Header logo is


2019


no image
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset

Gondal, M. W., Wuthrich, M., Miladinovic, D., Locatello, F., Breidt, M., Volchkov, V., Akpo, J., Bachem, O., Schölkopf, B., Bauer, S.

Advances in Neural Information Processing Systems 32, pages: 15714-15725, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

am ei sf

link (url) [BibTex]

2019


link (url) [BibTex]


no image
Deep Neural Network Approach in Electrical Impedance Tomography-Based Real-Time Soft Tactile Sensor

Park, H., Lee, H., Park, K., Mo, S., Kim, J.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 7447-7452, Macau, China, November 2019 (inproceedings)

Abstract
Recently, a whole-body tactile sensing have emerged in robotics for safe human-robot interaction. A key issue in the whole-body tactile sensing is ensuring large-area manufacturability and high durability. To fulfill these requirements, a reconstruction method called electrical impedance tomography (EIT) was adopted in large-area tactile sensing. This method maps voltage measurements to conductivity distribution using only a few number of measurement electrodes. A common approach for the mapping is using a linearized model derived from the Maxwell's equation. This linearized model shows fast computation time and moderate robustness against measurement noise but reconstruction accuracy is limited. In this paper, we propose a novel nonlinear EIT algorithm through Deep Neural Network (DNN) approach to improve the reconstruction accuracy of EIT-based tactile sensors. The neural network architecture with rectified linear unit (ReLU) function ensured extremely low computational time (0.002 seconds) and nonlinear network structure which provides superior measurement accuracy. The DNN model was trained with dataset synthesized in simulation environment. To achieve the robustness against measurement noise, the training proceeded with additive Gaussian noise that estimated through actual measurement noise. For real sensor application, the trained DNN model was transferred to a conductive fabric-based soft tactile sensor. For validation, the reconstruction error and noise robustness were mainly compared using conventional linearized model and proposed approach in simulation environment. As a demonstration, the tactile sensor equipped with the trained DNN model is presented for a contact force estimation.

hi

DOI [BibTex]

DOI [BibTex]


Objective and Subjective Assessment of Algorithms for Reducing Three-Axis Vibrations to One-Axis Vibrations
Objective and Subjective Assessment of Algorithms for Reducing Three-Axis Vibrations to One-Axis Vibrations

Park, G., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference, pages: 467-472, July 2019 (inproceedings)

Abstract
A typical approach to creating realistic vibrotactile feedback is reducing 3D vibrations recorded by an accelerometer to 1D signals that can be played back on a haptic actuator, but some of the information is often lost in this dimensional reduction process. This paper describes seven representative algorithms and proposes four metrics based on the spectral match, the temporal match, and the average value and the variability of them across 3D rotations. These four performance metrics were applied to four texture recordings, and the method utilizing the discrete fourier transform (DFT) was found to be the best regardless of the sensing axis. We also recruited 16 participants to assess the perceptual similarity achieved by each algorithm in real time. We found the four metrics correlated well with the subjectively rated similarities for the six dimensional reduction algorithms, with the exception of taking the 3D vector magnitude, which was perceived to be good despite its low spectral and temporal match metrics.

hi

DOI [BibTex]

DOI [BibTex]


Fingertip Interaction Metrics Correlate with Visual and Haptic Perception of Real Surfaces
Fingertip Interaction Metrics Correlate with Visual and Haptic Perception of Real Surfaces

Vardar, Y., Wallraven, C., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 395-400, Tokyo, Japan, July 2019 (inproceedings)

Abstract
Both vision and touch contribute to the perception of real surfaces. Although there have been many studies on the individual contributions of each sense, it is still unclear how each modality’s information is processed and integrated. To fill this gap, we investigated the similarity of visual and haptic perceptual spaces, as well as how well they each correlate with fingertip interaction metrics. Twenty participants interacted with ten different surfaces from the Penn Haptic Texture Toolkit by either looking at or touching them and judged their similarity in pairs. By analyzing the resulting similarity ratings using multi-dimensional scaling (MDS), we found that surfaces are similarly organized within the three-dimensional perceptual spaces of both modalities. Also, between-participant correlations were significantly higher in the haptic condition. In a separate experiment, we obtained the contact forces and accelerations acting on one finger interacting with each surface in a controlled way. We analyzed the collected fingertip interaction data in both the time and frequency domains. Our results suggest that the three perceptual dimensions for each modality can be represented by roughness/smoothness, hardness/softness, and friction, and that these dimensions can be estimated by surface vibration power, tap spectral centroid, and kinetic friction coefficient, respectively.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Haptipedia: Accelerating Haptic Device Discovery to Support Interaction & Engineering Design
Haptipedia: Accelerating Haptic Device Discovery to Support Interaction & Engineering Design

Seifi, H., Fazlollahi, F., Oppermann, M., Sastrillo, J. A., Ip, J., Agrawal, A., Park, G., Kuchenbecker, K. J., MacLean, K. E.

In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI), Glasgow, Scotland, May 2019 (inproceedings)

Abstract
Creating haptic experiences often entails inventing, modifying, or selecting specialized hardware. However, experience designers are rarely engineers, and 30 years of haptic inventions are buried in a fragmented literature that describes devices mechanically rather than by potential purpose. We conceived of Haptipedia to unlock this trove of examples: Haptipedia presents a device corpus for exploration through metadata that matter to both device and experience designers. It is a taxonomy of device attributes that go beyond physical description to capture potential utility, applied to a growing database of 105 grounded force-feedback devices, and accessed through a public visualization that links utility to morphology. Haptipedia's design was driven by both systematic review of the haptic device literature and rich input from diverse haptic designers. We describe Haptipedia's reception (including hopes it will redefine device reporting standards) and our plans for its sustainability through community participation.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Internal Array Electrodes Improve the Spatial Resolution of Soft Tactile Sensors Based on Electrical Resistance Tomography

Lee, H., Park, K., Kim, J., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5411-5417, Montreal, Canada, May 2019, Hyosang Lee and Kyungseo Park contributed equally to this publication (inproceedings)

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
A Clustering Approach to Categorizing 7 Degree-of-Freedom Arm Motions during Activities of Daily Living

Gloumakov, Y., Spiers, A. J., Dollar, A. M.

In Proceedings of the International Conference on Robotics and Automation (ICRA), pages: 7214-7220, Montreal, Canada, May 2019 (inproceedings)

Abstract
In this paper we present a novel method of categorizing naturalistic human arm motions during activities of daily living using clustering techniques. While many current approaches attempt to define all arm motions using heuristic interpretation, or a combination of several abstract motion primitives, our unsupervised approach generates a hierarchical description of natural human motion with well recognized groups. Reliable recommendation of a subset of motions for task achievement is beneficial to various fields, such as robotic and semi-autonomous prosthetic device applications. The proposed method makes use of well-known techniques such as dynamic time warping (DTW) to obtain a divergence measure between motion segments, DTW barycenter averaging (DBA) to get a motion average, and Ward's distance criterion to build the hierarchical tree. The clusters that emerge summarize the variety of recorded motions into the following general tasks: reach-to-front, transfer-box, drinking from vessel, on-table motion, turning a key or door knob, and reach-to-back pocket. The clustering methodology is justified by comparing against an alternative measure of divergence using Bezier coefficients and K-medoids clustering.

hi

DOI [BibTex]

DOI [BibTex]


Accurate Vision-based Manipulation through Contact Reasoning
Accurate Vision-based Manipulation through Contact Reasoning

Kloss, A., Bauza, M., Wu, J., Tenenbaum, J. B., Rodriguez, A., Bohg, J.

In International Conference on Robotics and Automation, May 2019 (inproceedings) Accepted

Abstract
Planning contact interactions is one of the core challenges of many robotic tasks. Optimizing contact locations while taking dynamics into account is computationally costly and in only partially observed environments, executing contact-based tasks often suffers from low accuracy. We present an approach that addresses these two challenges for the problem of vision-based manipulation. First, we propose to disentangle contact from motion optimization. Thereby, we improve planning efficiency by focusing computation on promising contact locations. Second, we use a hybrid approach for perception and state estimation that combines neural networks with a physically meaningful state representation. In simulation and real-world experiments on the task of planar pushing, we show that our method is more efficient and achieves a higher manipulation accuracy than previous vision-based approaches.

am

Video link (url) [BibTex]

Video link (url) [BibTex]


Improving Haptic Adjective Recognition with Unsupervised Feature Learning
Improving Haptic Adjective Recognition with Unsupervised Feature Learning

Richardson, B. A., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 3804-3810, Montreal, Canada, May 2019 (inproceedings)

Abstract
Humans can form an impression of how a new object feels simply by touching its surfaces with the densely innervated skin of the fingertips. Many haptics researchers have recently been working to endow robots with similar levels of haptic intelligence, but these efforts almost always employ hand-crafted features, which are brittle, and concrete tasks, such as object recognition. We applied unsupervised feature learning methods, specifically K-SVD and Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP), to rich multi-modal haptic data from a diverse dataset. We then tested the learned features on 19 more abstract binary classification tasks that center on haptic adjectives such as smooth and squishy. The learned features proved superior to traditional hand-crafted features by a large margin, almost doubling the average F1 score across all adjectives. Additionally, particular exploratory procedures (EPs) and sensor channels were found to support perception of certain haptic adjectives, underlining the need for diverse interactions and multi-modal haptic data.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Learning Latent Space Dynamics for Tactile Servoing
Learning Latent Space Dynamics for Tactile Servoing

Sutanto, G., Ratliff, N., Sundaralingam, B., Chebotar, Y., Su, Z., Handa, A., Fox, D.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2019, IEEE, International Conference on Robotics and Automation, May 2019 (inproceedings) Accepted

am

pdf video [BibTex]

pdf video [BibTex]


Leveraging Contact Forces for Learning to Grasp
Leveraging Contact Forces for Learning to Grasp

Merzic, H., Bogdanovic, M., Kappler, D., Righetti, L., Bohg, J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2019, IEEE, International Conference on Robotics and Automation, May 2019 (inproceedings)

Abstract
Grasping objects under uncertainty remains an open problem in robotics research. This uncertainty is often due to noisy or partial observations of the object pose or shape. To enable a robot to react appropriately to unforeseen effects, it is crucial that it continuously takes sensor feedback into account. While visual feedback is important for inferring a grasp pose and reaching for an object, contact feedback offers valuable information during manipulation and grasp acquisition. In this paper, we use model-free deep reinforcement learning to synthesize control policies that exploit contact sensing to generate robust grasping under uncertainty. We demonstrate our approach on a multi-fingered hand that exhibits more complex finger coordination than the commonly used two- fingered grippers. We conduct extensive experiments in order to assess the performance of the learned policies, with and without contact sensing. While it is possible to learn grasping policies without contact sensing, our results suggest that contact feedback allows for a significant improvement of grasping robustness under object pose uncertainty and for objects with a complex shape.

am mg

video arXiv [BibTex]

video arXiv [BibTex]

2015


no image
Learning Torque Control in Presence of Contacts using Tactile Sensing from Robot Skin

Calandra, R., Ivaldi, S., Deisenroth, M., Peters, J.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 690-695, Humanoids, November 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

2015


link (url) DOI [BibTex]


no image
Evaluation of Interactive Object Recognition with Tactile Sensing

Hoelscher, J., Peters, J., Hermans, T.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 310-317, Humanoids, November 2015 (inproceedings)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Optimizing Robot Striking Movement Primitives with Iterative Learning Control

Koc, O., Maeda, G., Neumann, G., Peters, J.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 80-87, Humanoids, November 2015 (inproceedings)

am ei

DOI [BibTex]

DOI [BibTex]


no image
A Comparison of Contact Distribution Representations for Learning to Predict Object Interactions

Leischnig, S., Luettgen, S., Kroemer, O., Peters, J.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 616-622, Humanoids, November 2015 (inproceedings)

am ei

DOI [BibTex]

DOI [BibTex]


no image
First-Person Tele-Operation of a Humanoid Robot

Fritsche, L., Unverzagt, F., Peters, J., Calandra, R.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 997-1002, Humanoids, November 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic Segmentation Applied to an Assembly Task

Lioutikov, R., Neumann, G., Maeda, G., Peters, J.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 533-540, Humanoids, November 2015 (inproceedings)

am ei

DOI [BibTex]

DOI [BibTex]


Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results
Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

Machine Learning in Planning and Control of Robot Motion Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS), pages: , , Machine Learning in Planning and Control of Robot Motion Workshop, October 2015 (conference)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree-of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Preliminary results of a low-dimensional tuning problem highlight the method’s potential for automatic controller tuning on robotic platforms.

am ei ics pn

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Stabilizing Novel Objects by Learning to Predict Tactile Slip

Veiga, F., van Hoof, H., Peters, J., Hermans, T.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 5065-5072, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Model-Free Probabilistic Movement Primitives for Physical Interaction

Paraschos, A., Rueckert, E., Peters, J., Neumann, G.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 2860-2866, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Combined Pose-Wrench and State Machine Representation for Modeling Robotic Assembly Skills

Wahrburg, A., Zeiss, S., Matthias, B., Peters, J., Ding, H.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 852-857, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic Progress Prediction and Sequencing of Concurrent Movement Primitives

Manschitz, S., Kober, J., Gienger, M., Peters, J.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 449-455, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Reinforcement Learning vs Human Programming in Tetherball Robot Games

Parisi, S., Abdulsamad, H., Paraschos, A., Daniel, C., Peters, J.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 6428-6434, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motor Skills from Partially Observed Movements Executed at Different Speeds

Ewerton, M., Maeda, G., Peters, J., Neumann, G.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 456-463, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Direct Loss Minimization Inverse Optimal Control
Direct Loss Minimization Inverse Optimal Control

Doerr, A., Ratliff, N., Bohg, J., Toussaint, M., Schaal, S.

In Proceedings of Robotics: Science and Systems, Rome, Italy, Robotics: Science and Systems XI, July 2015 (inproceedings)

Abstract
Inverse Optimal Control (IOC) has strongly impacted the systems engineering process, enabling automated planner tuning through straightforward and intuitive demonstration. The most successful and established applications, though, have been in lower dimensional problems such as navigation planning where exact optimal planning or control is feasible. In higher dimensional systems, such as humanoid robots, research has made substantial progress toward generalizing the ideas to model free or locally optimal settings, but these systems are complicated to the point where demonstration itself can be difficult. Typically, real-world applications are restricted to at best noisy or even partial or incomplete demonstrations that prove cumbersome in existing frameworks. This work derives a very flexible method of IOC based on a form of Structured Prediction known as Direct Loss Minimization. The resulting algorithm is essentially Policy Search on a reward function that rewards similarity to demonstrated behavior (using Covariance Matrix Adaptation (CMA) in our experiments). Our framework blurs the distinction between IOC, other forms of Imitation Learning, and Reinforcement Learning, enabling us to derive simple, versatile, and practical algorithms that blend imitation and reinforcement signals into a unified framework. Our experiments analyze various aspects of its performance and demonstrate its efficacy on conveying preferences for motion shaping and combined reach and grasp quality optimization.

am ics

PDF Video Project Page [BibTex]

PDF Video Project Page [BibTex]


no image
LMI-Based Synthesis for Distributed Event-Based State Estimation

Muehlebach, M., Trimpe, S.

In Proceedings of the American Control Conference, July 2015 (inproceedings)

Abstract
This paper presents an LMI-based synthesis procedure for distributed event-based state estimation. Multiple agents observe and control a dynamic process by sporadically exchanging data over a broadcast network according to an event-based protocol. In previous work [1], the synthesis of event-based state estimators is based on a centralized design. In that case three different types of communication are required: event-based communication of measurements, periodic reset of all estimates to their joint average, and communication of inputs. The proposed synthesis problem eliminates the communication of inputs as well as the periodic resets (under favorable circumstances) by accounting explicitly for the distributed structure of the control system.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Guaranteed H2 Performance in Distributed Event-Based State Estimation

Muehlebach, M., Trimpe, S.

In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
On the Choice of the Event Trigger in Event-based Estimation

Trimpe, S., Campi, M.

In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


Leveraging Big Data for Grasp Planning
Leveraging Big Data for Grasp Planning

Kappler, D., Bohg, B., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)

Abstract
We propose a new large-scale database containing grasps that are applied to a large set of objects from numerous categories. These grasps are generated in simulation and are annotated with different grasp stability metrics. We use a descriptive and efficient representation of the local object shape at which each grasp is applied. Given this data, we present a two-fold analysis: (i) We use crowdsourcing to analyze the correlation of the metrics with grasp success as predicted by humans. The results show that the metric based on physics simulation is a more consistent predictor for grasp success than the standard ε-metric. The results also support the hypothesis that human labels are not required for good ground truth grasp data. Instead the physics-metric can be used to generate datasets in simulation that may then be used to bootstrap learning in the real world. (ii) We apply a deep learning method and show that it can better leverage the large-scale database for prediction of grasp success compared to logistic regression. Furthermore, the results suggest that labels based on the physics-metric are less noisy than those from the ε-metric and therefore lead to a better classification performance.

am

PDF data DOI Project Page [BibTex]

PDF data DOI Project Page [BibTex]


no image
Event-based Estimation and Control for Remote Robot Operation with Reduced Communication

Trimpe, S., Buchli, J.

In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)

Abstract
An event-based communication framework for remote operation of a robot via a bandwidth-limited network is proposed. The robot sends state and environment estimation data to the operator, and the operator transmits updated control commands or policies to the robot. Event-based communication protocols are designed to ensure that data is transmitted only when required: the robot sends new estimation data only if this yields a significant information gain at the operator, and the operator transmits an updated control policy only if this comes with a significant improvement in control performance. The developed framework is modular and can be used with any standard estimation and control algorithms. Simulation results of a robotic arm highlight its potential for an efficient use of limited communication resources, for example, in disaster response scenarios such as the DARPA Robotics Challenge.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


The Coordinate Particle Filter - A novel Particle Filter for High Dimensional Systems
The Coordinate Particle Filter - A novel Particle Filter for High Dimensional Systems

Wüthrich, M., Bohg, J., Kappler, D., Pfreundt, C., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)

Abstract
Parametric filters, such as the Extended Kalman Filter and the Unscented Kalman Filter, typically scale well with the dimensionality of the problem, but they are known to fail if the posterior state distribution cannot be closely approximated by a density of the assumed parametric form. For nonparametric filters, such as the Particle Filter, the converse holds. Such methods are able to approximate any posterior, but the computational requirements scale exponentially with the number of dimensions of the state space. In this paper, we present the Coordinate Particle Filter which alleviates this problem. We propose to compute the particle weights recursively, dimension by dimension. This allows us to explore one dimension at a time, and resample after each dimension if necessary. Experimental results on simulated as well as real data con- firm that the proposed method has a substantial performance advantage over the Particle Filter in high-dimensional systems where not all dimensions are highly correlated. We demonstrate the benefits of the proposed method for the problem of multi-object and robotic manipulator tracking.

am

arXiv Video Bayesian Filtering Framework Bayesian Object Tracking DOI Project Page [BibTex]


no image
Understanding the Geometry of Workspace Obstacles in Motion Optimization

Ratliff, N., Toussaint, M., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation, March 2015 (inproceedings)

am

PDF Video Project Page [BibTex]

PDF Video Project Page [BibTex]


no image
Human Machine Interface for Dexto Eka: - The humanoid robot

Kumra, S., Mohan, M., Gupta, S., Vaswani, H.

In Proceedings of the IEEE International Conference on Robotics, Automation, Control and Embedded Systems (RACE), Chennai, India, Febuary 2015 (inproceedings)

Abstract
This paper illustrates hybrid control system of the humanoid robot, Dexto:Eka: focusing on the dependent or slave mode. Efficiency of any system depends on the fluid operation of its control system. Here, we elucidate the control of 12 DoF robotic arms and an omnidirectional mecanum wheel drive using an exo-frame, and a Graphical User Interface (GUI) and a control column. This paper comprises of algorithms, control mechanisms and overall flow of execution for the regulation of robotic arms, graphical user interface and locomotion.

hi

DOI [BibTex]

DOI [BibTex]


no image
Conception and development of Dexto:Eka: The Humanoid Robot - Part IV

Kumra, S., Mohan, M., Vaswani, H., Gupta, S.

In Proceedings of the IEEE International Conference on Robotics, Automation, Control and Embedded Systems (RACE), Febuary 2015 (inproceedings)

Abstract
This paper elucidates the fourth phase of the development of `Dexto:Eka: - The Humanoid Robot'. It lays special emphasis on the conception of the locomotion drive and the development of vision based system that aids navigation and tele-operation. The first three phases terminated with the completion of two robotic arms with six degrees of freedom each, structural development and the creation of a human machine interface that included an exo-frame, a control column and a graphical user interface. This phase also involved the enhancement of the exo-frame to a vision based system using a Kinect camera. The paper also focuses on the reasons behind choosing the locomotion drive and the benefits it has.

hi

DOI [BibTex]

DOI [BibTex]


no image
Learning of Non-Parametric Control Policies with High-Dimensional State Features

van Hoof, H., Peters, J., Neumann, G.

In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, 38, pages: 995–1003, (Editors: Lebanon, G. and Vishwanathan, S.V.N. ), JMLR, AISTATS, 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Data-Driven Online Decision Making for Autonomous Manipulation

Kappler, D., Pastor, P., Kalakrishnan, M., Wuthrich, M., Schaal, S.

In Proceedings of Robotics: Science and Systems, Rome, Italy, 2015 (inproceedings)

am

Project Page [BibTex]

Project Page [BibTex]


Predicting Human Reaching Motion in Collaborative Tasks Using Inverse Optimal Control and Iterative Re-planning
Predicting Human Reaching Motion in Collaborative Tasks Using Inverse Optimal Control and Iterative Re-planning

Mainprice, J., Hayne, R., Berenson, D.

In Proceedings of the IEEE International Conference on Robotics and Automation, 2015 (inproceedings)

am

Project Page [BibTex]

Project Page [BibTex]


no image
Semi-Autonomous 3rd-Hand Robot

Lopes, M., Peters, J., Piater, J., Toussaint, M., Baisero, A., Busch, B., Erkent, O., Kroemer, O., Lioutikov, R., Maeda, G., Mollard, Y., Munzer, T., Shukla, D.

In Workshop on Cognitive Robotics in Future Manufacturing Scenarios, European Robotics Forum, 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Inverse Dynamics Models with Contacts

Calandra, R., Ivaldi, S., Deisenroth, M., Rückert, E., Peters, J.

In IEEE International Conference on Robotics and Automation, pages: 3186-3191, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Probabilistic Framework for Semi-Autonomous Robots Based on Interaction Primitives with Phase Estimation

Maeda, G., Neumann, G., Ewerton, M., Lioutikov, R., Peters, J.

In Proceedings of the International Symposium of Robotics Research, ISRR, 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Towards Learning Hierarchical Skills for Multi-Phase Manipulation Tasks

Kroemer, O., Daniel, C., Neumann, G., van Hoof, H., Peters, J.

In IEEE International Conference on Robotics and Automation, pages: 1503 - 1510, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Force estimation and slip detection/classification for grip control using a biomimetic tactile sensor
Force estimation and slip detection/classification for grip control using a biomimetic tactile sensor

Su, Z., Hausman, K., Chebotar, Y., Molchanov, A., Loeb, G. E., Sukhatme, G. S., Schaal, S.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages: 297-303, 2015 (inproceedings)

am

link (url) [BibTex]

link (url) [BibTex]


Policy Learning with Hypothesis Based Local Action Selection
Policy Learning with Hypothesis Based Local Action Selection

Sankaran, B., Bohg, J., Ratliff, N., Schaal, S.

In Reinforcement Learning and Decision Making, 2015 (inproceedings)

Abstract
For robots to be able to manipulate in unknown and unstructured environments the robot should be capable of operating under partial observability of the environment. Object occlusions and unmodeled environments are some of the factors that result in partial observability. A common scenario where this is encountered is manipulation in clutter. In the case that the robot needs to locate an object of interest and manipulate it, it needs to perform a series of decluttering actions to accurately detect the object of interest. To perform such a series of actions, the robot also needs to account for the dynamics of objects in the environment and how they react to contact. This is a non trivial problem since one needs to reason not only about robot-object interactions but also object-object interactions in the presence of contact. In the example scenario of manipulation in clutter, the state vector would have to account for the pose of the object of interest and the structure of the surrounding environment. The process model would have to account for all the aforementioned robot-object, object-object interactions. The complexity of the process model grows exponentially as the number of objects in the scene increases. This is commonly the case in unstructured environments. Hence it is not reasonable to attempt to model all object-object and robot-object interactions explicitly. Under this setting we propose a hypothesis based action selection algorithm where we construct a hypothesis set of the possible poses of an object of interest given the current evidence in the scene and select actions based on our current set of hypothesis. This hypothesis set tends to represent the belief about the structure of the environment and the number of poses the object of interest can take. The agent's only stopping criterion is when the uncertainty regarding the pose of the object is fully resolved.

am

Web Project Page [BibTex]


no image
Learning Optimal Striking Points for A Ping-Pong Playing Robot

Huang, Y., Schölkopf, B., Peters, J.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 4587-4592, IROS, 2015 (inproceedings)

am ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Model-Based Relative Entropy Stochastic Search

Abdolmaleki, A., Peters, J., Neumann, G.

In Advances in Neural Information Processing Systems 28, pages: 3523-3531, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Modeling Spatio-Temporal Variability in Human-Robot Interaction with Probabilistic Movement Primitives

Ewerton, M., Neumann, G., Lioutikov, R., Ben Amor, H., Peters, J., Maeda, G.

In Workshop on Machine Learning for Social Robotics, ICRA, 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Extracting Low-Dimensional Control Variables for Movement Primitives

Rueckert, E., Mundo, J., Paraschos, A., Peters, J., Neumann, G.

In IEEE International Conference on Robotics and Automation, pages: 1511-1518, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Kappler, D., Schaal, S.

In Robotics: Science and Systems, 2015 (inproceedings)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. GFs represent the belief of the current state by a Gaussian with the mean being an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependencies in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end we view the GF from a variational-inference perspective, and analyze how restrictions on the form of the belief can be relaxed while maintaining simplicity and efficiency. This analysis provides a basis for generalizations of the GF. We propose one such generalization which coincides with a GF using a virtual measurement, obtained by applying a nonlinear function to the actual measurement. Numerical experiments show that the proposed Feature Gaussian Filter (FGF) can have a substantial performance advantage over the standard GF for systems with nonlinear observation models.

am ics

Web PDF Project Page [BibTex]


no image
Learning multiple collaborative tasks with a mixture of Interaction Primitives

Ewerton, M., Neumann, G., Lioutikov, R., Ben Amor, H., Peters, J., Maeda, G.

In IEEE International Conference on Robotics and Automation, pages: 1535-1542, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Whole-body motor strategies for balancing on a beam when changing the number of available degrees of freedom

Chiovetto, E, Huber, M, Righetti, L., Schaal, S., Sternad, D, Giese, M.

In Progress in Motor Control X, Budapest, Hungry, 2015 (inproceedings)

am

[BibTex]

[BibTex]