e) =∞ otherwise. Then find the min-cut for the modular cost w. The solution CCR
will be a subset of Ĉ, and thus f(CCR) ≤ f(Ĉ).

With a slight modification, Algorithm CR can also find a (non-minimal) cut that minimizes a non-monotone
function. In that case, we replace the cost f in (P1) by the Lovász extension of the cost

fm(A) = min
A⊆B⊆E

f(B),

which is monotone and submodular (e.g., [13, Section 3.1]). If f is already monotone, then fm = f . Otherwise,
the computation of fm involves submodular function minimization, which is polynomial but still time-consuming.
For the integral solution, we round x∗ to Ĉ and then use Ĉm = argminĈ⊆B⊆E f(B). This is a set for which
fm(Ĉ) = f(Ĉm), that is, the corresponding approximate solution for cost f . A truncation of Ĉm can be done by
setting w(e) = ∞ for e /∈ Ĉ and using fm on the other edges. The resulting combined function is then used in
Algorithm PMF, but we do not give any approximation guarantees here other than the fact that the truncation is a
subset of Â.

For the truncation CCR of Ĉ (minimal) for a monotone cost function, and for CCR = Ĉm (non-minimal) for
a non-monotone cost function, we can give the following approximation guarantee for an (s, t) cut. For a Coop
min-cut, we use the tightest (s, t) bound across the optimal cut; n− 1 always holds.
Lemma 4. Let Pmax be the longest simple (s, t) path. Then

f(CCR) ≤ |Pmax|f(C∗) ≤ (n− 1)f(C∗).

Proof. To analyze the approximation factor for the rounded solution, we re-write the problem as an instance of
hitting set extended to have submodular costs: a cut is a set of edgesA ⊆ E that hits (cuts) each (s, t) path P ⊆ E,
that is, |A ∩ P | ≥ 1 for any (s, t) path P . The corresponding mathematical program is

(P2) min f̃(x) (14)

s. t.
∑
e∈P

x(e) ≥ 1 for all (s, t) paths P (15)

x ∈ {0, 1}E ,

where x = χC is the indicator vector of a cut C. The constraints in Problem (P1) summarize the possibly
exponentially many constraints in Problem (P2) via the node labels. Thus, (P1) is the equivalent of (P2), with
relaxed integrality constraints. Constraint (15) shows that in the worst case, the inverse rounding threshold θ is
the length |Pmax| ≤ (n − 1) of the longest path Pmax between s and t: if the mass of solution x of the relaxed
problem is distributed uniformly along the longest path, then only θ−1 ≤ |Pmax|−1 will make the rounded solution
hit Pmax. As a result, we infer θ ≤ |Pmax|. Problem (P2) is related to the set cover problems in [25], with similar
approximation guarantees.

We will prove Lemma 4 for fm, since fm = f for a monotone f . For the further analysis, it is important that
fm(A) ≤ f(A) for any A ⊆ E, and likewise for the respective Lovász extensions. This relation implies that

f̃m(x∗) ≤ f̃(x∗) ≤ f̃(χA) = f(A) (16)

for any setA ⊆ E and its characteristic vector χA, in particular forC∗. Thanks to the rounding procedure, the char-
acteristic vector χĈ of the rounded solution Ĉ satisfies χĈ ≤ θx∗. Let furthermore Ĉm = argminĈ⊆B⊆E f(B)
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be a set for which fm(Ĉ) = f(Ĉm), that is, the corresponding approximate solution for cost f . For a mono-
tone function, we simply have Ĉm = Ĉ. Since the Lovász extension f̃m of fm is positively homogeneous by
construction and monotone like its base fm, it holds that

f(Ĉm) = fm(Ĉ) = f̃m(χĈ) ≤ f̃m(θx∗) = θf̃m(x∗) ≤ θf̃m(x∗) ≤ f(C∗).

For the last relation, we used Equation (16). Altogether, this derivation implies an approximation factor of θ ≤
|Pmax| ≤ n − 1. For a monotone function, the truncated solution CCR has lower cost than its superset Ĉ because
of the monotonicity. For a general cooperative min-cut solved by repeated (s, t) cuts, the approximation factor
depends on the actual strategy to find the cut, but can become as low as the minimum |Pmax| among all s, t that
are separated by the optimal cut (if we test all pairs).

3.9 Algorithm V: Greedy minimization (G)
The formulation (P2) motivates an efficient, greedy variation of augmenting paths to solve the cut problem, even
though without any guarantees. We maintain the current “cut” B ⊆ E and, in each iteration, greedily choose an
edge that cuts another as yet uncut (s, t) path. In other words, the algorithm satisfies one more violated constraint
of type (15) in each iteration. Algorithm 2 shows the pseudocode. If the x-weight of the shortest path is x(P ) =∑
e∈P x(e) ≥ 1, then at least one edge of P must be in B, that means all paths are cut (hit). Otherwise, P

corresponds to a violated constraint in (P2): it is not fully cut. In that case, the algorithm greedily chooses the edge
in P that keeps the cost as low as possible, to satisfy the violated constraint at low cost.

This algorithm is obviously polynomial, since CV grows in each iteration, and it can include at most m edges.
An efficient implementation could maintain distance labels to efficiently find the shortest augmenting path by the
number of edges, treating already selected edges (with weight one) as inadmissible, blocked or very costly, similar
to the shortest augmenting paths algorithm for maximum flow (see e.g. [1, Section 7]).

Several greedy algorithms for set cover-type problems optimize the ratio between the cost and the elements
covered. Here, however, counting the cut (covered) elements, that is, all paths through an edge, it is too time-
consuming. In addition, Iwata and Nagano [25] show that greedily minimizing this ratio does not help for a
submodular set cover, and set cover is very similar to the hitting set problem.

Algorithm 2: Greedy Augmenting Paths

Input: G = (V,E); nonnegative monotone cost function f : 2E → R+
0 ; source / sink nodes s, t

Output: cut CV ⊆ E
Initialize CV = ∅, edge weights χCV = 0, ε ≤ (2n)−1;
Find shortest (s, t) path P ⊆ E with respect to cost w(P ) ,

∑
e∈P χCV(e) + ε|P |;

while χCV(P ) < 1 do
Let e∗ = argmine∈P f(CV ∪ {e});
Set CV = CV ∪ {e∗};
Find shortest (s, t) path P ⊆ E with respect to cost w(P );

end
If CV is not minimal, reduce it to a minimal cut with Algorithm PMF or MBI.

The final reduction step is the same as for Algorithm CR. Overall, this algorithm is very fast. It considers
submodularity in the greedy choice of the edge to join CV, the edge with the lowest cost with respect to the current
reference set CV.

4 Experiments
After having introduced a number of algorithms and analyzed their theoretical properties, we compare them em-
pirically on a range of cost functions. In addition, we illustrate the algorithms’ behavior on difficult examples
that are specifically designed to test the limits of algorithms based on modular approximations and of an entirely
node-based algorithm that ignores the graph structure.

Overall, Algorithms MBI, CR and the greedy algorithm perform well on the synthetic problems in Section 4.1.
Which algorithm is best depends on the cost function and graph at hand, though. In general, the empirical ap-
proximation factors are far below the theoretical factors in our experiments – except for the worst-case limits in
Section 4.2.
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Algorithms I-V

PMF Algorithm I, approximation via polymatroidal network flows
MBI Algorithm II, minimum cut basis for a modular approximation with reference-based

improvement step
EA Algorithm III, ellipsoid-based function approximation
CRI Algorithm IV, convex relaxation with post-processing by Algorithm PMF
CRII Algorithm IV, convex relaxation with post-processing by Algorithm MBI
GI Algorithm V, greedy algorithm with post-processing by Algorithm PMF
GII Algorithm V, greedy algorithm with post-processing by Algorithm MBI

comparison methods

QU Queyranne’s algorithm for minimizing symmetric submodular functions
MC Min-cut for a modular approximation
MB Minimum cut basis for a modular approximation
RBI Random cut basis (random spanning tree) with reference-based improvement step

Table 4: Acronyms for the algorithms used in the experiments.

In addition to Algorithms I to V, we run four baseline methods. First, Queyranne’s algorithm (QU) [40] mini-
mizes symmetric submodular functions without constraints in O(n3) time. We use it to approximately solve the
unconstrained problem minX⊆V g(X) for g(X) = f(δX). Since f(δX) as a function on subsets of nodes is not
submodular and at most subadditive, this algorithm cannot give any guarantees (as we demonstrate in Section 4.2).
It completely ignores the structure of the graph. Nevertheless, it often does find a good solution.

The remaining baseline methods provide a comparison to investigate the effect of the ingredients of Algorithm
MBI:

1. using the extended search space of a cut basis

2. using the minimum cut basis

3. using the iterative bound minimization.

Baseline 2 (MC) addresses Ingredient 1 and 3: it computes a single min-cut solution for the modular approximation
f̂MBI(A) =

∑
e∈A f(e) used in Algorithm MBI. Baseline 3 (MB) includes the special extended search space

(Ingredient 2), but spares Ingredient 3. For Baselines 2 and 3, the upper bound of Lemma 3 still holds.
Finally, Baseline 4 (RBI) shows the effect of sparing Ingredient 2: it replaces the minimum cut basis in Algo-

rithm MBI by a random one and otherwise proceeds identically to Algorithm MBI. A random cut basis can be
derived from a spanning tree: each basis cut corresponds to the partition induced by cutting one edge in the tree.
RBI does not necessarily include the modular min-cut, and hence does not come with any of the above guarantees.

Reducing the cut to a minimal cut in Algorithm CR and the greedy method can be done either by polymatroidal
flows (PMF) or the modular cut basis approach (MBI). We include both variations in the experiments, but the
results do not differ significantly. In most cases, very little reduction was necessary.

For reference, all algorithms and their acronyms are listed in Table 4.

4.1 Synthetic graphs and a range of cost function types
First, we test a range of cost functions on two types of synthetic graphs.

Grid graphs. The grid graphs are regular graphs with node degree four or six. Type I is a plane grid with
horizontal and vertical edges displayed as solid edges in Figure 6. Type II is similar, but has additional diagonal
edges (dashed in Figure 6). Type III is a cube with plane square grids on four faces (sparing the top and bottom
faces). Different from Type I, the nodes in the top row are connected to their counterparts on the opposite side of
the cube. The connections of the bottom nodes are analogous.

Clustered graphs. The clustered graphs consist of a number of cliques that are connected to each other by few
edges, as depicted in Figure 6 on the right.
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Figure 6: Examples of our test graphs. The grid (left) was used with and without diagonal edges, as indicated by dashed lines,
and also with a variation of the connections in the first and last row. The clustered graphs were similar to the example shown
here (right).

We used the three grid types (25-32 nodes) and five clustered graphs (30 nodes, 90 edges). For each graph,
we generated five to ten instances of each cost function. The cost functions are listed in Table 5. To estimate the
approximation factor on one problem instance (one graph and one cost function), we divide by the cost of the best
solution found by any of the eleven algorithms, unless the optimal solution is known (bestcut I and II).

All algorithms were implemented in Matlab, with the help of a graph cut toolbox [2, 5], and a toolbox for
submodular function optimization [28].

Figure 7 shows the empirical approximation factors for the cost functions in Table 5; Table 4 lists the acronyms
for the algorithms. None of the algorithms actually reaches its theoretical upper bound. Neither is there a clear
winner: no algorithm performs significantly better than all others on all cost functions and graphs.

Despite its variable worst-case bound, Algorithm MBI provides good solutions throughout all cost functions,
followed by the convex relaxation (Algorithm CR), which is only worse than the others for the discounted price
functions. The reason for this weakness is that the latter functions implement a global interaction between edges,
so it is more likely that several edges along one path cooperate and the algorithm distributes the x-weight between
all those edges, and the rounding is not very selective. For more restricted cooperation within limited groups like
in the other cost functions, it is more likely that x∗ is closer to being integral.

On most functions, MBI profits from the range of candidates in the minimum cut basis together with the iterative
bound minimization and is better than MC or MB – even though the added heuristics cannot change the theoretical
worst-case bound, as we will demonstrate in Section 4.2. The iterative bound minimization helps a lot on the
“bestcut” functions, where |C∗| is rather large and its optimality heavily depends on edge cooperations (so that
the modular min-cut MC is not a very good solution). In addition, the cooperations are such that having one edge
of C∗ in the cut basis is enough to identify the reduction in cost for the edges in C∗, and therewith find C∗ in
the iterative step. The minimality of the cut basis, on the contrary, affects the solution much less than the iterative
minimizations: RBI and MBI achieve almost the same quality of solutions; only for rank-like functions, the quality
of the RBI solution varies more.

The greedy heuristic (Algorithm V) performs surprisingly well, with the exception of the rank-like functions
and the difficult truncated rank functions. On the “bestcut” functions, it profits in a similar way as MBI: C∗ can
be identified by a small intersection of the current (partial) cut B with C∗. For the “truncated rank” functions,
however, the cost-reducing cooperation of edges only becomes obvious if more than four to five edges of R are in
the reference set – much less likely for the greedy choice in Algorithm V, where the reference set is the current
“cut” set, than for a principled covering of all edges by a cut basis as in Algorithm MBI. In summary, if edge
interactions can be identified from small sets, then the greedy approach has good chances to find a good solution;
and it is simple and fast. The type of post-processing for truncation in the greedy algorithm and CR does not
matter in these experiments, probably because the rounding or greedy selection mostly lead to an almost minimal
or scattered solution already. In consequence, PMF might have received an almost modular cost function and thus
returned the same result as MBI.

Despite its lack of guarantees, Queyranne’s algorithm does find good solutions for most instances. It has the
greatest variance for the discounted price function II on the clustered graphs.

The ellipsoid-based approximation of Algorithm EA works best for the discounted price functions, probably
because its approximation models a global cooperation, but not specific local ones. For the second of the dis-
counted functions, this result is expected, since the approximation has exactly the form of the cost function. On
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name description
matrix rank I fmrI(A) = rank(XA). Each element e ∈ E is an index to a column in matrix X. The cost

is the rank of the sub-matrix XA of the columns indexed by the e ∈ A. The matrix X is of
the form [ I′ R ], where R ∈ {0, 1}d×(m−d) is a random binary matrix with d = 0.9

√
m,

and I′ is a column-wise permutation of the identity matrix.

matrix rank II fmrII(A) = 0.33
∑3
i=1 f

(i)
mrI(A) is the sum of three functions f (i)

mrI of type “matrix rank I”
with different random X.

labels I f`I(A) = |
⋃
e∈A `(e)|. Each element e is assigned a random label `(e) from 0.8

√
m

possible ones. The cost counts the number of labels in A.

labels II f`II(A) = 0.33
∑3
i=1 f

(i)
`I (A) is the sum of three functions of type “labels I” with different

random labels.

bestcut I fbcI(A) = 1[|A ∩ δX∗| ≥ 1] +
∑
e∈A\δX w(e). Here, we randomly pick a cut and make

it the optimal one. This cut is usually very different from the cut with fewest edges. For
the cut, randomly pick a connected subset X∗ ⊆ V of size 0.4n. Set f1(A) = 1 for all
A ⊆ δX∗. This will be the best cut. The cost of the other edges (B ∩ δX∗ = ∅) is
f2(B) =

∑
e∈B w(e) for random weights w(e) between 1.5 and 2. The cost is the direct

sum of f1 and f2. If there exists a different cut C 6= δX∗ with cost one or lower, correct
w by increasing the weight of one e ∈ C to two.

bestcut II Similar to bestcut I, but with submodularity on all edges. Partition E into three sets,
E = (δX∗)∪̇B∪̇C. Then fbcII(A) = 1[|A ∩ δX∗| ≥ 1] +

∑
e∈A∩(B∪C) w(e) +

maxe∈A∩B w(e) + maxe∈A∩C w(e). The weights of two edges in B and two edges in
C are set to larger than two (2.1,2.2). The optimum is again δX∗.

discounted price func-
tion I

fdpI(A) = log
∑
e∈A w(e), where weights w(e) are chosen randomly as follows. Sample

an X ⊂ V with |X| = 0.4n, and set w(e) = 1.001 for all e ∈ δX . Then randomly
assign some “heavy” weights in [n/2, n2/4] to some edges not in δX , so that each node
is incident to one or two heavy edges. The remaining edges get random (mostly integer)
weights between 1.001 and n2/4− n+ 1.

discounted price func-
tion II

fdpII(A) =
√∑

e∈A w(e) with weights assigned as for “discounted price function I”.

truncated rank This function is similar to the truncated rank in the proof of the lower bound. Sample a
connected X ⊆ V with |X| = 0.3|V | and set R = δX . The cost is ftr(A) = min{|A ∩
R| + min{|A ∩ R|, β}, λ} for β =

√
|R| and λ = 2|R|. Here, R is not necessarily the

optimal cut.

Table 5: Cost functions for the experiments in Section 4.1. “Matrix rank I,II” and “labels I,II” are summarized as “rank-like”
costs in the results. The indicator function is denoted by 1[·].
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rank-like cost functions
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Figure 7: Results for the experiments of Section 4.1. The bars show the mean empirical approximation factors, the red crosses
mark the maximum empirical approximation factor. Plots in the right column are for the grid graphs, plots in the left column
for the clustered graphs.
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the downside, this algorithm can take long to converge, thanks to the procedure to compute the ellipsoid. Then the
greedy method or MBI are much more efficient.

Overall, the algorithms’ performance on these synthetic examples is encouraging. Note that the truncated rank
function is a difficult example and similar to the function in the proof of the lower bound. The experiments also
demonstrate that knowing properties of the cost function at hand helps to choose an appropriate algorithm. After
the positive examples in this section, the next section demonstrates the limits of the algorithms MC, MB, RBI,
MBI and QU.

4.2 Worst-case examples

In this section, we explore problem instances that are specifically crafted to mislead a particular algorithm. As
usual, n denotes the number of nodes. The graphs here are undirected.

4.2.1 Type I: difficult for purely modular approximations
The first example exploits the weakness of the modular approximation f̂MBI(A) =

∑
e∈A f(e) to ignore the

interaction of edges, that is, the reduction of an edge’s cost if certain other edges are in A: f(A)− f(A \ {e})�
f(e). In version I(a), the modular cost of the true optimum C∗ is n2/4 times higher than its submodular cost, that
is, f̂MBI(C∗) = f(C∗)n2/4. On the contrary, the cost of the min-cut CM with respect to f̂MBI is not much lower
for f : f(CM) = f̂MBI(CM)− n/2 + 1. As a result, f̂MBI is not a good estimate for the relative costs of CM and C∗

when measured with f . The graph, shown in Figure 8, is a clique with three types of edges, marked by different
colors. Let Ek, Eb, and Er be the set of black, blue and red edges, respectively. The cost fIa is the direct sum of
the cost functions fk, fb, fr on these sets, with

fk(A) = 1 ∀ A ⊆ Ek;
fb(A) = |A|n/2 ∀ A ⊆ Eb;

fr(A) = |A|
(
n

2
− ε

n/2− 1

)
∀ A ⊆ Er

for a small ε > 0. The optimal cut is C∗ = Ek, and relies on the only but strongly submodular part of the cost
function, fk. The optimal cut for f̂MBI is to separate out node vn/2+1, cutting all red edges and the black edges
adjacent to vn/2+1, with cost fIa(δvn/2+1) = n2/4 − n/2 + 1 − ε. Thus, the approximation factor for this cut
grows as n2/4, which is the order of the theoretical worst-case bound.

Both the min-cut with weights f̂MBI (MC) and the minimum cut basis (MB) return the cut δvn/2+1. All other
algorithms that take into account submodularity, Algorithm MBI via the iterative bound minimization, find the
optimal solution.

Version (b) of the problem instance, with the same graph structure but a modified cost function, renders the
iterative bound minimization ineffective via a truncation. The modified cost function is

fIb(A) = min{fIa(A) + ε′|A ∩ Ek|, λ}

for a truncation threshold λ = fr(Er) + fb(Eb)− (n/2− ε(n/2− 1)−1) + 1 and a small ε′ > 0. The truncation
makes the weight w1,C(e) zero for all edges in the current cut C in the iterative minimization, but nonzero for all
other edges, so C is the optimal cut as measured by h1, and we never move away from C. Thus, Algorithm MBI
will only find the optimal solution if it is in the cut basis. Since C∗ has the maximum possible number of edges
and weights are counted in a modular way for the basis, it is not in the minimum cut basis. The result is obvious in
Figure 8(b): the advantage of the iterative minimization is gone and all algorithms using f̂MBI find the quadratically
worse second-best cut. In comparison, in Version (a), the weights w1,C(e) are zero for the black edges for any cut,
since every cut must contain a black edge.

We remark that Instance I(b) is theoretically useful, but not realistic.

4.2.2 Type II: difficult for Queyranne’s algorithm
The second group of examples, II(a)-(c), again misleads variations of Algorithm MBI, but II(d) finally demon-

strates the benefit of theoretical approximation guarantees: there is no upper bound on the solution quality for
Queyranne’s algorithm, and QU can indeed perform arbitrarily bad, whereas the other algorithms are saved by
their approximation factors.
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Figure 8: Graph I and approximation factors with n = 10 nodes, so n2/4 − n/2 + 1 = 21. The white bars illustrate the
theoretical approximation bound, where applicable.

The graph is again a clique, but its edges are partitioned into n/2 sets, as indicated by colors in Figure 9. The
black set Ek is as in Graph I. The remaining sets are constructed node-wise as

Ei =
{

(vi, vj) ∈ E | i < j ≤ n/2
}
∪
{

(vn/2+i, vj) ∈ E | n/2 + i < j ≤ n
}

for each 1 ≤ i < n/2. In Figure 9, set E1 is red, E2 is blue, and so on. The cost function adds cost b for any set
Ei intersecting the cut, and cost 1 if any black edge is in the cut:

fIIa(A) = 1[|A ∩ Ek| ≥ 1] +
n/2−1∑
i=1

b · 1[|A ∩ Ei| ≥ 1],

with b = n/2 for Versions (a) to (c). As before, 1[·] denotes the indicator function. The optimal solution is again
C∗ = Ek with fIIa(C∗) = 1. The results for the different algorithms are illustrated in Figure 9.

In Version (a), the iterative bound minimization comes to the rescue of the algorithms that use the modular
approximation f̂II. In Versions (b) and (c), this benefit vanishes thanks to two modifications: a truncation in (c)
and the addition of a tiny modular cost in (d) render the iterative minimization in MBI and RBI inefficient. The
cost function for II(b) is

fIIb(A) = min{fIIa(A), n}.

and for II(c)
fIIc(A) = fIIa(A) + ε|A ∩ Ek|.

Finally, Version (d) tests the approximation factors. It uses fIIa, but with a higher b. For any b > n/2, any
solution other than C∗ is more than n2/4 = |C∗| > n times worse than the optimal solution and the approximation
guarantees come into play: all algorithms except for QU find the optimal solution. The result of the latter depends
on how it chooses the minimizer of f(B ∪ {e}) − f({e}) in the search for a pendent pair; this quantity often has
several minimizers here. Some of those will lead to a good solution and some to a bad one. Versions (a) to (c) show
lucky cases. Version (d) is like (a), but uses a different sequence, that is, permuted node labels, and b = n2 = 100.
For the permutation in (d), QU will always return the same solution δv1 with cost b+ 1, no matter how large b is.

Algorithms PMF, EA, CR and the greedy algorithm perform well on the examples of this section. Yet, for
fairness, one should keep in mind that the examples here were designed to be difficult for QU and the algorithms
based on a purely modular approximation of the cost function (Algorithms MBI, MC, MB and RBI).

5 Conclusion and open problems
We have introduced Cooperative cut, an extension to the min-cut problem where the cost is measured by a sub-
modular set function on subsets of edges. The richness of submodular functions covers a much wider range of
applications than the standard modular cost, but at the same time makes the problem much harder to solve. In ad-
dition to lower bounds on the approximation factor, we present four approximation algorithms and some heuristics
that rely on different techniques. We compare those methods theoretically and empirically.

An open question remains how to close the gap between the upper and lower bounds, ideally with particular
attention given to the usefulness the algorithms in practice.

The work presented here points to general open questions:

• Many traditional cut problems can be generalized to submodular costs, in particular the ones listed in Tables 2
and 3. How hard are these problems, and are there efficient (approximation) algorithms?
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Figure 9: Graph II and empirical approximation factors with n = 10 nodes. White bars illustrate theoretical approximation
bounds where applicable. In (a) and (b), cutting off v1 costs f(δv1) = n/2 + 1 = 6 and is the second-best cut. Cutting off
vn costs f(δvn) = n/2(n/2 − 1) + 1 = 21, the worst cut that cuts off a single node. For (b), the maximum cost of a cut is
n = 10. In (d), the second-best cut δv1 has cost b = 101� max{|C∗|, n,

√
m logm}.

• We show that the (s, t) cut problem becomes NP hard with submodular costs, with a lower bound of Ω(n1/3)
for monotone, normalized submodular costs.The modular-cost minimum cut problem becomes NP hard if we
allow negative weights, but can still be approximated within factors better than our lower bounds [15]. The
“bottleneck labeled” min-cuts in [22] have, like CoopCut, a non-modular, non-separable cost function (which
is though not submodular). The authors show (weak) NP hardness results and a lower bound of Ω(2) for two
labels and the min-max version, and mention an inapproximability result for the max-min version with an
arbitrary number of labels. These results lead to the question whether there is a more general relation between
the cost function and the hardness of the cut problem.

Our lower bound and those in [16, 22, 25] show how combinatorial problems become harder with non-
modular, non-separable costs. An interesting open question is, in general, how does non-modularity affect
the complexity of a general combinatorial problem with monotone costs — is there, for example, a general,
widely-applicable quantifiable relation that characterizes the decisive properties of such a substitution? We
leave this to future work.

Acknowledgments: We wish to thank Jens Vygen for the example of an intractable subadditive function,
Richard Karp for the name “cooperative cut”, and Andrew Guillory for his Gomory-Hu tree code.

Note: Removed previous Theorem 3 in July 2010.
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A The (s, t) version of node-submodular Sparsest Cut and Min-Quotient Cut
We extend the algorithms by Svitkina and Fleischer [44] for node-submodular Sparsest Cut and Min-Quotient Cut
in a straightforward way to an (s, t) version, where the solution X∗ ⊂ V must separate specified nodes s and t,
i.e., s ∈ X∗, t /∈ X∗. To solve the extension, we enforce s to be included in the selected set, and exclude t from the
nodes to join the selection. The algorithms in [44] repeatedly sample a set S, and then find a set T ∗ by minimizing
the submodular term f(T ) − αh(S, T ). With high probability, one of those sets T ∗ satisfies the approximation
factor.

To enforce the inclusion of s, let V = V \ {s, t} and f : 2V → R+
0 :

f(X) = f(X ∪ {s}).

We essentially run a slightly modified algorithm on V with cost f , automatically including s into T and S. The set
to sample from is V .

Uniform Sparsest Cut/Min-Quotient Cut. We can modify the sub-problem of minimizing f(T )−α|T ∩S|+
α|T ∩ (V \S)| to include s, that is, subtract another α since s is forcefully included in both T and S. This constant
will not change the optimizing T ∗, though. Let X∗ ⊆ V be the optimal solution of the entire cut problem, with
s ∈ X∗. The algorithm on V gives a cut T ∗ with cost

f(T ∗ ∪ {s}) = f(T ∗) ≤

√
n− 2

ln(n− 2)
f(X∗)

≤
√

n

ln(n− 2)
f(X∗)

≤
√

2
n

lnn
f(X∗)

(for n ≥ 4), that is, the approximation factor of O(
√

n
lnn ) still holds. The factor for Min-Quotient Cut is always

within a factor of two of that for uniform Sparsest Cut [44].
Sparsest Cut. We again retain the algorithm in [44], but replace f by f and V by V . After sampling, we find the

minimizer T ∗ of f(T ) − α
∑
v∈T∪{s} w(v), where the w(v) are set during the algorithm. The proof in [44] uses

the fact that the expected sum of weights w(X∗) of the nodes in an optimal set X∗ exceeds a certain threshold –
this expectation only increases with the modification. The remainder of the proof remains analogous to the original
one, and the factors change at most by a constant as above.

B Correlation Clustering as CoopCut
Correlation clustering8 (CC) is a graph-partitioning problem where a graph’s edges are marked with either +
or − corresponding to the case where the adjacent nodes are “similar” or “different”. Nodes connected by a +
edge should be in the same cluster, while nodes connected by a − edge should be in separate clusters. The goal

8CC has been introduced into Machine Learning by [3], but variants of the problem have been considered in other commu-
nities before, see e.g. [21] and references therein. Variants are known as aggregation (of binary relations), consensus clustering
and similar terms.
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of CC is to partition the nodes (i.e., a cut) so that, to the extent possible, the partition agrees with the labels,
that is, similarities exist within clusters and differences exist across clusters. Quality is measured in two ways: the
partitioning should either 1) minimize the number of differences within the clusters (i.e., edges that are not cut) plus
the number of similarities across clusters (edges that are cut) — this case is usually referred to as “min-disagree”; or
2) maximize the number of similarities within clusters plus the number of differences between clusters — referred
to as “max-agree”. The two problems have the same optima, but different approximations. In standard CC, the
number of clusters naturally results from optimizing the objective function [3, 10], but some work considers the
case where a specified fixed number of clusters is given [15]. Also, a natural generalization of the above is when +
and − are replaced by positive or negative weights. Then the quality measure is not the number of disagreements
or agreements, but the absolute weight of the edges with disagreements or agreements, respectively.

In the traditional graph-cut problem, there is an edge-weight function ftrad that is modular and always non-
negative. The correlation clustering objectives, by contrast, correspond to modular cost functions with both positive
and negative weights. Such functions are also non-monotone submodular functions. The modular-cost formulation
has been used in the LP relaxations of CC (e.g. [10], also in [21]). Shamir et al. [42] and Giotis and Guruswami
[15] show that CC with the additional constraint of having exactly k parts is NP hard.

We next show how correlation clustering (restricted to the case of 2 clusters) corresponds to an instance of
CoopCut. We are given a graphG = (V,E). LetE− ⊆ E be the set of edges with negative weights,E+ = E\E−
the set of edges with positive weights, and χC ∈ {0, 1}E the characteristic vector of the cut C ⊆ E. The objective
for min-disagree can be written as:

f(C) =
∑

e∈C∩E+

w(e) +
∑

e∈(E\C)∩E−
(−w(e))

=
∑
e∈E+

χC(e)w(e) +
∑
e∈E−

(
1− χC(e))(−w(e)

)
=
∑
e∈E+

χC(e)w(e)−
∑
e∈E−

w(e)︸ ︷︷ ︸
constant w.r.t. C

+
∑
e∈E−

χC(e)w(e)

= const. +
∑
e∈E

χC(e)w(e)

= const. +
∑
e∈C

w(e).

Thus, minimizing disagreements corresponds to minimizing a modular graph cut objective with positive and neg-
ative weights. The unweighted version corresponds simply to the case where the weights are ±1.

Similarly, the max-agree version corresponds to maximizing a modular objective, which is equivalent to mini-
mizing the same modular objective times minus one. The objective to maximize is

f(C) =
∑

e∈C∩E−
(−w(e)) +

∑
e∈(E\C)∩E+

w(e)

=
∑
e∈E−

χC(e)(−w(e)) +
∑
e∈E+

(
1− χC(e)

)
w(e)

= −
∑
e∈E−

χC(e)w(e) +
∑
e∈E+

w(e)︸ ︷︷ ︸
constant w.r.t. C

−
∑
e∈E+

χC(e)w(e)

= const−
∑
e∈E

χC(e)w(e)

= −
(
− const +

∑
e∈C

w(e)
)
,

again an instance of CoopCut.
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C Derangements with one allowable exception
In Section 2.1, we define D′(n) to be the number of derangements where one fixed element can be mapped to
itself. Let this specific element be n, without loss of generality, i.e., σ(n) = n is allowed.

The derivation of D′(n) follows the technique of the forbidden board [43, pp. 71-73]. Here, the forbidden board
isB = {(1, 1), (2, 2), . . . , (n−1, n−1)}. LetNj be the number of permutations σ for which

∣∣{(i, σ(i)}ni=1∩B
∣∣ =

j, i.e., their graph coincides with B in j positions. Furthermore, let rk be the number of k-subsets of B such that
no two elements have a coordinate in common. The polynomial

Nn(x) =
∑
j

Njx
j =

n∑
k=0

rk(n− k)!(x− 1)k

gives the wanted solution D′(n) = N0 = Nn(0). For the board B above, rk =
(
n−1
k

)
. Thus,

Nn(x) =
n∑
k=0

rk(n− k)!(x− 1)k

=
n∑
k=0

(
n− 1
k

)
(n− k)!(x− 1)k

=
n∑
k=0

(n− 1)!
k!(n− 1− k)!

(n− k)!(x− 1)k

=
n∑
k=0

(n− 1)!
k!

(n− k)(x− 1)k.

ThenD′(n) = Nn(0) =
∑n
k=0

(n−1)!
k! (n−k)!(−1)k andD′(n−1) = Nn−1(0) =

∑n−1
k=0

(n−2)!
k! (n−1−k)!(−1)k.
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