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Training a Support Vector Machine in the Primal

Olivier Chapelle

Abstract. Most literature on Support Vector Machines (SVMs) concentrate on the dual optimization problem.
In this paper, we would like to point out that the primal problem can also be solved efficiently, both for linear and
non-linear SVMs, and that there is no reason for ignoring this possibilty. On the contrary, from the primal point of
view new families of algorithms for large scale SVM training can be investigated.

1 Introduction

The vast majority of text books and articles introducing Support Vector Machines (SVMs) first state the primal
optimization problem, and then go directly to the dual formulation [Vapnik, 1998, Burges, 1998, Cristianini and
Shawe-Taylor, 2000, Schölkopf and Smola, 2002]. A reader could easily obtain the impression that this is the only
possible way to train an SVM.

In this paper, we would like to reveal this as being a misconception, and show that someone unaware of duality
theory could train an SVM. Primal optimizations of linear SVMs have already been studied by Keerthi and DeCoste
[2005], Mangasarian [2002]. One of the main contributions of this paper is to complement those studies to include
the non-linear case. Our goal is not to claim that the primal optimization is better than dual, but merely to show
that they aretwo equivalent ways of reaching the same result. Also, we will show that when the goal is to find an
approximatesolution, primal optimization is superior.

Given a training set{(xi, yi)}1≤i≤n,xi ∈ Rd, yi ∈ {+1,−1}, recall that the primal SVM optimization problem
is usually written as:

min
w,b
||w||2 + C

n∑
i=1

ξp
i under constraintsyi(w · xi + b) ≥ 1− ξi, (1)

wherep is either 1 (hinge loss) or 2 (quadratic loss). At this point, in the literature there are usually two main
reasons mentioned for solving this problem in the dual:

1. The duality theory provides a convenient way to deal with the constraints.

2. The dual optimization problem can be written in terms of dot products, thereby making it possible to use
kernel functions.

We will demonstrate in section 3 that those two reasons are not a limitation for solving the problem in the
primal, mainly by writing the optimization problem as an unconstrained one and by using the representer theorem.
In section 4, we will see that performing a Newton optimization in the primal yields exactly the same computational
complexity as optimizing the dual; that will be validated experimentally in section 5. Finally, possible advantages
of a primal optimization are presented in section 6. But we will start now with some general discussion about
primal and dual optimization.

2 Links between primal and dual optimization

As mentioned in the introduction, primal and dual optimization have strong connections and we illustrate some of
them through the example of regularized least-squares (RLS).

Given a matrixX ∈ Rn×d representing the coordinates ofn points ind dimensions and a target vectory ∈ Rn,
the primal RLS problem can be written as

min
w∈Rd

λw>w + ‖Xw − y‖2, (2)
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Figure 1: Plots of the primal suboptimality, (2)-(3), for primal and dual optimization by conjugate gradient (pcg in Matlab).
n points are drawn randomly from a spherical Gaussian distribution ind dimensions. The targets are also randomly generated
according a Gaussian distribution.λ is fixed to 1. Left,n = 10 andd = 100. Right,n = 100 andd = 10.

whereλ is the regularization parameter. This objective function is minimized forw = (X>X + λI)−1X>y and
its minimum is

y>y − y>X(X>X + λI)−1X>y. (3)

Introducing slacks variablesξ = Xw − y, the dual optimization problem is

max
α∈Rn

2α>y − 1
λ

α>(XX> + λI)α. (4)

The dual is maximized forα = λ(XX> + λI)−1y and its maximum is

λy>(XX> + λI)−1y. (5)

The primal solution is then given by the KKT condition,

w =
1
λ

X>α. (6)

Now we relate the inverses ofXX>+λI andX>X +λI thanks toWoodbury formula[Golub and Loan, 1996,
page 51],

λ(XX> + λI)−1 = I −X(λI + X>X)−1X> (7)

With this equality, it appears that primal (3) and dual (5) optimal values are the same, i.e. that the duality gap is
zero.

Let us now analyze the computational complexity of primal and dual optimization. The primal requires the
computation and inversion of the matrix(X>X + λI), which inO(nd2 + d3). On the other hand, the dual deals
with the matrix(XX>+λI), which requiresO(dn2+n3) operations to compute and invert. It is often argued that
one should solve either the primal or the dual optimization problem depending on whethern is larger or smaller
thand, resulting in anO(max(n, d) min(n, d)2) complexity. But this argument does not really hold because one
can always use (7) in case the matrix to invert is too big. So both for primal and dual optimization, the complexity
isO(max(n, d) min(n, d)2).

The difference between primal and dual optimization comes when computing approximate solutions. Let us
optimize both the primal (2) and dual (4) objective functions by conjugate gradient and see how the primal ob-
jective function decreases as a function of the number of conjugate gradient steps. For the dual optimiztion, an
approximate dual solution is converted to an approximate primal one by using the KKT condition (6).

Intuitively, the primal optimization should be superior because it directly minimizes the quantity we are inter-
ested in. Figure 1 confirms this intuition. In some cases, there is no difference between primal and dual optimiza-
tion (left), but in some other cases, the dual optimization can be much slower to converge (right). In Appendix
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A, we try to analyze this phenomenon by looking at the primal objective value after one conjugate gradient step.
We show that the primal optimization always yields a lower value than the dual optimization, and we quantify the
difference.

The conclusion from this analyzis is that even though primal and dual optimization are equivalent, both in
terms of the solution and time complexity, when it comes toapproximate solution, primal optimization is superior
because it is more focused on minimizing what we are interested in: the primal objective function.

3 Primal objective function

Coming back to Support Vector Machines, let us rewrite (1) as an unconstrained optimization problem:

||w||2 + C
n∑

i=1

L(yi,w · xi + b), (8)

with L(y, t) = max(0, 1− yt)p (see figure 2). More generally,L could be any loss function.
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Figure 2: SVM loss function,L(y, t) = max(0, 1− yt)p for p = 1 and 2.

Let us now consider non-linear SVMs with a kernel functionk and an associated Reproducing Kernel Hilbert
SpaceH. The optimization problem (8) becomes

min
f∈H

λ||f ||2H +
n∑

i=1

L(yi, f(xi)), (9)

where we have made a change of variable by introducing the regularization parameterλ = 1/C. We have also
dropped the offsetb for the sake of simplicity. However all the algebra presented below can be extended easily to
take it into account (see Appendix B).

Suppose now that the loss functionL is differentiable with respect to its second argument. Using the reproducing
propertyf(xi) = 〈f, k(xi, ·)〉H, we can differentiate (9) with respect tof and at the optimal solutionf∗, the
gradient vanishes, yielding

2λf∗ +
n∑

i=1

∂L

∂t
(yi, f

∗(xi))k(xi, ·) = 0, (10)

where∂L/∂t is the partial derivative ofL(y, t) with respect to its second argument. This implies that the optimal
function can be written as a linear combination of kernel functions evaluated at the training samples. This result is
also known as therepresenter theorem[Kimeldorf and Wahba, 1970].

Thus, we seek a solution of the form:

f(x) =
n∑

i=1

βik(xi,x).

We denote those coefficientsβi and notαi as in the standard SVM literature to stress that they shouldnot be
interpreted as Lagrange multipliers.
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Let us express (9) in term ofβi,

λ
n∑

i,j=1

βiβjk(xi,xj) +
n∑

i=1

L

yi,
n∑

j=1

k(xi,xj)βj

 , (11)

where we used the kernel reproducing property in||f ||2H =
∑n

i,j=1 βiβj < k(xi, ·), k(xj , ·) >H=∑n
i,j=1 βiβjk(xi,xj).
Introducing the kernel matrixK with Kij = k(xi,xj) andKi theith column ofK, (11) can be rewritten as

λβ>Kβ +
n∑

i=1

L(yi,K
>
i β). (12)

As long asL is differentiable, we can optimize (12) by gradient descent. Note that this is an unconstrained
optimization problem.

4 Newton optimization

The unconstrained objective function (12) can be minimized using a variety of optimization techniques such as
conjugate gradient. Here we will only consider Newton optimization as the similarities with dual optimization will
then appear clearly.

We will focus on two loss functions: the quadratic penalization of the training errors (figure 2) and a differen-
tiable approximation to the linear penalization, the Huber loss.

4.1 Quadratic loss

Let us start with the easiest case, theL2 penalization of the training errors,

L(yi, f(xi)) = max(0, 1− yif(xi))2.

For a given value of the vectorβ, we say that a pointxi is asupport vectorif yif(xi) < 1, i.e. if the loss on this
point is non zero. Note that this definition of support vector is different fromβi 6= 0 1. Let us reorder the training
points such that the firstnsv points are support vectors. Finally, letI0 be then × n diagonal matrix with the first
nsv entries being 1 and the others 0,

I0 ≡



1
... 0

1
0

0
...

0


The gradient of (12) with respect toβ is

∇ = 2λKβ +
nsv∑
i=1

Ki
∂L

∂t
(yi,K

>
i β)

= 2λKβ + 2
nsv∑
i=1

Kiyi(yiK
>
i β − 1)

= 2(λKβ + KI0(Kβ − Y )), (13)

and the Hessian,
H = 2(λK + KI0K). (14)

1From (10), it turns out at the optimal solution that the sets{i, βi 6= 0} and{i, yif(xi) < 1} will be the same. To avoid
confusion, we could have defined this latter as the set oferror vectors.
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Each Newton step consists of the following update,

β ← β − γH−1∇,

whereγ is the step size found by line search or backtracking [Boyd and Vandenberghe, 2004, Section 9.5]. In our
experiments, we noticed that the default value ofγ = 1 did not result in any convergence problem, and in the rest
of this section we only consider this value. However, to enjoy the theorical properties concerning the convergence
of this algorithm, backtracking is necessary.

Combining (13) and (14) as∇ = Hβ − 2KI0Y , we find that after the update,

β = (λK + KI0K)−1KI0Y

= (λIn + I0K)−1I0Y (15)

Note that we have assumed thatK (and thus the Hessian) is invertible. IfK is not invertible, then the expansion is
not unique (even though the solution is), and (15) will produce one of the possible expansions of the solution. To
avoid these problems, let us simply assume that an infinitesimally small ridge has been added toK.

Let Ip denote the identity matrix of sizep × p andKsv the firstnsv columns and rows ofK, i.e. the submatrix
corresponding to the support vectors. Using the fact that the lower left blockλIn + I0K is 0, the invert of this
matrix can be easily computed, and finally, the update (15) turns out to be

β =
(

(λInsv + Ksv)−1 0
0 0

)
Y,

=
(

(λInsv + Ksv)−1Ysv

0

)
. (16)

Link with dual optimization Update rule (16) is not surprising if one has a look at the SVM dual optimization
problem:

max
α

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyj(Kij + λδij), under constraintsαi ≥ 0.

Consider the optimal solution: the gradient with respect to allαi > 0 (the support vectors) must be 0,

1− diag(Ysv)(Ksv + λInsv)diag(Ysv)α = 0,

where diag(Y ) stands for the diagonal matrix with the diagonal being the vectorY . Thus, up to a sign difference,
the solutions found by minimizing the primal and maximizing the primal are the same:βi = yiαi.

Complexity analysis Only a couple of iterations are usually necessary to reach the solution (rarely more than
5), and this number seems independent ofn. The overall complexity is thus the complexity one Newton step,
which isO(nnsv + n3

sv). Indeed, the first term corresponds to finding the support vectors (i.e. the points for which
yif(xi) < 1) and the second term is the cost of inverting the matrixKsv + λInsv . It turns out that this is the same
complexity as in standard SVM learning (dual maximization) since those 2 steps are also necessary.

It is important to note that in general this time complexity is also a lower bound (for theexactcomputation of
the SVM solution). Chunking and decomposition methods, for instance [Joachims, 1999, Osuna et al., 1997], do
not help since there is fundamentally a linear system of sizensv to be be solved2. Chunking is only useful when
theKsv matrix can not fit in memory.

2We considered here that solving a linear system (either in the primal or in the dual) takes cubic time. This time complexiy
can however be improved.
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4.2 Huber / L1 loss

The hinge loss used in SVMs is not differentiable. We propose to use a differentiable approximation of it, inspired
by the Huber loss (cf figure 3):

L(y, t) =


0 if yt > 1 + h
(1+h−yt)2

4h if |1− yt| ≤ h
1− yt if yt < 1− h

(17)

whereh is a parameter to choose, typically between 0.01 and 0.5.
Note that we are not minimizing the hinge loss, butthis does not matter, since from a machine learning point

of view there is no reason to prefer the hinge loss anyway. If really one wants to approach the hinge loss solution,
one can makeh→ 0 (similarly to [Lee and Mangasarian, 2001]).
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Figure 3: The Huber loss is a differentiable approximation of theL1 loss. The plot is (17) withh = 0.5.

The derivation of the Newton step follows the same line as for theL2 loss and we will not go into the details. The
algebra is just a bit more complicated because there are 3 different parts in the loss (and thus 3 different categories
of points):

• nsv of them are in the quadratic part of loss;

• ns̄v are in the linear part of the loss. We will call this category of points the support vectors ”at bound”, in
reference to dual optimization where the Lagrange multipliers associated with those points are at the upper
boundC.

• The rest of the points have zero loss.

We reorder the training set in such a way that the points are grouped in the 3 above categories. LetI1 be diagonal
matrix with firstnsv 0 elements followed byns̄v 1 elements (and 0 for the rest).

The gradient is

∇ = 2λKβ +
KI0(Kβ − (1 + h)Y )

2h
−KI1Y

and the Hessian

H = 2λK +
KI0K

2h
.

Thus,

∇ = Hβ −K

(
1 + h

2h
I0 + I1

)
Y

and the newβ is

β =
(

2λIn +
I0K

2h

)−1 (
1 + h

2h
I0 + I1

)
Y

=

 (4hλInsv + Ksv)−1((1 + h)Ysv −Ksv,s̄vYs̄v/(2λ))
Ys̄v/(2λ)

0

 ≡
 βsv

βs̄v

0

 . (18)
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Again, one can see the link with the dual optimization: lettingh → 0, the primal and the dual solution are the
same,βi = yiαi. This is obvious for the points in the linear part of the loss (withC = 1/(2λ)). For the points that
are right on the margin, their output is equal their label,

Ksvβsv + Ksv,s̄vβs̄v = Ysv.

But sinceβs̄v = Ys̄v/(2λ),
βsv = K−1

sv (Ysv −Ksv,s̄vYs̄v/(2λ)),

which is the same equation as the first block of (18) whenh→ 0.

Complexity analysis Similar to the quadratic loss, the complexity isO(n3
sv +n(nsv +ns̄v)). Thensv +ns̄v factor

is the complexity for computing the output of one training point (number of non zeros elements in the vectorβ).
Again, the complexity for dual optimization is the same since both steps (solving a linear system of sizensv and
computing the outputs of all the points) are required.

4.3 Other losses

Some other losses have been proposed to approximate the SVM hinge loss [Lee and Mangasarian, 2001, Zhang
et al., 2003, Zhu and Hastie, 2005]. However, none of them has a linear part and the overall complexity isO(n3)
which can be much larger than the complexity of standard SVM training. More generally, the size of the linear
system to solve is equal tonsv, the number of training points for which∂

2L
∂t2 (yi, f(xi)) 6= 0. If there are some

large linear parts in the loss function, this number might be much smaller thann, resulting in significant speed-up
compared to the standardO(n3) cost.

5 Experiments

The experiments in this section can be considered as a sanity check to show that primal and dual optimization of a
non-linear SVM have similar time complexities. However, for linear SVMs, the primal optimization is definitely
superior [Keerthi and DeCoste, 2005] as illustrated below.

Some Matlab code for the quadratic penalization of the errors and taking into account the biasb is available
online at:http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/primal .

5.1 Linear SVM

In the case of quadratic penalization of the training errors, the gradient of the objective function (8) is

∇ = 2w + 2C
∑
i∈sv

(w · xi − yi)xi,

and the Hessian is

H = Id + C
∑
i∈sv

xix>i .

The computation of the Hessian is inO(d2nsv) and its inversion inO(d3). When the number of dimensions is
relatively small compared to the number of training samples, it is advantageous to optimize directly onw rather
than on the expansion coefficients. In the case whered is large, but the data is sparse, the Hessian should not
be built explicitly. Instead, the linear systemH−1∇ can be solved efficiently by conjugate gradient [Keerthi and
DeCoste, 2005].

Training time comparison on the Adult dataset [Platt, 1998] in presented in figure 4. As expected, the training
time is linear for our primal implementation, but the scaling exponent is 2.2 for the dual implementation of LIB-
SVM (comparable to the 1.9 reported in [Platt, 1998]). This exponent can be explained as follows :nsv is very
small [Platt, 1998, Table 12.3] andns̄v grows linearly withn (the misclassified training points). So for this dataset
the complexity ofO(n3

sv + n(nsv + ns̄v)) turns out to be aboutO(n2).
It is noteworthy that, for this experiment, the number of Newton steps required to reach the exact solution was

7. More generally, this algorithm is usually extremely fast for linear SVMs.
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Figure 4: Time comparison of LIBSVM (an implementation of SMO [Platt, 1998]) and direct Newton optimization on the
normal vectorw.

5.2 L2 loss

We now compare primal and dual optimization for non-linear SVMs. To avoid problems of memory management
and kernel caching and to make time comparison as straightforward as possible, we decided to precompute the
entire kernel matrix. For this reason, the Adult dataset used in the previous section is not suitable because it would
be difficult to fit the kernel matrix in memory (about 8G).

Instead, we used the USPS dataset consisting of 7291 training examples. The problem was made binary by
classifying digits 0 to 4 versus 5 to 9. An RBF kernel withσ = 8 was chosen. We consider in this section the hard
margin SVM by fixingλ to a very small value, namely10−8.

The training for the primal optimization is performed as follows (see Algorithm 1): we start from a small number
of training samples, train, double the number of samples, retrain and so on. In this way, the set of support vectors
is rather well identified (otherwise, we would have to invert ann× n matrix in the first Newton step).

Algorithm 1 SVM primal training by Newton optimization
Function: β = PRIMAL SVM(K,Y,λ)

n← length(Y){Number of training points}
if n > 1000 then

n2 ← n/2 {Train first on a subset to estimate the decision boundary}
β ← PRIMAL SVM(K1..n2,1..n2 , Y1..n2 , λ)]
sv← non zero components ofβ

else
sv← {1, . . . , n}.

end if
repeat

βsv ← (Ksv + λInsv)
−1Ysv

Other components ofβ ← 0
sv← indicesi such thatyi[Kβ]i < 1

until sv has not changed

The time comparison is plotted in figure 5: the running times for primal and dual training are almost the same.
Moreover, they are directly proportional ton3

sv, which turns out to be the dominating term in theO(nnsv + n3
sv)

time complexity. In this problemnsv grows approximatively like
√

n. This seems to be in contradiction with the
result of Steinwart [2003], which states than the number of support vectors grows linearly with the training set
size. However this result holds only for noisy problems, and the USPS dataset has a very small noise level.
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Figure 5: With theL2 penalization of the slacks, the parallel between dual optimization and primal Newton optimization is
striking: the training times are almost the same (and scale inO(n3

sv)). Note that both solutions areexactly the same.

5.3 Huber loss

We perform the same experiments as in the previous section, but introduced noise in the labels: for randomly
chosen 10% of the points, the labels have been flipped. In this kind of situation theL2 loss is not well suited,
because it penalizes the noisy examples too much. However if the noise were, for instance, Gaussian in the inputs,
then theL2 loss would have been very appropriate.

We will study the time complexity and the test error when we vary the parameterh. Note that the solution will
not usually be exactly the same as for a standard hinge loss SVM (it will only be the case in the limith→ 0). The
regularization parameterλ was set to 1/8, which corresponds to the best test performance.

In the experiments described below, a line search was performed in order to make Newton converge more
quickly. This means that instead of using (18) for updatingβ, the following step was made,

β ← β − γH−1∇,

whereγ ∈ [0, 1] is found by 1D minimization. This additional line search does not increase the complexity since it
is justO(n). For theL2 loss described in the previous section, this line search was not necessary and full Newton
steps were taken (γ = 1).

5.3.1 Influence ofh
As expected the left hand side of figure 6 shows that the test error is relatively unaffected by the value ofh, as

long as it is not too large. Forh = 1, the loss looks more like theL2 loss, which is inappropriate for the kind of
noise we generated.

Concerning the time complexity (right hand side of figure 6), there seems to be an optimal range forh. Whenh
is too small, the problem is highly non-quadratic (because most of the loss function is linear), and a lot of Newton
steps are necessary. On the other hand, whenh is large,nsv increases, and since the complexity is mainly in
O(n3

sv), the training time increases (cf figure 7).

5.3.2 Time comparison with LIBSVM
Figure 8 presents a time comparison of both optimization methods for different training set sizes. As for the

quadratic loss, the time complexity isO(n3
sv).

However, unlike figure 5, the constant for LIBSVM training time is better. This is probably the case because the
loss function is far from quadratic and the Newton optimization requires more steps to converge (on the order of
30). But we believe that this factor can be improved on by not inverting the Hessian from scratch in each iteration
or by using a more direct optimizer such as conjugate gradient descent.

6 Advantages of primal optimization

As explained throughout this paper, primal and dual optimization are very similar, and it is not surprising that they
lead to same computational complexity,O(nnsv + n3

sv). So is there is a reason to use one rather than the other?

9



10
−2

10
−1

10
0

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

h

T
es

t e
rr

or

C=10
C=1

10
−2

10
−1

10
0

1.5

2

2.5

3

h

tim
e 

(s
ec

)

Figure 6: Influence ofh on the test error (left,n=500) and the training time (right,n = 1000)

10
−2

10
−1

200

250

300

350

400

h

N
um

be
r 

of
 s

up
po

rt
 v

ec
to

rs

n
sv

 free

n
sv

 at bound
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lines are the LIBSVM solution. For this plot,n = 1000.

We believe that primal optimization might have advantages forlarge scale optimization. Indeed, when the
number of training points is large, the number of support vectors is also typically large and it becomes intractable
to compute the exact solution. For this reason, one has to resort toapproximations[Bordes et al., 2005, Bakır
et al., 2005, Collobert et al., 2002, Tsang et al., 2005]. But introducing approximations in the dual may not be
wise. There is indeed no guarantee that an approximate dual solution yields a good approximate primal solution.
Since what we are eventually interested in is a good primal objective function value, it is more straightforward to
directly minimize it (cf the discussion at the end of Section 2).

Below there are 5 examples of approximation strategies for primal minimization. One can probably come up
with many more examples, but our goal is just to give a flavor of what can be done in the primal.

Conjugate gradient One could directly minimize (12) by conjugate gradient descent. For squared loss without
regularizer, this approach has been investigated in [Ong, 2005]. The hope is that on a lot of problems a reason-
able solution can be obtained with only a couple of gradient steps. In the dual, this strategy is hazardous: there
is no guarantee that an approximate dual solution corresponds to a reasonable primal solution (cf Appendix
A).

Fast Multipole Methods Combined with the conjugate gradient method, Fast Multipole methods and KD-Trees
provide an efficent way of inverting the kernel matrix in the case of an RBF kernel [Greengard and Rokhlin,
1987, Gray and Moore, 2000, Yang et al., 2004, de Freitas et al., 2005, Shen et al., 2006]. These methods
have been successfully applied to Kernel Ridge Regression and Gaussian Prcoesses.
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Figure 8: Time comparison between LIBSVM and Newton optimization. Herensv has been computed from LIBSVM (note
that the solutions are not exactly the same). For this plot,h = 2−5.

Low rank Whenever the kernel matrix is (approximately) low rank, one can writeK ≈ AA> whereA ∈ Rn×p

can be found through an incomplete Cholesky decomposition. Then each conjugate iteration takesO(np)
iterations instead ofO(n2). This idea has been used in [Fine and Scheinberg, 2001] in the context of SVM
training, but the authors considered only dual optimization.

Sparse kernel If a compactly supported RBF kernel [Schaback, 1995, Fasshauer, 2005] is used, the kernel matrix
K is sparse and the linear system (16) can be solved more efficiently.

Reduced expansionInstead of optimizing on a vectorβ of lengthn, one can choose a small subset of the training
points to expand the solution on and optimize only those weights [Keerthi et al., 2005].

Model selection An other advantage of primal optimization is when some hyperparameters are optimized on the
training cost function [Chapelle et al., 2002, Grandvalet and Canu, 2002]. Ifθ is a set of hyperparameters andα
the dual variables, the standard way of learningθ is to solve a min max problem (remember that the maximum of
the dual is equal to the minimum of the primal):

min
θ

max
α

Dual(α,θ),

by alternating between minimization onθ and maximization onα (see for instance [Grandvalet and Canu, 2002]
for the special case of learning scaling factors). But if the primal is minimized, ajoint optimizationonβ andθ can
be carried out, which is likely to be much faster.

Finally, to compute an approximateleave-one-outerror, the matrixKsv + λInsv needs to be inverted [Chapelle
et al., 2002]; but after a Newton optimization, this inverse is already available in (16).

7 Conclusion

In this paper, we have studied the primal optimization of non-linear SVMs and derived the update rules for a
Newton optimization. From these formulae, it appears clear that there are strong similarities between primal and
dual optimization. Also, the correspondingimplementation is very simpleand does not require any optimization
libraries.

The historical reasons for which most of the research in the last decade has been about dual optimization are
unclear. We believe that it is because SVMs were first introduced in their hard margin formulation [Boser et al.,
1992], for which a dual optimization (because of the constraints) seems more natural. In general, however, soft
margin SVMs should be preferred, even if the training data are separable: the decision boundary is more robust
because more training points are taken into account [Chapelle et al., 2000].

We do not pretend that primal optimization is better in general; our main motivation was to point out that primal
and dual are two sides of the same coin and that there is no reason to look always at the same side. And by looking
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at the primal side, some new algorithms for finding approximate solutions emerge naturally. We believe that an
approximate primal solution is in general superior to a dual one since an approximate dual solution can yield a
primal one which is arbitrarily bad.

In addition to all the possibilities for approximate solutions metioned in this paper, the primal optimization
also offers the advantage of tuning the hyperparameters simultaneously by performing a conjoint optimization on
parameters and hyperparameters.
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A Primal suboptimality

Let us define the following quantities,

A = y>y

B = y>XX>y

C = y>XX>XX>y

After one gradient step with exact line search on the primal objective function, we havew = B
C+λB X>y, and

the primal value (2) is
1
2
A− 1

2
B2

C + λB
.

For the dual optimization, after one gradient step,α = λA
B+λAy and by (6),w = A

B+λAX>y. The primal value
is then

1
2
A +

1
2

(
A

B + λA

)2

(C + λB)− AB

B + λA
.

The difference between these two quantities is

1
2

(
A

B + λA

)2

(C + λB)− AB

B + λA
+

1
2

B2

C + λB
=

1
2

(B2 −AC)2

(B + λA)2(C + λB)
≥ 0.

This proves that if ones does only one gradient step, one should do it on the primal instead of the dual, because
one will get a lower primal value this way.

Now note that by the Cauchy-Schwarz inequalityB2 ≤ AC, and there is equality only ifXX>y andy are
aligned. In that case the above expression is zero: the primal and dual steps are as efficient. That is what happens
on the left side of Figure 1: whenn � d, sinceX has been generated according to a Gaussian distribution,
XX> ≈ dI and the vectorsXX>y andy are almost aligned.

B Optimization with an offset

We now consider a joint optimization on

(
b
β

)
of the function

f(x) =
n∑

i=1

βik(xi,x) + b.

The augmented Hessian (cf (14)) is

2
(

1>I01 1>I0K
KI01 λK + KI0K

)
,

where1 should be understood as a vector of all 1. This can be decomposed as

2
(
−λ 1>

0 K

) (
0 1>

I01 λI + I0K

)
.
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Now the gradient is

∇ = Hβ − 2
(

1>

K

)
I0Y

and the equivalent of the update equation (15) is(
0 1>

I01 λI + I0K

)−1 (
−λ 1>

0 K

)−1 (
1>

K

)
I0Y =

(
0 1>

I01 λI + I0K

)−1 (
0

I0Y

)
So instead of solving (16), one solves(

b
βsv

)
=

(
0 1>

1 λInsv + Ksv

)−1 (
0

Ysv

)
.
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