Header logo is


2018


Robust Physics-based Motion Retargeting with Realistic Body Shapes
Robust Physics-based Motion Retargeting with Realistic Body Shapes

Borno, M. A., Righetti, L., Black, M. J., Delp, S. L., Fiume, E., Romero, J.

Computer Graphics Forum, 37, pages: 6:1-12, July 2018 (article)

Abstract
Motion capture is often retargeted to new, and sometimes drastically different, characters. When the characters take on realistic human shapes, however, we become more sensitive to the motion looking right. This means adapting it to be consistent with the physical constraints imposed by different body shapes. We show how to take realistic 3D human shapes, approximate them using a simplified representation, and animate them so that they move realistically using physically-based retargeting. We develop a novel spacetime optimization approach that learns and robustly adapts physical controllers to new bodies and constraints. The approach automatically adapts the motion of the mocap subject to the body shape of a target subject. This motion respects the physical properties of the new body and every body shape results in a different and appropriate movement. This makes it easy to create a varied set of motions from a single mocap sequence by simply varying the characters. In an interactive environment, successful retargeting requires adapting the motion to unexpected external forces. We achieve robustness to such forces using a novel LQR-tree formulation. We show that the simulated motions look appropriate to each character’s anatomy and their actions are robust to perturbations.

mg ps

pdf video Project Page Project Page [BibTex]

2018


pdf video Project Page Project Page [BibTex]


no image
Nonlinear decoding of a complex movie from the mammalian retina

Botella-Soler, V., Deny, S., Martius, G., Marre, O., Tkačik, G.

PLOS Computational Biology, 14(5):1-27, Public Library of Science, May 2018 (article)

Abstract
Author summary Neurons in the retina transform patterns of incoming light into sequences of neural spikes. We recorded from ∼100 neurons in the rat retina while it was stimulated with a complex movie. Using machine learning regression methods, we fit decoders to reconstruct the movie shown from the retinal output. We demonstrated that retinal code can only be read out with a low error if decoders make use of correlations between successive spikes emitted by individual neurons. These correlations can be used to ignore spontaneous spiking that would, otherwise, cause even the best linear decoders to “hallucinate” nonexistent stimuli. This work represents the first high resolution single-trial full movie reconstruction and suggests a new paradigm for separating spontaneous from stimulus-driven neural activity.

al

DOI [BibTex]

DOI [BibTex]


no image
Geckos Race across Water using Multiple Mechanisms

Nirody, J., Jinn, J., Libby, T., Lee, T., Jusufi, A., Hu, D., Full, R.

Current Biology, 2018 (article)

bio

[BibTex]

[BibTex]


no image
Learning a Structured Neural Network Policy for a Hopping Task.

Viereck, J., Kozolinsky, J., Herzog, A., Righetti, L.

IEEE Robotics and Automation Letters, 3(4):4092-4099, October 2018 (article)

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
The Impact of Robotics and Automation on Working Conditions and Employment [Ethical, Legal, and Societal Issues]

Pham, Q., Madhavan, R., Righetti, L., Smart, W., Chatila, R.

IEEE Robotics and Automation Magazine, 25(2):126-128, June 2018 (article)

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Lethal Autonomous Weapon Systems [Ethical, Legal, and Societal Issues]

Righetti, L., Pham, Q., Madhavan, R., Chatila, R.

IEEE Robotics \& Automation Magazine, 25(1):123-126, March 2018 (article)

Abstract
The topic of lethal autonomous weapon systems has recently caught public attention due to extensive news coverage and apocalyptic declarations from famous scientists and technologists. Weapon systems with increasing autonomy are being developed due to fast improvements in machine learning, robotics, and automation in general. These developments raise important and complex security, legal, ethical, societal, and technological issues that are being extensively discussed by scholars, nongovernmental organizations (NGOs), militaries, governments, and the international community. Unfortunately, the robotics community has stayed out of the debate, for the most part, despite being the main provider of autonomous technologies. In this column, we review the main issues raised by the increase of autonomy in weapon systems and the state of the international discussion. We argue that the robotics community has a fundamental role to play in these discussions, for its own sake, to provide the often-missing technical expertise necessary to frame the debate and promote technological development in line with the IEEE Robotics and Automation Society (RAS) objective of advancing technology to benefit humanity.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2017


no image
Self-Organized Behavior Generation for Musculoskeletal Robots

Der, R., Martius, G.

Frontiers in Neurorobotics, 11, pages: 8, 2017 (article)

al

link (url) DOI [BibTex]

2017


link (url) DOI [BibTex]

2008


no image
Active tails enhance arboreal acrobatics in geckos

Jusufi, A., Goldman, D., Revzen, S., Full, R.

PNAS, 105(11):4215-4219, 2008 (article)

bio

link (url) [BibTex]

2008


link (url) [BibTex]


no image
Frequency analysis with coupled nonlinear oscillators

Buchli, J., Righetti, L., Ijspeert, A.

Physica D: Nonlinear Phenomena, 237(13):1705-1718, August 2008 (article)

Abstract
We present a method to obtain the frequency spectrum of a signal with a nonlinear dynamical system. The dynamical system is composed of a pool of adaptive frequency oscillators with negative mean-field coupling. For the frequency analysis, the synchronization and adaptation properties of the component oscillators are exploited. The frequency spectrum of the signal is reflected in the statistics of the intrinsic frequencies of the oscillators. The frequency analysis is completely embedded in the dynamics of the system. Thus, no pre-processing or additional parameters, such as time windows, are needed. Representative results of the numerical integration of the system are presented. It is shown, that the oscillators tune to the correct frequencies for both discrete and continuous spectra. Due to its dynamic nature the system is also capable to track non-stationary spectra. Further, we show that the system can be modeled in a probabilistic manner by means of a nonlinear Fokker–Planck equation. The probabilistic treatment is in good agreement with the numerical results, and provides a useful tool to understand the underlying mechanisms leading to convergence.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2007


no image
iCub - The Design and Realization of an Open Humanoid Platform for Cognitive and Neuroscience Research

Tsagarakis, N., Metta, G., Sandini, G., Vernon, D., Beira, R., Becchi, F., Righetti, L., Santos-Victor, J., Ijspeert, A., Carrozza, M., Caldwell, D.

Advanced Robotics, 21(10):1151-1175, 2007 (article)

Abstract
The development of robotic cognition and the advancement of understanding of human cognition form two of the current greatest challenges in robotics and neuroscience, respectively. The RobotCub project aims to develop an embodied robotic child (iCub) with the physical (height 90 cm and mass less than 23 kg) and ultimately cognitive abilities of a 2.5-year-old human child. The iCub will be a freely available open system which can be used by scientists in all cognate disciplines from developmental psychology to epigenetic robotics to enhance understanding of cognitive systems through the study of cognitive development. The iCub will be open both in software, but more importantly in all aspects of the hardware and mechanical design. In this paper the design of the mechanisms and structures forming the basic 'body' of the iCub are described. The papers considers kinematic structures dynamic design criteria, actuator specification and selection, and detailed mechanical and electronic design. The paper concludes with tests of the performance of sample joints, and comparison of these results with the design requirements and simulation projects.

mg

link (url) DOI [BibTex]

2007


link (url) DOI [BibTex]

2006


no image
Dynamic Hebbian learning in adaptive frequency oscillators

Righetti, L., Buchli, J., Ijspeert, A.

Physica D: Nonlinear Phenomena, 216(2):269-281, 2006 (article)

Abstract
Nonlinear oscillators are widely used in biology, physics and engineering for modeling and control. They are interesting because of their synchronization properties when coupled to other dynamical systems. In this paper, we propose a learning rule for oscillators which adapts their frequency to the frequency of any periodic or pseudo-periodic input signal. Learning is done in a dynamic way: it is part of the dynamical system and not an offline process. An interesting property of our model is that it is easily generalizable to a large class of oscillators, from phase oscillators to relaxation oscillators and strange attractors with a generic learning rule. One major feature of our learning rule is that the oscillators constructed can adapt their frequency without any signal processing or the need to specify a time window or similar free parameters. All the processing is embedded in the dynamics of the adaptive oscillator. The convergence of the learning is proved for the Hopf oscillator, then numerical experiments are carried out to explore the learning capabilities of the system. Finally, we generalize the learning rule to non-harmonic oscillators like relaxation oscillators and strange attractors.

mg

link (url) DOI [BibTex]

2006


link (url) DOI [BibTex]


no image
Engineering Entrainment and Adaptation in Limit Cycle Systems – From biological inspiration to applications in robotics

Buchli, J., Righetti, L., Ijspeert, A.

Biological Cybernetics, 95(6):645-664, December 2006 (article)

Abstract
Periodic behavior is key to life and is observed in multiple instances and at multiple time scales in our metabolism, our natural environment, and our engineered environment. A natural way of modeling or generating periodic behavior is done by using oscillators, i.e., dynamical systems that exhibit limit cycle behavior. While there is extensive literature on methods to analyze such dynamical systems, much less work has been done on methods to synthesize an oscillator to exhibit some specific desired characteristics. The goal of this article is twofold: (1) to provide a framework for characterizing and designing oscillators and (2) to review how classes of well-known oscillators can be understood and related to this framework. The basis of the framework is to characterize oscillators in terms of their fundamental temporal and spatial behavior and in terms of properties that these two behaviors can be designed to exhibit. This focus on fundamental properties is important because it allows us to systematically compare a large variety of oscillators that might at first sight appear very different from each other. We identify several specifications that are useful for design, such as frequency-locking behavior, phase-locking behavior, and specific output signal shape. We also identify two classes of design methods by which these specifications can be met, namely offline methods and online methods. By relating these specifications to our framework and by presenting several examples of how oscillators have been designed in the literature, this article provides a useful methodology and toolbox for designing oscillators for a wide range of purposes. In particular, the focus on synthesis of limit cycle dynamical systems should be useful both for engineering and for computational modeling of physical or biological phenomena.

mg

link (url) DOI [BibTex]


no image
Rocking Stamper and Jumping Snake from a Dynamical System Approach to Artificial Life

Der, R., Hesse, F., Martius, G.

Adaptive Behavior, 14(2):105-115, 2006 (article)

Abstract
Dynamical systems offer intriguing possibilities as a substrate for the generation of behavior because of their rich behavioral complexity. However this complexity together with the largely covert relation between the parameters and the behavior of the agent is also the main hindrance in the goal-oriented design of a behavior system. This paper presents a general approach to the self-regulation of dynamical systems so that the design problem is circumvented. We consider the controller (a neural net work) as the mediator for changes in the sensor values over time and define a dynamics for the parameters of the controller by maximizing the dynamical complexity of the sensorimotor loop under the condition that the consequences of the actions taken are still predictable. This very general principle is given a concrete mathematical formulation and is implemented in an extremely robust and versatile algorithm for the parameter dynamics of the controller. We consider two different applications, a mechanical device called the rocking stamper and the ODE simulations of a "snake" with five degrees of freedom. In these and many other examples studied we observed various behavior modes of high dynamical complexity.

al

DOI [BibTex]

DOI [BibTex]