Header logo is


2013


no image
Camera-specific Image Denoising

Schober, M.

Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)

ei pn

PDF [BibTex]

2013


PDF [BibTex]


no image
Modelling and Learning Approaches to Image Denoising

Burger, HC.

Eberhard Karls Universität Tübingen, Germany, 2013 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Proceedings of the 10th European Workshop on Reinforcement Learning, Volume 24

Deisenroth, M., Szepesvári, C., Peters, J.

pages: 173, JMLR, European Workshop On Reinforcement Learning, EWRL, 2013 (proceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Linear mixed models for genome-wide association studies

Lippert, C.

University of Tübingen, Germany, 2013 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Brownian motion of optically trapped ellipsoids

Dibak, Manuel

Universität Stuttgart, Stuttgart, 2013 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Phase behavior of colloidal suspensions with critical solvents

Mohry, T. F.

Universität Stuttgart, Stuttgart, 2013 (phdthesis)

icm

link (url) [BibTex]

link (url) [BibTex]


no image
Modeling and Learning Complex Motor Tasks: A case study on Robot Table Tennis

Mülling, K.

Technical University Darmstadt, Germany, 2013 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Zweidimensionale Monte-Carlo-Gittersimulationen im muVT- und NpT-Ensemble

Kirn, Kai Ludwig

Universität Stuttgart, Stuttgart, 2013 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Intention Inference and Decision Making with Hierarchical Gaussian Process Dynamics Models

Wang, Z.

Technical University Darmstadt, Germany, 2013 (phdthesis)

ei

[BibTex]


no image
Permittivity of an inhomogeneous dipolar lattice fluid

Schütz, Christian

Universität Stuttgart, Stuttgart, 2013 (mastersthesis)

icm

[BibTex]

[BibTex]

2009


no image
Kernel Learning Approaches for Image Classification

Gehler, PV.

Biologische Kybernetik, Universität des Saarlandes, Saarbrücken, Germany, October 2009 (phdthesis)

Abstract
This thesis extends the use of kernel learning techniques to specific problems of image classification. Kernel learning is a paradigm in the field of machine learning that generalizes the use of inner products to compute similarities between arbitrary objects. In image classification one aims to separate images based on their visual content. We address two important problems that arise in this context: learning with weak label information and combination of heterogeneous data sources. The contributions we report on are not unique to image classification, and apply to a more general class of problems. We study the problem of learning with label ambiguity in the multiple instance learning framework. We discuss several different image classification scenarios that arise in this context and argue that the standard multiple instance learning requires a more detailed disambiguation. Finally we review kernel learning approaches proposed for this problem and derive a more efficient algorithm to solve them. The multiple kernel learning framework is an approach to automatically select kernel parameters. We extend it to its infinite limit and present an algorithm to solve the resulting problem. This result is then applied in two directions. We show how to learn kernels that adapt to the special structure of images. Finally we compare different ways of combining image features for object classification and present significant improvements compared to previous methods.

ei

PDF [BibTex]

2009


PDF [BibTex]


no image
Kernel Methods in Computer Vision:Object Localization, Clustering,and Taxonomy Discovery

Blaschko, MB.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, March 2009 (phdthesis)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Motor Control and Learning in Table Tennis

Mülling, K.

Eberhard Karls Universität Tübingen, Gerrmany, 2009 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Hierarchical Clustering and Density Estimation Based on k-nearest-neighbor graphs

Drewe, P.

Eberhard Karls Universität Tübingen, Germany, 2009 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Learning with Structured Data: Applications to Computer Vision

Nowozin, S.

Technische Universität Berlin, Germany, 2009 (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
From Differential Equations to Differential Geometry: Aspects of Regularisation in Machine Learning

Steinke, F.

Universität des Saarlandes, Saarbrücken, Germany, 2009 (phdthesis)

ei

PDF [BibTex]


no image
From colloids to biophysics: applications of classical density functional theory

Roth, R.

Universität Stuttgart, Stuttgart, 2009 (phdthesis)

icm

[BibTex]

[BibTex]


no image
Stäbchensuspensionen in Kontakt mit geometrisch strukturierten Substraten

Günther, F.

Universität Stuttgart, Stuttgart, 2009 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Bayesian Methods for Autonomous Learning Systems (Phd Thesis)

Ting, J.

Department of Computer Science, University of Southern California, Los Angeles, CA, 2009, clmc (phdthesis)

am

PDF [BibTex]

PDF [BibTex]

2008


no image
Reinforcement Learning for Motor Primitives

Kober, J.

Biologische Kybernetik, University of Stuttgart, Stuttgart, Germany, August 2008 (diplomathesis)

ei

PDF [BibTex]

2008


PDF [BibTex]


no image
Asymmetries of Time Series under Inverting their Direction

Peters, J.

Biologische Kybernetik, University of Heidelberg, August 2008 (diplomathesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning an Interest Operator from Human Eye Movements

Kienzle, W.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, July 2008 (phdthesis)

ei

[BibTex]

[BibTex]


no image
CogRob 2008: The 6th International Cognitive Robotics Workshop

Lespérance, Y., Lakemeyer, G., Peters, J., Pirri, F.

Proceedings of the 6th International Cognitive Robotics Workshop (CogRob 2008), pages: 35, Patras University Press, Patras, Greece, 6th International Cognitive Robotics Workshop (CogRob), July 2008 (proceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Causal inference from statistical data

Sun, X.

Biologische Kybernetik, Technische Hochschule Karlsruhe, Karlsruhe, Germany, April 2008 (phdthesis)

ei

Web [BibTex]

Web [BibTex]


no image
Pairwise Correlations and Multineuronal Firing Patterns in Primary Visual Cortex

Berens, P.

Biologische Kybernetik, Eberhard Karls Universität Tübingen, Tübingen, Germany, April 2008 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Development and Application of a Python Scripting Framework for BCI2000

Schreiner, T.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, January 2008 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Efficient and Invariant Regularisation with Application to Computer Graphics

Walder, CJ.

Biologische Kybernetik, University of Queensland, Brisbane, Australia, January 2008 (phdthesis)

Abstract
This thesis develops the theory and practise of reproducing kernel methods. Many functional inverse problems which arise in, for example, machine learning and computer graphics, have been treated with practical success using methods based on a reproducing kernel Hilbert space perspective. This perspective is often theoretically convenient, in that many functional analysis problems reduce to linear algebra problems in these spaces. Somewhat more complex is the case of conditionally positive definite kernels, and we provide an introduction to both cases, deriving in a particularly elementary manner some key results for the conditionally positive definite case. A common complaint of the practitioner is the long running time of these kernel based algorithms. We provide novel ways of alleviating these problems by essentially using a non-standard function basis which yields computational advantages. That said, by doing so we must also forego the aforementioned theoretical conveniences, and hence need some additional analysis which we provide in order to make the approach practicable. We demonstrate that the method leads to state of the art performance on the problem of surface reconstruction from points. We also provide some analysis of kernels invariant to transformations such as translation and dilation, and show that this indicates the value of learning algorithms which use conditionally positive definite kernels. Correspondingly, we provide a few approaches for making such algorithms practicable. We do this either by modifying the kernel, or directly solving problems with conditionally positive definite kernels, which had previously only been solved with positive definite kernels. We demonstrate the advantage of this approach, in particular by attaining state of the art classification performance with only one free parameter.

ei

PDF [BibTex]

PDF [BibTex]


no image
Entropic Forces on Bio-Molecules

Hansen-Goos, H.

Universität Stuttgart, Stuttgart, 2008 (phdthesis)

icm

link (url) [BibTex]

link (url) [BibTex]


no image
Wetting of geometrically structured substrates

Marinescu, M.

Universität Stuttgart, Stuttgart, Germany, 2008 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Fluktuations- und Kapillarkräfte zwischen Kolloiden an fluiden Grenzflächen

Lehle, H.

Universität Stuttgart, Stuttgart, 2008 (phdthesis)

icm

link (url) [BibTex]

link (url) [BibTex]


no image
Microscopic calculation of line tensions

Merath, R.-J.

Universität Stuttgart, Stuttgart, 2008 (phdthesis)

icm

link (url) [BibTex]

link (url) [BibTex]


no image
Lattice model for fluid flow in narrow channels

Dotti, C.

Universität Stuttgart, Stuttgart, 2008 (phdthesis)

icm

[BibTex]

[BibTex]


no image
Critical Casimir forces

Mohry, T. F.

Universität Stuttgart, Stuttgart, 2008 (mastersthesis)

icm

[BibTex]

[BibTex]

2001


no image
Variationsverfahren zur Untersuchung von Grundzustandseigenschaften des Ein-Band Hubbard-Modells

Eichhorn, J.

Biologische Kybernetik, Technische Universität Dresden, Dresden/Germany, May 2001 (diplomathesis)

Abstract
Using different modifications of a new variational approach, statical groundstate properties of the one-band Hubbard model such as energy and staggered magnetisation are calculated. By taking into account additional fluctuations, the method ist gradually improved so that a very good description of the energy in one and two dimensions can be achieved. After a detailed discussion of the application in one dimension, extensions for two dimensions are introduced. By use of a modified version of the variational ansatz in particular a description of the quantum phase transition for the magnetisation should be possible.

ei

PostScript [BibTex]

2001


PostScript [BibTex]


no image
Einflußvon Teilchenbestrahlung auf die Selbst- und Interdiffusion in amorphen Fe-Zr-Legierungen

Schuler, T.

Universität Stuttgart, Stuttgart, 2001 (phdthesis)

icm

[BibTex]

[BibTex]


no image
Diffusion im unterkühlten flüssigen und amorphen Zustand von Zr65Cu175,Ni10Al17,5

Schaaff, P.

Universität Stuttgart, Stuttgart, 2001 (phdthesis)

icm

[BibTex]

[BibTex]