Header logo is


2017


no image
Synchronicity Trumps Mischief in Rhythmic Human-Robot Social-Physical Interaction

Fitter, N. T., Kuchenbecker, K. J.

In Proceedings of the International Symposium on Robotics Research (ISRR), Puerto Varas, Chile, December 2017 (inproceedings) In press

Abstract
Hand-clapping games and other forms of rhythmic social-physical interaction might help foster human-robot teamwork, but the design of such interactions has scarcely been explored. We leveraged our prior work to enable the Rethink Robotics Baxter Research Robot to competently play one-handed tempo-matching hand-clapping games with a human user. To understand how such a robot’s capabilities and behaviors affect user perception, we created four versions of this interaction: the hand clapping could be initiated by either the robot or the human, and the non-initiating partner could be either cooperative, yielding synchronous motion, or mischievously uncooperative. Twenty adults tested two clapping tempos in each of these four interaction modes in a random order, rating every trial on standardized scales. The study results showed that having the robot initiate the interaction gave it a more dominant perceived personality. Despite previous results on the intrigue of misbehaving robots, we found that moving synchronously with the robot almost always made the interaction more enjoyable, less mentally taxing, less physically demanding, and lower effort for users than asynchronous interactions caused by robot or human mischief. Taken together, our results indicate that cooperative rhythmic social-physical interaction has the potential to strengthen human-robot partnerships.

hi

[BibTex]

2017


[BibTex]


no image
Optimal gamification can help people procrastinate less

Lieder, F., Griffiths, T. L.

Annual Meeting of the Society for Judgment and Decision Making, Annual Meeting of the Society for Judgment and Decision Making, November 2017 (conference)

re

Project Page [BibTex]

Project Page [BibTex]


A Robotic Framework to Overcome Sensory Overload in Children on the Autism Spectrum: A Pilot Study
A Robotic Framework to Overcome Sensory Overload in Children on the Autism Spectrum: A Pilot Study

Javed, H., Burns, R., Jeon, M., Howard, A., Park, C. H.

In International Conference on Intelligent Robots and Systems (IROS) 2017, International Conference on Intelligent Robots and Systems, September 2017 (inproceedings)

Abstract
This paper discusses a novel framework designed to provide sensory stimulation to children with Autism Spectrum Disorder (ASD). The set up consists of multi-sensory stations to stimulate visual/auditory/olfactory/gustatory/tactile/vestibular senses, together with a robotic agent that navigates through each station responding to the different stimuli. We hypothesize that the robot’s responses will help children learn acceptable ways to respond to stimuli that might otherwise trigger sensory overload. Preliminary results from a pilot study conducted to examine the effectiveness of such a setup were encouraging and are described briefly in this text.

hi

[BibTex]

[BibTex]


An Interactive Robotic System for Promoting Social Engagement
An Interactive Robotic System for Promoting Social Engagement

Burns, R., Javed, H., Jeon, M., Howard, A., Park, C. H.

In International Conference on Intelligent Robots and Systems (IROS) 2017, International Conference on Intelligent Robots and Systems, September 2017 (inproceedings)

Abstract
This abstract (and poster) is a condensed version of Burns' Master's thesis and related journal article. It discusses the use of imitation via robotic motion learning to improve human-robot interaction. It focuses on the preliminary results from a pilot study of 12 subjects. We hypothesized that the robot's use of imitation will increase the user's openness towards engaging with the robot. Post-imitation, experimental subjects displayed a more positive emotional state, had higher instances of mood contagion towards the robot, and interpreted the robot to have a higher level of autonomy than their control group counterparts. These results point to an increased user interest in engagement fueled by personalized imitation during interaction.

hi

[BibTex]

[BibTex]


no image
Stiffness Perception during Pinching and Dissection with Teleoperated Haptic Forceps

Ng, C., Zareinia, K., Sun, Q., Kuchenbecker, K. J.

In Proceedings of the International Symposium on Robot and Human Interactive Communication (RO-MAN), pages: 456-463, Lisbon, Portugal, August 2017 (inproceedings)

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Towards quantifying dynamic human-human physical interactions for robot assisted stroke therapy

Mohan, M., Mendonca, R., Johnson, M. J.

In Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), London, UK, July 2017 (inproceedings)

Abstract
Human-Robot Interaction is a prominent field of robotics today. Knowledge of human-human physical interaction can prove vital in creating dynamic physical interactions between human and robots. Most of the current work in studying this interaction has been from a haptic perspective. Through this paper, we present metrics that can be used to identify if a physical interaction occurred between two people using kinematics. We present a simple Activity of Daily Living (ADL) task which involves a simple interaction. We show that we can use these metrics to successfully identify interactions.

hi

DOI [BibTex]

DOI [BibTex]


no image
Design of a Parallel Continuum Manipulator for 6-DOF Fingertip Haptic Display

Young, E. M., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 599-604, Munich, Germany, June 2017, Finalist for best poster paper (inproceedings)

Abstract
Despite rapid advancements in the field of fingertip haptics, rendering tactile cues with six degrees of freedom (6 DOF) remains an elusive challenge. In this paper, we investigate the potential of displaying fingertip haptic sensations with a 6-DOF parallel continuum manipulator (PCM) that mounts to the user's index finger and moves a contact platform around the fingertip. Compared to traditional mechanisms composed of rigid links and discrete joints, PCMs have the potential to be strong, dexterous, and compact, but they are also more complicated to design. We define the design space of 6-DOF parallel continuum manipulators and outline a process for refining such a device for fingertip haptic applications. Following extensive simulation, we obtain 12 designs that meet our specifications, construct a manually actuated prototype of one such design, and evaluate the simulation's ability to accurately predict the prototype's motion. Finally, we demonstrate the range of deliverable fingertip tactile cues, including a normal force into the finger and shear forces tangent to the finger at three extreme points on the boundary of the fingertip.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
High Magnitude Unidirectional Haptic Force Display Using a Motor/Brake Pair and a Cable

Hu, S., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 394-399, Munich, Germany, June 2017 (inproceedings)

Abstract
Clever electromechanical design is required to make the force feedback delivered by a kinesthetic haptic interface both strong and safe. This paper explores a onedimensional haptic force display that combines a DC motor and a magnetic particle brake on the same shaft. Rather than a rigid linkage, a spooled cable connects the user to the actuators to enable a large workspace, reduce the moving mass, and eliminate the sticky residual force from the brake. This design combines the high torque/power ratio of the brake and the active output capabilities of the motor to provide a wider range of forces than can be achieved with either actuator alone. A prototype of this device was built, its performance was characterized, and it was used to simulate constant force sources and virtual springs and dampers. Compared to the conventional design of using only a motor, the hybrid device can output higher unidirectional forces at the expense of free space feeling less free.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A Stimulus-Response Model Of Therapist-Patient Interactions In Task-Oriented Stroke Therapy Can Guide Robot-Patient Interactions

Johnson, M., Mohan, M., Mendonca, R.

In Proceedings of the Annual Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) Conference, New Orleans, USA, June 2017 (inproceedings)

Abstract
Current robot-patient interactions do not accurately model therapist-patient interactions in task-oriented stroke therapy. We analyzed patient-therapist interactions in task-oriented stroke therapy captured in 8 videos. We developed a model of the interaction between a patient and a therapist that can be overlaid on a stimulus-response paradigm where the therapist and the patient take on a set of acting states or roles and are motivated to move from one role to another when certain physical or verbal stimuli or cues are sensed and received. We examined how the model varies across 8 activities of daily living tasks and map this to a possible model for robot-patient interaction.

hi

link (url) [BibTex]

link (url) [BibTex]


no image
A Wrist-Squeezing Force-Feedback System for Robotic Surgery Training

Brown, J. D., Fernandez, J. N., Cohen, S. P., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 107-112, Munich, Germany, June 2017 (inproceedings)

Abstract
Over time, surgical trainees learn to compensate for the lack of haptic feedback in commercial robotic minimally invasive surgical systems. Incorporating touch cues into robotic surgery training could potentially shorten this learning process if the benefits of haptic feedback were sustained after it is removed. In this paper, we develop a wrist-squeezing haptic feedback system and evaluate whether it holds the potential to train novice da Vinci users to reduce the force they exert on a bimanual inanimate training task. Subjects were randomly divided into two groups according to a multiple baseline experimental design. Each of the ten participants moved a ring along a curved wire nine times while the haptic feedback was conditionally withheld, provided, and withheld again. The realtime tactile feedback of applied force magnitude significantly reduced the integral of the force produced by the da Vinci tools on the task materials, and this result remained even when the haptic feedback was removed. Overall, our findings suggest that wrist-squeezing force feedback can play an essential role in helping novice trainees learn to minimize the force they exert with a surgical robot.

hi

DOI [BibTex]

DOI [BibTex]


no image
Handling Scan-Time Parameters in Haptic Surface Classification

Burka, A., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 424-429, Munich, Germany, June 2017 (inproceedings)

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Proton 2: Increasing the Sensitivity and Portability of a Visuo-haptic Surface Interaction Recorder

Burka, A., Rajvanshi, A., Allen, S., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 439-445, Singapore, May 2017 (inproceedings)

Abstract
The Portable Robotic Optical/Tactile ObservatioN PACKage (PROTONPACK, or Proton for short) is a new handheld visuo-haptic sensing system that records surface interactions. We previously demonstrated system calibration and a classification task using external motion tracking. This paper details improvements in surface classification performance and removal of the dependence on external motion tracking, necessary before embarking on our goal of gathering a vast surface interaction dataset. Two experiments were performed to refine data collection parameters. After adjusting the placement and filtering of the Proton's high-bandwidth accelerometers, we recorded interactions between two differently-sized steel tooling ball end-effectors (diameter 6.35 and 9.525 mm) and five surfaces. Using features based on normal force, tangential force, end-effector speed, and contact vibration, we trained multi-class SVMs to classify the surfaces using 50 ms chunks of data from each end-effector. Classification accuracies of 84.5% and 91.5% respectively were achieved on unseen test data, an improvement over prior results. In parallel, we pursued on-board motion tracking, using the Proton's camera and fiducial markers. Motion tracks from the external and onboard trackers agree within 2 mm and 0.01 rad RMS, and the accuracy decreases only slightly to 87.7% when using onboard tracking for the 9.525 mm end-effector. These experiments indicate that the Proton 2 is ready for portable data collection.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Robot Therapist for Assisting in At-Home Rehabilitation of Shoulder Surgery Patients
Robot Therapist for Assisting in At-Home Rehabilitation of Shoulder Surgery Patients

(Recipient of Innovation & Entrepreneurship Prize)

Burns, R., Alborz, M., Chalup, Z., Downen, S., Genuino, K., Nayback, C., Nesbitt, N., Park, C. H.

In 2017 GW Research Days, Department of Biomedical Engineering Posters and Presentations, April 2017 (inproceedings)

Abstract
The number of middle-aged to elderly patients receiving shoulder surgery is increasing. However, statistically, very few of these patients perform the necessary at-home physical therapy regimen they are prescribed post-surgery. This results in longer recovery times and/or incomplete healing. We propose the use of a robotic therapist, with customized training and encouragement regimens, to increase physical therapy adherence and improve the patient’s recovery experience.

hi

link (url) [BibTex]

link (url) [BibTex]


Motion Learning for Emotional Interaction and Imitation of Children with Autism Spectrum Disorder
Motion Learning for Emotional Interaction and Imitation of Children with Autism Spectrum Disorder

(First place tie in category, "Biomedical Engineering, Graduate Research")

Burns, R., Cowin, S.

In 2017 GW Research Days, Department of Biomedical Engineering Posters and Presentations, April 2017 (inproceedings)

Abstract
We aim to use motion learning to teach a robot to imitate people's unique gestures. Our robot, ROBOTIS-OP2, can ultimately use imitation to practice social skills with children with autism. In this abstract, two methods of motion learning were compared: Dynamic motion primitives with least squares (DMP with WLS), and Dynamic motion primitives with a Gaussian Mixture Regression (DMP with GMR). Movements with sharp turns were most accurately reproduced using DMP with GMR. Additionally, more states are required to accurately recreate more complex gestures.

hi

link (url) [BibTex]

link (url) [BibTex]


Roughness perception of virtual textures displayed by electrovibration on touch screens
Roughness perception of virtual textures displayed by electrovibration on touch screens

Vardar, Y., Isleyen, A., Saleem, M. K., Basdogan, C.

In 2017 IEEE World Haptics Conference (WHC), pages: 263-268, 2017 (inproceedings)

Abstract
In this study, we have investigated the human roughness perception of periodical textures on an electrostatic display by conducting psychophysical experiments with 10 subjects. To generate virtual textures, we used low frequency unipolar pulse waves in different waveform (sinusoidal, square, saw-tooth, triangle), and spacing. We modulated these waves with a 3kHz high frequency sinusoidal carrier signal to minimize perceptional differences due to the electrical filtering of human finger and eliminate low-frequency distortions. The subjects were asked to rate 40 different macro textures on a Likert scale of 1-7. We also collected the normal and tangential forces acting on the fingers of subjects during the experiment. The results of our user study showed that subjects perceived the square wave as the roughest while they perceived the other waveforms equally rough. The perceived roughness followed an inverted U-shaped curve as a function of groove width, but the peak point shifted to the left compared to the results of the earlier studies. Moreover, we found that the roughness perception of subjects is best correlated with the rate of change of the contact forces rather than themselves.

hi

vardar_whc2017 DOI [BibTex]

vardar_whc2017 DOI [BibTex]


no image
An automatic method for discovering rational heuristics for risky choice

Lieder, F., Krueger, P. M., Griffiths, T. L.

In Proceedings of the 39th Annual Meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society, 2017, Falk Lieder and Paul M. Krueger contributed equally to this publication. (inproceedings)

Abstract
What is the optimal way to make a decision given that your time is limited and your cognitive resources are bounded? To answer this question, we formalized the bounded optimal decision process as the solution to a meta-level Markov decision process whose actions are costly computations. We approximated the optimal solution and evaluated its predictions against human choice behavior in the Mouselab paradigm, which is widely used to study decision strategies. Our computational method rediscovered well-known heuristic strategies and the conditions under which they are used, as well as novel heuristics. A Mouselab experiment confirmed our model’s main predictions. These findings are a proof-of-concept that optimal cognitive strategies can be automatically derived as the rational use of finite time and bounded cognitive resources.

re

Project Page [BibTex]

Project Page [BibTex]


no image
Feeling multiple edges: The tactile perception of short ultrasonic square reductions of the finger-surface friction

Gueorguiev, D., Vezzoli, E., Sednaoui, T., Grisoni, L., Lemaire-Semail, B.

In 2017 IEEE World Haptics Conference (WHC), pages: 125-129, 2017 (inproceedings)

hi

DOI [BibTex]

DOI [BibTex]


no image
A reward shaping method for promoting metacognitive learning

Lieder, F., Krueger, P. M., Callaway, F., Griffiths, T. L.

In Proceedings of the Third Multidisciplinary Conference on Reinforcement Learning and Decision-Making, 2017 (inproceedings)

re

Project Page [BibTex]

Project Page [BibTex]


no image
When does bounded-optimal metareasoning favor few cognitive systems?

Milli, S., Lieder, F., Griffiths, T. L.

In AAAI Conference on Artificial Intelligence, 31, 2017 (inproceedings)

re

[BibTex]

[BibTex]


no image
The Structure of Goal Systems Predicts Human Performance

Bourgin, D., Lieder, F., Reichman, D., Talmon, N., Griffiths, T.

In Proceedings of the 39th Annual Meeting of the Cognitive Science Society, 2017 (inproceedings)

re

[BibTex]

[BibTex]


no image
Learning to (mis) allocate control: maltransfer can lead to self-control failure

Bustamante, L., Lieder, F., Musslick, S., Shenhav, A., Cohen, J.

In The 3rd Multidisciplinary Conference on Reinforcement Learning and Decision Making. Ann Arbor, Michigan, 2017 (inproceedings)

re

[BibTex]

[BibTex]


no image
Mouselab-MDP: A new paradigm for tracing how people plan

Callaway, F., Lieder, F., Krueger, P. M., Griffiths, T. L.

In The 3rd multidisciplinary conference on reinforcement learning and decision making, 2017 (inproceedings)

re

[BibTex]

[BibTex]


no image
Enhancing metacognitive reinforcement learning using reward structures and feedback

Krueger, P. M., Lieder, F., Griffiths, T. L.

In Proceedings of the 39th Annual Meeting of the Cognitive Science Society, 2017 (inproceedings)

re

Project Page Project Page [BibTex]

Project Page Project Page [BibTex]


no image
Helping people choose subgoals with sparse pseudo rewards

Callaway, F., Lieder, F., Griffiths, T. L.

In Proceedings of the Third Multidisciplinary Conference on Reinforcement Learning and Decision Making, 2017 (inproceedings)

re

[BibTex]

[BibTex]

2016


no image
Qualitative User Reactions to a Hand-Clapping Humanoid Robot

Fitter, N. T., Kuchenbecker, K. J.

In Social Robotics: 8th International Conference, ICSR 2016, Kansas City, MO, USA, November 1-3, 2016 Proceedings, 9979, pages: 317-327, Lecture Notes in Artificial Intelligence, Springer International Publishing, November 2016, Oral presentation given by Fitter (inproceedings)

hi

[BibTex]

2016


[BibTex]


no image
Designing and Assessing Expressive Open-Source Faces for the Baxter Robot

Fitter, N. T., Kuchenbecker, K. J.

In Social Robotics: 8th International Conference, ICSR 2016, Kansas City, MO, USA, November 1-3, 2016 Proceedings, 9979, pages: 340-350, Lecture Notes in Artificial Intelligence, Springer International Publishing, November 2016, Oral presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Rhythmic Timing in Playful Human-Robot Social Motor Coordination

Fitter, N. T., Hawkes, D. T., Kuchenbecker, K. J.

In Social Robotics: 8th International Conference, ICSR 2016, Kansas City, MO, USA, November 1-3, 2016 Proceedings, 9979, pages: 296-305, Lecture Notes in Artificial Intelligence, Springer International Publishing, November 2016, Oral presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Using IMU Data to Demonstrate Hand-Clapping Games to a Robot

Fitter, N. T., Kuchenbecker, K. J.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 851 - 856, October 2016, Interactive presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Dynamical self-consistency leads to behavioral development and emergent social interactions in robots.

Der, R., Martius, G.

In Proc. IEEE Int. Conf. on Development and Learning and Epigenetic Robotics, pages: 49-56, IEEE, September 2016, in press (inproceedings)

al

DOI [BibTex]

DOI [BibTex]


no image
ProtonPack: A Visuo-Haptic Data Acquisition System for Robotic Learning of Surface Properties

Burka, A., Hu, S., Helgeson, S., Krishnan, S., Gao, Y., Hendricks, L. A., Darrell, T., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pages: 58-65, 2016, Oral presentation given by Burka (inproceedings)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Equipping the Baxter Robot with Human-Inspired Hand-Clapping Skills

Fitter, N. T., Kuchenbecker, K. J.

In Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pages: 105-112, 2016 (inproceedings)

hi

[BibTex]

[BibTex]


no image
Comparison of vibro-acoustic performance metrics in the design and optimization of stiffened composite fuselages

Serhat, G., Basdogan, I.

In Proceedings of International Congress and Exposition of Noise Control Engineering (INTER-NOISE), Hamburg, Germany, August 2016 (inproceedings)

Abstract
In this paper, a comparison of preliminary design methodologies for optimization of stiffened, fiber-reinforced composite fuselages for vibro-acoustic requirements is presented. Fuselage stiffness properties are modelled using lamination parameters and their effect on the vibro-acoustic performance is investigated using two different approaches. First method, only considers the structural model in order to explore the effect of design variables on fuselage vibrations. The simplified estimation of the acoustic behavior without considering fluid-structure interaction brings certain advantages such as reduced modelling effort and computational cost. In this case, the performance metric is chosen as equivalent radiated power (ERP) which is a well-known criterion in the prediction of structure-born noise. Second method, utilizes coupled vibro-acoustic models to predict the sound pressure levels (SPL) inside the fuselage. ERP is calculated both for bay panels and fuselage section and then compared with the SPL results. The response surfaces of each metric are determined as a function of lamination parameters and their overall difference is quantified. ERP approach proves its merit provided that a sufficiently accurate model is used. The results demonstrate the importance of the simplifications made in the modelling and the selection of analysis approach in vibro-acoustic design of fuselages.

hi

[BibTex]

[BibTex]


no image
Reproducing a Laser Pointer Dot on a Secondary Projected Screen

Hu, S., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pages: 1645-1650, 2016, Oral presentation given by Hu (inproceedings)

hi

[BibTex]

[BibTex]


no image
Effect of Aspect Ratio and Boundary Conditions on the Eigenfrequency Optimization of Composite Panels Using Lamination Parameters

Serhat, G., Basdogan, I.

In Proceedings of the ASMO UK International Conference on Numerical Optimisation Methods for Engineering Design, pages: 160–168, Munich, Germany, July 2016 (inproceedings)

Abstract
Eigenfrequency optimization of laminated composite panels is a common engineering problem. This process mostly involves designing stiffness properties of the structure. Optimal results can differ significantly depending on the values of the model parameters and the metrics used for the optimization. Building the know-how on this matter is crucial for choosing the appropriate design methodologies as well as validation and justification of prospective results. In this paper, effects of aspect ratio and boundary conditions on eigenfrequency optimization of composite panels by altering stiffness properties are investigated. Lamination parameters are chosen as design variables which are used in the modeling of stiffness tensors. This technique enables representation of overall stiffness characteristics and provides a convex design space. Fundamental frequency and difference between fundamental and second natural frequencies are maximized as design objectives. Optimization studies incorporating different models and responses are performed. Optimal lamination parameters and response values are provided for each case and the effects of model parameters on the solutions are quantified. The results indicate that trends of the optima change for different aspect ratio ranges and boundary conditions. Moreover, convergence occurs beyond certain critical values of the model parameters which may cause an optimization study to be redundant.

hi

[BibTex]

[BibTex]


no image
Multi-objective optimization of stiffened, fiber-reinforced composite fuselages for mechanical and vibro-acoustic requirements

Serhat, G., Faria, T. G., Basdogan, I.

In Proceedings of AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Washington, USA, June 2016 (inproceedings)

Abstract
In this paper, a preliminary design methodology for optimization of stiffened, fiber-reinforced composite fuselages for combined mechanical and vibro-acoustic requirements is presented. Laminate stiffness distributions are represented using the method called lamination parameters which is known to provide a convex solution space. Single-objective and multi-objective optimization studies are carried out in order to find optimal stiffness distributions. Performance metrics for acoustical behavior are chosen as maximum fundamental frequency and minimum equivalent radiated power. The mechanical performance metric is chosen as the maximum stiffness. The results show that the presented methodology works effectively and it can be used to improve load-carrying and acoustical performances simultaneously.

hi

DOI [BibTex]

DOI [BibTex]


no image
Deep Learning for Tactile Understanding From Visual and Haptic Data

Gao, Y., Hendricks, L. A., Kuchenbecker, K. J., Darrell, T.

In Proceedings of the IEEE International Conference on Robotics and Automation, pages: 536-543, May 2016, Oral presentation given by Gao (inproceedings)

hi

[BibTex]

[BibTex]


no image
Robust Tactile Perception of Artificial Tumors Using Pairwise Comparisons of Sensor Array Readings

Hui, J. C. T., Block, A. E., Taylor, C. J., Kuchenbecker, K. J.

In Proceedings of the IEEE Haptics Symposium, pages: 305-312, Philadelphia, Pennsylvania, USA, April 2016, Oral presentation given by Hui (inproceedings)

hi

[BibTex]

[BibTex]


no image
Data-Driven Comparison of Four Cutaneous Displays for Pinching Palpation in Robotic Surgery

Brown, J. D., Ibrahim, M., Chase, E. D. Z., Pacchierotti, C., Kuchenbecker, K. J.

In Proceedings of the IEEE Haptics Symposium, pages: 147-154, Philadelphia, Pennsylvania, USA, April 2016, Oral presentation given by Brown (inproceedings)

hi

[BibTex]

[BibTex]


Multisensory Robotic Therapy through Motion Capture and Imitation for Children with ASD
Multisensory Robotic Therapy through Motion Capture and Imitation for Children with ASD

Burns, R., Nizambad, S., Park, C. H., Jeon, M., Howard, A.

Proceedings of the American Society of Engineering Education, Mid-Atlantic Section, Spring Conference, April 2016 (conference)

Abstract
It is known that children with autism have difficulty with emotional communication. As the population of children with autism increases, it is crucial we create effective therapeutic programs that will improve their communication skills. We present an interactive robotic system that delivers emotional and social behaviors for multi­sensory therapy for children with autism spectrum disorders. Our framework includes emotion­-based robotic gestures and facial expressions, as well as tracking and understanding the child’s responses through Kinect motion capture.

hi

link (url) [BibTex]

link (url) [BibTex]


no image
Design and Implementation of a Visuo-Haptic Data Acquisition System for Robotic Learning of Surface Properties

Burka, A., Hu, S., Helgeson, S., Krishnan, S., Gao, Y., Hendricks, L. A., Darrell, T., Kuchenbecker, K. J.

In Proceedings of the IEEE Haptics Symposium, pages: 350-352, April 2016, Work-in-progress paper. Poster presentation given by Burka (inproceedings)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Psychophysical Power Optimization of Friction Modulation for Tactile Interfaces

Sednaoui, T., Vezzoli, E., Gueorguiev, D., Amberg, M., Chappaz, C., Lemaire-Semail, B.

In Haptics: Perception, Devices, Control, and Applications, pages: 354-362, Springer International Publishing, Cham, 2016 (inproceedings)

Abstract
Ultrasonic vibration and electrovibration can modulate the friction between a surface and a sliding finger. The power consumption of these devices is critical to their integration in modern mobile devices such as smartphones. This paper presents a simple control solution to reduce up to 68.8 {\%} this power consumption by taking advantage of the human perception limits.

hi

[BibTex]

[BibTex]


Effect of Waveform in Haptic Perception of Electrovibration on Touchscreens
Effect of Waveform in Haptic Perception of Electrovibration on Touchscreens

Vardar, Y., Güçlü, B., Basdogan, C.

In Haptics: Perception, Devices, Control, and Applications, pages: 190-203, Springer International Publishing, Cham, 2016 (inproceedings)

Abstract
The perceived intensity of electrovibration can be altered by modulating the amplitude, frequency, and waveform of the input voltage signal applied to the conductive layer of a touchscreen. Even though the effect of the first two has been already investigated for sinusoidal signals, we are not aware of any detailed study investigating the effect of the waveform on our haptic perception in the domain of electrovibration. This paper investigates how input voltage waveform affects our haptic perception of electrovibration on touchscreens. We conducted absolute detection experiments using square wave and sinusoidal input signals at seven fundamental frequencies (15, 30, 60, 120, 240, 480 and 1920 Hz). Experimental results depicted the well-known U-shaped tactile sensitivity across frequencies. However, the sensory thresholds were lower for the square wave than the sinusoidal wave at fundamental frequencies less than 60 Hz while they were similar at higher frequencies. Using an equivalent circuit model of a finger-touchscreen system, we show that the sensation difference between the waveforms at low fundamental frequencies can be explained by frequency-dependent electrical properties of human skin and the differential sensitivity of mechanoreceptor channels to individual frequency components in the electrostatic force. As a matter of fact, when the electrostatic force waveforms are analyzed in the frequency domain based on human vibrotactile sensitivity data from the literature [15], the electrovibration stimuli caused by square-wave input signals at all the tested frequencies in this study are found to be detected by the Pacinian psychophysical channel.

hi

vardar_eurohaptics_2016 [BibTex]

vardar_eurohaptics_2016 [BibTex]


no image
Helping people make better decisions using optimal gamification

Lieder, F., Griffiths, T. L.

In Proceedings of the 38th Annual Conference of the Cognitive Science Society, 2016 (inproceedings)

Abstract
Game elements like points and levels are a popular tool to nudge and engage students and customers. Yet, no theory can tell us which incentive structures work and how to design them. Here we connect the practice of gamification to the theory of reward shaping in reinforcement learning. We leverage this connection to develop a method for designing effective incentive structures and delineating when gamification will succeed from when it will fail. We evaluate our method in two behavioral experiments. The results of the first experiment demonstrate that incentive structures designed by our method help people make better, less short-sighted decisions and avoid the pitfalls of less principled approaches. The results of the second experiment illustrate that such incentive structures can be effectively implemented using game elements like points and badges. These results suggest that our method provides a principled way to leverage gamification to help people make better decisions.

re

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Compliant control for soft robots: emergent behavior of a tendon driven anthropomorphic arm.

Martius, G., Hostettler, R., Knoll, A., Der, R.

In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 767-773, 2016 (inproceedings)

al

DOI [BibTex]

DOI [BibTex]

2012


no image
Surgical Instrument Vibrations are a Construct-Valid Measure of Technical Skill in Robotic Peg Transfer and Suturing Tasks

Bark, K., Gomez, E. D., Rivera, C., McMahan, W., Remington, A., Murayama, K., Lee, D. I., Dumon, K., Williams, N., Kuchenbecker, K. J.

In Proc. Hamlyn Symposium on Medical Robotics, pages: 50-51, London, England, July 2012, Oral presentation given by Bark (inproceedings)

hi

[BibTex]

2012


[BibTex]


no image
Spectral Subtraction of Robot Motion Noise for Improved Vibrotactile Event Detection

McMahan, W., Kuchenbecker, K. J.

In Haptics: Perception, Devices, Mobility, and Communication: Proc. EuroHaptics, Part I, 7282, pages: 326-337, Lecture Notes in Computer Science, Springer, Tampere, Finland, June 2012, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Refined Methods for Creating Realistic Haptic Virtual Textures from Tool-Mediated Contact Acceleration Data

Culbertson, H., Romano, J. M., Castillo, P., Mintz, M., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 385-391, Vancouver, Canada, March 2012, Poster presentation given by Culbertson (inproceedings)

hi

[BibTex]

[BibTex]


no image
VerroTouch: Detection of Instrument Vibrations for Haptic Feedback and Skill Assessment in Robotic Surgery

Gomez, E. D., Bark, K., McMahan, W., Rivera, C., Remington, A., Lee, D. I., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), San Diego, California, USA, March 2012, Emerging Technology Poster presentation given by Gomez. Poster available at \href{http://thesagesmeeting.org/}{http://thesagesmeeting.org/} (inproceedings)

hi

[BibTex]

[BibTex]


no image
Using Accelerometers to Localize Tactile Contact Events on a Robot Arm

McMahan, W., Romano, J. M., Kuchenbecker, K. J.

In Proc. Workshop on Advances in Tactile Sensing and Touch-Based Human-Robot Interaction, ACM/IEEE International Conference on Human-Robot Interaction, Boston, Massachusetts, March 2012, Oral presentation given by McMahan (inproceedings)

hi

[BibTex]

[BibTex]


no image
Recreating the feel of the human chest in a CPR manikin via programmable pneumatic damping

Stanley, A. A., Healey, S. K., Maltese, M. R., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 37-44, Vancouver, Canada, March 2012, Oral presentation given by Stanley (inproceedings)

hi

[BibTex]

[BibTex]