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Abstract

A method is described which, like the kernel trick in support vector
machines (SVMs), lets us generalize distance-based algorithms to operate
in feature spaces, usually nonlinearly related to the input space. This is
done by identifying a class of kernels which can be represented as norm-
based distances in Hilbert spaces. It turns out that common kernel algo-
rithms, such as SVMs and kernel PCA, are actually really distance based
algorithms and can be run with that class of kernels, too.

As well as providing a useful new insight into how these algorithms
work, the present work can form the basis for conceiving new algorithms.

1 Introduction

One of the crucial ingredients of SVMs is the so-called kernel trick for the compu-
tation of dot products in high-dimensional feature spaces using simple functions
de�ned on pairs of input patterns. This trick allows the formulation of nonlinear
variants of any algorithm that can be cast in terms of dot products, SVMs being
but the most prominent example [14, 9, 4]. Although the mathematical result
underlying the kernel trick is almost a century old [7], it was only much later
[1, 3, 14] that it was made fruitful for the machine learning community. Ker-
nel methods have since led to interesting generalizations of learning algorithms
and to successful real-world applications [9]. The present paper attempts to
extend the utility of the kernel trick by looking at the problem of which ker-
nels can be used to compute distances in feature spaces. Again, the underlying
mathematical results have been known for quite a while [8]; some of them have
already attracted interest in the kernel methods community in various contexts
[12, 6, 16].

Let us consider training data (x1; y1); : : : ; (xm; ym) 2 X � Y : Here, Y is
the set of possible outputs (e.g., in pattern recognition, f�1g), and X is some
nonempty set (the domain) that the patterns are taken from. We are interested
in predicting the outputs y for previously unseen patterns x. This is only pos-
sible if we have some measure that tells us how (x; y) is related to the training
examples. For many problems, the following approach works: informally, we
want similar inputs to lead to similar outputs. To formalize this, we have to
state what we mean by similar. On the outputs, similarity is usually measured
in terms of a loss function. For instance, in the case of pattern recognition,
the situation is simple: two outputs can either be identical or di�erent. On the
inputs, the notion of similarity is more complex. It hinges on a representation of
the patterns and a suitable similarity measure operating on that representation.

One particularly simple yet surprisingly useful notion of (dis)similarity | the
one we will use in this paper | derives from embedding the data into a Euclidean
space and utilizing geometrical concepts. For instance, in SVMs, similarity is
measured by dot products (i.e. angles and lengths) in some high-dimensional
feature space F . Formally, the patterns are �rst mapped into F using � : X !
F; x 7! �(x); and then compared using a dot product h�(x); �(x0)i. To avoid
working in the potentially high-dimensional space F , one tries to pick a feature
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space in which the dot product can be evaluated directly using a nonlinear
function in input space, i.e. by means of the kernel trick

k(x; x0) = h�(x); �(x0)i: (1)

Often, one simply chooses a kernel k with the property that there exists some �
such that the above holds true, without necessarily worrying about the actual
form of � | already the existence of the linear space F facilitates a number of
algorithmic and theoretical issues. It is well established that (1) works out for
Mercer kernels [3, 14], or, equivalently, positive de�nite kernels [2, 15]. Here
and below, incides i and j by default run over 1; : : : ;m.

De�nition 1 (Positive de�nite kernel) A symmetric function k : X �X !
R which for all m 2 N; xi 2 X gives rise to a positive Gram matrix, i.e. for
which for all ci 2 R we have

mX
i;j=1

cicjKij � 0; where Kij := k(xi; xj); (2)

is called a positive de�nite (pd) kernel.

One particularly intuitive way to construct a feature map satisfying (1) for
such a kernel k proceeds, in a nutshell, as follows (for details, see [2]):

1. De�ne a feature map

� : X ! R
X ; x 7! k(:; x): (3)

Here, RX denotes the space of functions mapping X into R.
2. Turn it into a linear space by forming linear combinations

f(:) =

mX
i=1

�ik(:; xi); g(:) =

m0X
j=1

�jk(:; x
0

j); (m;m0 2 N; �i ; �j 2 R; xi ; x
0

j 2 X ):

(4)

3. Endow it with a dot product hf; gi :=
Pm

i=1

Pm0

j=1 �i�jk(xi; x
0

j), and turn it
into a Hilbert space Hk by completing it in the corresponding norm.

Note that in particular, by de�nition of the dot product, hk(:; x); k(:; x0)i =
k(x; x0), hence, in view of (3), we have k(x; x0) = h�(x); �(x0)i, the kernel trick.
This shows that pd kernels can be thought of as (nonlinear) generalizations of
one of the simplest similarity measures, the dot product (x � x0), x; x0 2 RN .
The question arises as to whether there also exist generalizations of the simplest
dissimilarity measure, the distance kx� x0k2.

Clearly, the distance k�(x) � �(x0)k2 in the feature space associated with a
pd kernel k can be computed using the kernel trick (1) as k(x; x) + k(x0; x0) �
2k(x; x0). Positive de�nite kernels are, however, not the full story: there exists
a larger class of kernels that can be used as generalized distances, and the
following section will describe why.
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2 Kernels as Generalized Distance Measures

Let us start by considering how a dot product and the corresponding distance
measure are a�ected by a translation of the data, x 7! x�x0. Clearly, kx�x0k2

is translation invariant while (x � x0) is not. A short calculation shows that the
e�ect of the translation can be expressed in terms of k:� :k2 as

((x � x0) � (x
0 � x0)) =

1

2

�
�kx� x0k2 + kx� x0k

2 + kx0 � x0k2
�
: (5)

Note that this is, just like (x�x0), still a pd kernel:
P

i;j cicj((xi�x0)�(xj�x0)) =

k
P

i ci(xi � x0)k
2 � 0. For any choice of x0 2 X , we thus get a similarity

measure (5) associated with the dissimilarity measure kx� x0k.
This naturally leads to the question whether (5) might suggest a connection

that holds true also in more general cases: what kind of nonlinear dissimilarity
measure do we have to substitute instead of k: � :k2 on the right hand side of
(5) to ensure that the left hand side becomes positive de�nite? The answer is
given by a known result. To state it, we �rst need to de�ne the appropriate
class of kernels.

De�nition 2 (Conditionally positive de�nite kernel) A symmetric func-
tion k : X �X ! R which satis�es (2) for all m 2 N; xi 2 X and for all ci 2 R

with
mX
i=1

ci = 0; (6)

is called a conditionally positive de�nite (cpd) kernel.

Proposition 3 (Connection pd | cpd [2]) Let x0 2 X , and let k be a
symmetric kernel on X �X . Then

~k(x; x0) := k(x; x0)� k(x; x0)� k(x0; x
0) + k(x0; x0) (7)

is positive de�nite if and only if k is conditionally positive de�nite.

The proof follows directly from the de�nitions and can be found in [2].
This result does generalize (5): the negative squared distance kernel is in-

deed cpd, for
P

i ci = 0 implies �
P

i;j cicjkxi � xjk
2 = �

P
i ci
P

j cjkxjk
2 �P

j cj
P

i cikxik
2 + 2

P
i;j cicj(xi � xj) = 2

P
i;j cicj(xi � xj) = 2k

P
i cixik

2 � 0:
In fact, this implies that all kernels of the form

k(x; x0) = �kx� x0k� ; 0 < � � 2 (8)

are cpd (they are not pd), by application of the following result:

Proposition 4 ([2]) If k : X � X !] � 1; 0] is cpd, then so are �(�k)�

(0 < � < 1) and � log(1� k).
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To state another class of cpd kernels that are not pd, note �rst that as trivial
consequences of De�nition 2, we know that (i) sums of cpd kernels are cpd, and
(ii) any constant b 2 R is cpd. Therefore, any kernel of the form k + b, where
k is cpd and b 2 R, is also cpd. In particular, since pd kernels are cpd, we can
take any pd kernel and o�set it by b and it will still be at least cpd. For further
examples of cpd kernels, cf. [2, 15, 5, 12].

We now return to the main ow of the argument. Proposition 3 allows us
to construct the feature map for k from that of the pd kernel ~k. To this end,
�x x0 2 X and de�ne ~k according to (7). Due to Proposition 3, ~k is positive
de�nite. Therefore, we may employ the Hilbert space representation � : X ! H
of ~k (cf. (1)), satisfying h�(x); �(x0)i = ~k(x; x0), hence

k�(x)��(x0)k2 = h�(x)��(x0); �(x)��(x0)i = ~k(x; x)+~k(x0; x0)�2~k(x; x0): (9)

Substituting (7) yields

k�(x) � �(x0)k2 = �k(x; x0) +
1

2
(k(x; x) + k(x0; x0)) : (10)

We thus have proven the following result.

Proposition 5 (Hilbert space representation of cpd kernels [8, 2]) Let
k be a real-valued conditionally positive de�nite kernel on X , satisfying k(x; x) =
0 for all x 2 X . Then there exists a Hilbert space H of real-valued functions on
X , and a mapping � : X ! H, such that

k�(x)� �(x0)k2 = �k(x; x0): (11)

If we drop the assumption k(x; x) = 0, the Hilbert space representation reads

k�(x) � �(x0)k2 = �k(x; x0) +
1

2
(k(x; x) + k(x0; x0)) : (12)

It can be shown that if k(x; x) = 0 for all x 2 X , then d(x; x0) :=
p
�k(x; x0) =

k�(x)� �(x0)k is a semi-metric; it is a metric if k(x; x0) 6= 0 for x 6= x0 [2].
We next show how to represent general symmetric kernels (thus in particular

cpd kernels) as symmetric bilinear formsQ in feature spaces. This generalization
of the previously known feature space representation for pd kernels comes at a
cost: Q will no longer be a dot product. For our purposes, we can get away
with this. The result will give us an intuitive understanding of Proposition 3:
we can then write ~k as ~k(x; x0) := Q(�(x)��(x0); �(x

0)��(x0)). Proposition 3
thus essentially adds an origin in feature space which corresponds to the image
�(x0) of one point x0 under the feature map.

Proposition 6 (Vector space representation of symmetric kernels) Let
k be a real-valued symmetric kernel on X . Then there exists a linear space H
of real-valued functions on X , endowed with a symmetric bilinear form Q(:; :),
and a mapping � : X ! H, such that

k(x; x0) = Q(�(x); �(x0)): (13)
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Proof The proof is a direct modi�cation of the pd case. We use the map (3) and

linearly complete the image as in (4). De�neQ(f; g) :=
Pm

i=1

Pm0

j=1 �i�jk(xi; x
0

j).
To see that it is well-de�ned, although it explicitly contains the expansion co-

e�cients (which need not be unique), note that Q(f; g) =
Pm0

j=1 �jf(x
0

j), inde-
pendent of the �i. Similarly, for g, note that Q(f; g) =

P
i ��ig(xi), hence it is

independent of �j . The last two equations also show that Q is bilinear; clearly,
it is symmetric.

Note, moreover, that by de�nition of Q, k is a reproducing kernel for the
feature space (which is not a Hilbert space): for all functions f (4), we have
Q(k(:; x); f) = f(x); in particular, Q(k(:; x); k(:; x0)) = k(x; x0):

Rewriting ~k as ~k(x; x0) := Q(�(x)��(x0); �(x
0)��(x0)) suggests an imme-

diate generalization of Proposition 3: in practice, we might want to choose other
points as origins in feature space | points that do not have a preimage x0 in
input space, such as (usually) the mean of a set of points (cf. [13]). This will be
useful when considering kernel PCA. Crucial is only that our reference point's
behaviour under translations is identical to that of individual points. This is
taken care of by the constraint on the sum of the ci in the following proposition.
The asterisk denotes the complex conjugated transpose.

Proposition 7 (Exercise 2.23, [2]) Let K be a symmetric matrix, e 2 R
m

be the vector of all ones, I the m �m identity matrix, and let c 2 Cm satisfy
e�c = 1. Then

~K := (I � ec�)K(I � ce�) (14)

is positive if and only if K is conditionally positive.

Proof
\=)": suppose ~K is positive, i.e. for any a 2 C

m , we have

0 � a� ~Ka = a�Ka+ a�ec�Kce�a� a�Kce�a� a�ec�Ka: (15)

In the case a�e = e�a = 0 (cf. (6)), the three last terms vanish, i.e. 0 � a�Ka;
proving that K is conditionally positive.

\(=": suppose K is conditionally positive. Decompose a 2 Cm as a =
a0+ce�a; where a0 = a�ce�a. Note that our assumption e�c = 1 implies that
e�a0 = a0�e = 0, i.e. we have decomposed a into one vector whose coe�cients
sum up to 0 and another one which is a multiple of c. Using this, we compute

a� ~Ka = a�Ka+ a�ec�Kce�a� a�Kce�a� a�ec�Ka

= a0�Ka0 + a�ec�Kce�a+ (a� � a�ec�)Kce�a+ a�ec�K(a� ce�a)

+a�ec�Kce�a� a�Kce�a� a�ec�Ka: (16)
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The �rst term satis�es a0�Ka0 � 0 by assumption. Collecting the remaining
terms, we infer that

a� ~Ka �
�
ja�ej2c� + e�a(a� � a�ec�)� ja�ej2c� + ja�ej2c� � e�aa�

�
Kc

+(a�ec� � a�ec�)Ka

= 0: (17)

This result directly implies a corresponding generalization of Proposition 3:

Proposition 8 (Adding a general origin) Let k be a symmetric kernel,
x1; : : : ; xm 2 X , and let ci 2 C satisfy

Pm

i=1 ci = 1. Then

~k(x; x0) :=
1

2

0
@k(x; x0)� mX

i=1

cik(x; xi)�

mX
i=1

cik(xi; x
0) +

mX
i;j=1

cicjk(xi; xj)

1
A
(18)

is positive de�nite if and only if k is conditionally positive de�nite.

Proof Consider a set of points x01; : : : ; x
0

m0 , m0 2 N; x0i 2 X , and let K be
the (m+m0)� (m+m0) Gram matrix based on x1; : : : ; xm; x

0

1; : : : ; x
0

m0 . Apply
Proposition 7 using cm+1 = : : : = cm+m0 = 0.

Example 9 (SVMs and kernel PCA) (i) The above results show that con-
ditionally positive de�nite kernels are a natural choice whenever we are dealing
with a translation invariant problem, such as the SVM: maximization of the
margin of separation between two classes of data is independent of the origin's
position. Seen in this light, it is not surprising that the structure of the dual
optimization problem (cf. [14]) allows cpd kernels: as noticed in [12, 11], the
constraint

Pm
i=1 �iyi = 0 projects out the same subspace as (6) in the de�nition

of conditionally positive matrices.
(ii) Another example of a kernel algorithm that works with conditionally

positive de�nite kernels is kernel PCA [10], where the data is centered, thus
removing the dependence on the origin in feature space. Formally, this follows
from Proposition 7 for ci = 1=m.

Example 10 (Parzen windows) One of the simplest distance-based classi�-
cation algorithms conceivable proceeds as follows. Given m+ points labelled with
+1, m� points labelled with �1, and a test point �(x), we compute the mean
squared distances between the latter and the two classes, and assign it to the one
where this mean is smaller,

y = sgn

 
1

m�

X
yi=�1

k�(x) � �(xi)k
2 �

1

m+

X
yi=1

k�(x)� �(xi)k
2

!
: (19)
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We use the distance kernel trick (Proposition 5) to express the decision function
as a kernel expansion in input space: a short calculation shows that

y = sgn

 
1

m+

X
yi=1

k(x; xi)�
1

m�

X
yi=�1

k(x; xi) + c

!
; (20)

with the constant o�set c = (1=2m�)
P

yi=�1
k(xi; xi)�(1=2m+)

P
yi=1

k(xi; xi).
Note that for some cpd kernels, such as (8), k(xi; xi) is always 0, thus c = 0.
For others, such as the commonly used Gaussian kernel, k(xi; xi) is a nonzero
constant, in which case c vanishes provided that m+ = m�. For normalized
Gaussians, the resulting decision boundary can be interpreted as the Bayes deci-
sion based on two Parzen windows density estimates of the classes; for general
cpd kernels, the analogy is a mere formal one.

Example 11 (Toy Experiment) In Fig. 1, we illustrate the �nding that ker-
nel PCA can be carried out using cpd kernels. We use the kernel (8). Due to
the centering that is built into kernel PCA (cf. Example 9, (ii), and (5)), the
case � = 2 actually is equivalent to linear PCA. As we decrease �, we obtain
increasingly nonlinear feature extractors. Note that as the kernel parameter �
gets smaller, we are also getting more localized feature extractors (in the sense
that the regions where they have large gradients, i.e. dense sets of contour lines
in the plot, get more localized). This could be due to the fact that smaller val-
ues of � put less weight on large distances, thus yielding more robust distance
measures.

Figure 1: Kernel PCA on a toy dataset using the cpd kernel (8); contour plots of
the feature extractors corresponding to projections onto the �rst two principal
axes in feature space. From left to right: � = 2; 1:5; 1; 0:5. Notice how smaller
values of � make the feature extractors increasingly nonlinear, which allows the
identi�cation of the cluster structure.
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3 Conclusion

We have presented a kernel trick for distances in feature spaces. It can be used to
generalize all distance based algorithms to a feature space setting by substituting
a suitable kernel function for the squared distance. The class of kernels that can
be used is larger than those commonly used in kernel methods (known as Mercer
kernels). We have argued that this reects the translation invariance of distance
based algorithms, as opposed to genuinely dot product based algorithms. SVMs
and kernel PCA are translation invariant in feature space, hence they are really
both distance rather than dot product based. We thus argued that they can
both use conditionally positive de�nite kernels. In the case of the SVM, this
drops out of the optimization problem automatically [12], in the case of kernel
PCA, it corresponds to the introduction of a reference point in feature space.
The contribution of the present work is that it identi�es translation invariance
as the underlying reason, thus enabling us to use cpd kernels in a much larger
class of kernel algorithms, and that it draws the learning community's attention
to the kernel trick for distances.
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