Header logo is


2020


no image
Analytical classical density functionals from an equation learning network

Lin, S., Martius, G., Oettel, M.

The Journal of Chemical Physics, 152(2):021102, 2020, arXiv preprint \url{https://arxiv.org/abs/1910.12752} (article)

al

Preprint_PDF DOI [BibTex]

2020


Preprint_PDF DOI [BibTex]

2015


no image
Modeling interruption and resumption in a smartphone task: An ACT-R approach

Wirzberger, M., Russwinkel, N.

i-com, 14(2), Walter de Gruyter GmbH, 2015 (article)

Abstract
This research aims to inspect human cognition when being interrupted while performing a smartphone task with varying levels of mental demand. Due to its benefits especially in the early stages of interface development, a cognitive modeling approach is used. It applies the cognitive architecture ACT-R to shed light on task-related cognitive processing. The inspected task setting involves a shopping scenario, manipulating interruption via product advertisements and mental demands by the respective number of people shopping is done for. Model predictions are validated through a corresponding experimental setting with 62 human participants. Comparing model and human data in a defined set of performance-related parameters displays mixed results that indicate an acceptable fit – at least in some cases. Potential explanations for the observed differences are discussed at the end.

re

DOI [BibTex]

2015


DOI [BibTex]


no image
The optimism bias may support rational action

Lieder, F., Goel, S., Kwan, R., Griffiths, T. L.

NIPS 2015 Workshop on Bounded Optimality and Rational Metareasoning, 2015 (article)

re

[BibTex]

[BibTex]


no image
Rational use of cognitive resources: Levels of analysis between the computational and the algorithmic

Griffiths, T. L., Lieder, F., Goodman, N. D.

Topics in Cognitive Science, 7(2):217-229, Wiley, 2015 (article)

re

[BibTex]

[BibTex]


no image
Novel plasticity rule can explain the development of sensorimotor intelligence

Der, R., Martius, G.

Proceedings of the National Academy of Sciences, 112(45):E6224-E6232, 2015 (article)

Abstract
Grounding autonomous behavior in the nervous system is a fundamental challenge for neuroscience. In particular, self-organized behavioral development provides more questions than answers. Are there special functional units for curiosity, motivation, and creativity? This paper argues that these features can be grounded in synaptic plasticity itself, without requiring any higher-level constructs. We propose differential extrinsic plasticity (DEP) as a new synaptic rule for self-learning systems and apply it to a number of complex robotic systems as a test case. Without specifying any purpose or goal, seemingly purposeful and adaptive rhythmic behavior is developed, displaying a certain level of sensorimotor intelligence. These surprising results require no system-specific modifications of the DEP rule. They rather arise from the underlying mechanism of spontaneous symmetry breaking, which is due to the tight brain body environment coupling. The new synaptic rule is biologically plausible and would be an interesting target for neurobiological investigation. We also argue that this neuronal mechanism may have been a catalyst in natural evolution.

al

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Quantifying Emergent Behavior of Autonomous Robots

Martius, G., Olbrich, E.

Entropy, 17(10):7266, 2015 (article)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Model-based strategy selection learning

Lieder, F., Griffiths, T. L.

The 2nd Multidisciplinary Conference on Reinforcement Learning and Decision Making, 2015 (article)

re

Project Page [BibTex]

Project Page [BibTex]