Header logo is

Thermal nucleation and high-resolution imaging of submicrometer magnetic bubbles in thin thulium iron garnet films with perpendicular anisotropy

2020

Article

mms


Ferrimagnetic iron garnets are promising materials for spintronics applications, characterized by ultralow damping and zero current shunting. It has recently been found that few nm-thick garnet films interfaced with a heavy metal can also exhibit sizable interfacial spin-orbit interactions, leading to the emergence, and efficient electrical control, of one-dimensional chiral domain walls. Two-dimensional bubbles, by contrast, have so far only been confirmed in micrometer-thick films. Here, we show by high resolution scanning transmission x-ray microscopy and photoemission electron microscopy that submicrometer bubbles can be nucleated and stabilized in ∼25-nm-thick thulium iron garnet films via short heat pulses generated by electric current in an adjacent Pt strip, or by ultrafast laser illumination. We also find that quasistatic processes do not lead to the formation of a bubble state, suggesting that the thermodynamic path to reaching that state requires transient dynamics. X-ray imaging reveals that the bubbles have Bloch-type walls with random chirality and topology, indicating negligible chiral interactions at the garnet film thickness studied here. The robustness of thermal nucleation and the feasibility demonstrated here to image garnet-based devices by x-rays both in transmission geometry and with sensitivity to the domain wall chirality are critical steps to enabling the study of small spin textures and dynamics in perpendicularly magnetized thin-film garnets.

Author(s): Büttner, F. and Mawass, M. A. and Bauer, J. and Rosenberg, E. and Caretta, L. and Avci, C. O. and Gräfe, J. and Finizio, S. and Vaz, C. A. F. and Novakovic, N and Weigand, M. and Litzius, K. and Förster, J. and Träger, N. and Groß, F. and Suzuki, D. and Huang, M. and Bartell, J. and Kronast, F. and Raabe, J. and Schütz, G. and Ross, C. A. and Beach, G. S. D.
Journal: {Physical Review Materials}
Volume: 4
Number (issue): 1
Year: 2020
Publisher: American Physical Society

Department(s): Modern Magnetic Systems
Bibtex Type: Article (article)

Address: College Park, MD
DOI: 10.1103/PhysRevMaterials.4.011401
Language: eng

BibTex

@article{escidoc:3188158,
  title = {{Thermal nucleation and high-resolution imaging of submicrometer magnetic bubbles in thin thulium iron garnet films with perpendicular anisotropy}},
  author = {B\"uttner, F. and Mawass, M. A. and Bauer, J. and Rosenberg, E. and Caretta, L. and Avci, C. O. and Gr\"afe, J. and Finizio, S. and Vaz, C. A. F. and Novakovic, N and Weigand, M. and Litzius, K. and F\"orster, J. and Tr\"ager, N. and Gro\ss, F. and Suzuki, D. and Huang, M. and Bartell, J. and Kronast, F. and Raabe, J. and Sch\"utz, G. and Ross, C. A. and Beach, G. S. D.},
  journal = {{Physical Review Materials}},
  volume = {4},
  number = {1},
  publisher = {American Physical Society},
  address = {College Park, MD},
  year = {2020},
  doi = {10.1103/PhysRevMaterials.4.011401}
}