Header logo is

Real-Time Fetal Heart Monitoring in Biomagnetic Measurements Using Adaptive Real-Time ICA

2007

Article

ei


Electrophysiological signals of the developing fetal brain and heart can be investigated by fetal magnetoencephalography (fMEG). During such investigations, the fetal heart activity and that of the mother should be monitored continuously to provide an important indication of current well-being. Due to physical constraints of an fMEG system, it is not possible to use clinically established heart monitors for this purpose. Considering this constraint, we developed a real-time heart monitoring system for biomagnetic measurements and showed its reliability and applicability in research and for clinical examinations. The developed system consists of real-time access to fMEG data, an algorithm based on Independent Component Analysis (ICA), and a graphical user interface (GUI). The algorithm extracts the current fetal and maternal heart signal from a noisy and artifact-contaminated data stream in real-time and is able to adapt automatically to continuously varying environmental parameters. This algorithm has been na med Adaptive Real-time ICA (ARICA) and is applicable to real-time artifact removal as well as to related blind signal separation problems.

Author(s): Waldert, S. and Bensch, M. and Bogdan, M. and Rosenstiel, W. and Schölkopf, B. and Lowery, CL. and Eswaran, H. and Preissl, H.
Journal: IEEE Transactions on Biomedical Engineering
Volume: 54
Number (issue): 10
Pages: 1867-1874
Year: 2007
Month: September
Day: 0

Department(s): Empirical Inference
Bibtex Type: Article (article)

Digital: 0
DOI: 10.1109/TBME.2007.895749
Language: en
Organization: Max-Planck-Gesellschaft
School: Biologische Kybernetik

Links: PDF
Web

BibTex

@article{4361,
  title = {Real-Time Fetal Heart Monitoring in Biomagnetic Measurements Using Adaptive Real-Time ICA},
  author = {Waldert, S. and Bensch, M. and Bogdan, M. and Rosenstiel, W. and Sch{\"o}lkopf, B. and Lowery, CL. and Eswaran, H. and Preissl, H.},
  journal = {IEEE Transactions on Biomedical Engineering},
  volume = {54},
  number = {10},
  pages = {1867-1874},
  organization = {Max-Planck-Gesellschaft},
  school = {Biologische Kybernetik},
  month = sep,
  year = {2007},
  doi = {10.1109/TBME.2007.895749},
  month_numeric = {9}
}