Header logo is
Institute News

Michael J. Black Inducted as Foreign Member of Royal Swedish Academy of Sciences

  • 13 May 2016

Dr. Black recognized for his leadership in advancing body modeling and computer vision sciences

Body Labs (bodylabs.com), the provider of the world's most advanced technology for analyzing the human body's shape, pose and motion, announced today that Michael J. Black, Body Labs co-founder and board member, will be inducted as a foreign member of the Royal Swedish Academy of Sciences.

Michael Black


Tiny microbots that can clean up water

  • 29 April 2016

Max Planck researchers have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollutions from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sanchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead from industrial wastewater from a level of 1000 parts-per-billion to down to below 50 parts-per-billion in just an hour. The lead can later be removed for recycling, and the micromotors can be used over and over again.

Sámuel Sánchez


Flow at the nanoscale: what stops a drop and keeps nanobubbles alive

  • 12 April 2016

Max Planck researchers from Stuttgart present first model calculation

All of us have seen it: a raindrop running down the windowpane. It stops at a certain point, is met by a second raindrop and the two join up before continuing to run down the pane. Very small irregularities or dirt on the windowpane appear to stop the course of the raindrops. If the surface was entirely smooth and chemically clean, the raindrops would be able to flow unhindered. Surface defects such as small bumps and dimples as well as chemical contaminants stop the liquid drops. These are everyday phenomena everyone knows and can observe with the naked eye.

Siegfried Dietrich


2+1 is Not Always 3

  • 02 April 2016

In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

Siegfried Dietrich


Featured Nature Materials article

  • 16 March 2016

Our article on soft microrobots is discussed in Nature News & Views.

Stefano Palagi Andrew Mark Kai Melde Tian Qiu Alberto Sanchez Peer Fischer


Gentle strength for robots

  • 13 March 2016

A soft actuator using electrically controllable membranes could pave the way for machines that are no danger to humans

In interacting with humans, robots must first and foremost be safe. If a household robot, for example, encounters a human, it should not continue its movements regardless, but rather give way in case of doubt. Researchers at the Max Planck Institute for Intelligent Systems in Stuttgart are now presenting a motion system - a so-called elastic actuator - that is compliant and can be integrated in robots thanks to its space-saving design. The actuator works with hyperelastic membranes that surround air-filled chambers. The volume of the chambers can be controlled by means of an electric field at the membrane. To date, elastic actuators that exert a force by stretching air-filled chambers have always required connection to pumps and compressors to work. A soft actuator such as the one developed by the Stuttgart-based team means that such bulky payloads or tethers may now be superfluous.

Metin Sitti Lindsey Hines Kirstin Petersen


Nano-hinge – lubricated by light

  • 23 February 2016

A nanoplasmonic system of DNA bundles can be opened and closed by optical means

Nanomachines could take over a variety of tasks in future. Some day they may be able to perform medical precision work in the human body or help analyze pathogens and pollutants in mobile laboratories. Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart have now presented a possible component which could be used to specifically move and control such a machine. They have developed a nanoplasmonic system in the form of a pair of scissors that they can open using UV light. As soon as they irradiate the nanostructure with visible instead of UV light, it closes again. The researchers can observe the structural changes with the aid of gold particles which they excite with the light.

Laura Na Liu


Cordelia Schmid receives the Humboldt Research Award

  • 19 February 2016

Cordelia Schmid, an Inria research director, has received the Humboldt Research Award for her work on computer vision spanning more than 20 years.

She was nominated for this scientific award by Michael Black, the director of the Perceiving Systems department at the Max Planck Institute for Intelligent Systems in Tübingen, Germany. As the director of the LEAR team and then the Thoth team since 1 January 2016, Cordelia Schmid is particularly interested in visual recognition linking invariant image descriptors with learning methods. Her research enables a computer to learn not only to interpret all types of real images and videos, but also to recognize objects, actions and places by learning large image and video bases containing more than 100 million images. Cordelia Schmid figures among the world’s precursors and leaders in the field of modern visual recognition methods; she is also named in the “Highly Cited Researchers 2015” list (source: Thomson Reuters).

Michael Black


Micromotors use surface variations for docking and guiding

  • 17 February 2016

Researchers reveal that micromotors can be guided using tiny topographical patterns on the surfaces over which they swim.

Researchers at the Max Planck Institute for Intelligent Systems, the Institute for Bioengineering of Catalonia (IBEC) and the University of Stuttgart have revealed in an article in Nature Communications that micromotors can be guided using tiny topographical patterns on the surfaces over which they swim.

Sámuel Sánchez


2016 RAS Early Career Award (Academic)

  • 05 February 2016

for Ludovic Righetti, Group Leader AM Department

recognizing "his contributions to the theory of, and experiments in, robot locomotion and manipulation".

Ludovic Righetti