Header logo is


2019


Thumb xl cell patterning with acoustic hologram
Acoustic Holographic Cell Patterning in a Biocompatible Hydrogel

Ma, Z., Holle, A., Melde, K., Qiu, T., Poeppel, K., Kadiri, V., Fischer, P.

Adv. Mat., October 2019 (article)

Abstract
Acoustophoresis is promising as a rapid, biocompatible, non-contact cell manipulation method, where cells are arranged along the nodes or antinodes of the acoustic field. Typically, the acoustic field is formed in a resonator, which results in highly symmetric regular patterns. However, arbitrary, non-symmetrically shaped cell assemblies are necessary to obtain the irregular cellular arrangements found in biological tissues. We show that arbitrarily shaped cell patterns can be obtained from the complex acoustic field distribution defined by an acoustic hologram. Attenuation of the sound field induces localized acoustic streaming and the resultant convection flow gently delivers the suspended cells to the image plane where they form the designed pattern. We show that the process can be implemented in a biocompatible collagen solution, which can then undergo gelation to immobilize the cell pattern inside the viscoelastic matrix. The patterned cells exhibit F-actin-based protrusions, which indicates that the cells grow and thrive within the matrix. Cell viability assays and brightfield imaging after one week confirm cell survival and that the patterns persist. Acoustophoretic cell manipulation by holographic fields thus holds promise for non-contact, long-range, long-term cellular pattern formation, with a wide variety of potential applications in tissue engineering and mechanobiology.

pf

link (url) DOI [BibTex]


Thumb xl phantom surgery
A High-Fidelity Phantom for the Simulation and Quantitative Evaluation of Transurethral Resection of the Prostate

Choi, E., Adams, F., Gengenbacher, A., Schlager, D., Palagi, S., Müller, P., Wetterauer, U., Miernik, A., Fischer, P., Qiu, T.

Annals of Biomed. Eng., October 2019 (article)

Abstract
Transurethral resection of the prostate (TURP) is a minimally invasive endoscopic procedure that requires experience and skill of the surgeon. To permit surgical training under realistic conditions we report a novel phantom of the human prostate that can be resected with TURP. The phantom mirrors the anatomy and haptic properties of the gland and permits quantitative evaluation of important surgical performance indicators. Mixtures of soft materials are engineered to mimic the physical properties of the human tissue, including the mechanical strength, the electrical and thermal conductivity, and the appearance under an endoscope. Electrocautery resection of the phantom closely resembles the procedure on human tissue. Ultrasound contrast agent was applied to the central zone, which was not detectable by the surgeon during the surgery but showed high contrast when imaged after the surgery, to serve as a label for the quantitative evaluation of the surgery. Quantitative criteria for performance assessment are established and evaluated by automated image analysis. We present the workflow of a surgical simulation on a prostate phantom followed by quantitative evaluation of the surgical performance. Surgery on the phantom is useful for medical training, and enables the development and testing of endoscopic and minimally invasive surgical instruments.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl vision
Interactive Materials – Drivers of Future Robotic Systems

Fischer, P.

Adv. Mat., October 2019 (article)

Abstract
A robot senses its environment, processes the sensory information, acts in response to these inputs, and possibly communicates with the outside world. Robots generally achieve these tasks with electronics-based hardware or by receiving inputs from some external hardware. In contrast, simple microorganisms can autonomously perceive, act, and communicate via purely physicochemical processes in soft material systems. A key property of biological systems is that they are built from energy-consuming ‘active’ units. Exciting developments in material science show that even very simple artificial active building blocks can show surprisingly rich emergent behaviors. Active non-equilibrium systems are therefore predicted to play an essential role to realize interactive materials. A major challenge is to find robust ways to couple and integrate the energy-consuming building blocks to the mechanical structure of the material. However, success in this endeavor will lead to a new generation of sophisticated micro- and soft-robotic systems that can operate autonomously.

pf

[BibTex]


Thumb xl plasmonic dimers
Arrays of plasmonic nanoparticle dimers with defined nanogap spacers

Jeong, H., Adams, M. C., Guenther, J., Alarcon-Correa, M., Kim, I., Choi, E., Miksch, C., Mark, A. F. M., Mark, A. G., Fischer, P.

ACS Nano, September 2019 (article)

Abstract
Plasmonic molecules are building blocks of metallic nanostructures that give rise to intriguing optical phenomena with similarities to those seen in molecular systems. The ability to design plasmonic hybrid structures and molecules with nanometric resolution would enable applications in optical metamaterials and sensing that presently cannot be demonstrated, because of a lack of suitable fabrication methods allowing the structural control of the plasmonic atoms on a large scale. Here we demonstrate a wafer-scale “lithography-free” parallel fabrication scheme to realize nanogap plasmonic meta-molecules with precise control over their size, shape, material, and orientation. We demonstrate how we can tune the corresponding coupled resonances through the entire visible spectrum. Our fabrication method, based on glancing angle physical vapor deposition with gradient shadowing, permits critical parameters to be varied across the wafer and thus is ideally suited to screen potential structures. We obtain billions of aligned dimer structures with controlled variation of the spectral properties across the wafer. We spectroscopically map the plasmonic resonances of gold dimer structures and show that they not only are in good agreement with numerically modeled spectra, but also remain functional, at least for a year, in ambient conditions.

pf

link (url) DOI [BibTex]


Thumb xl enzyme nanonets toc
Genetically modified M13 bacteriophage nanonets for enzyme catalysis and recovery

Kadiri, V. M., Alarcon-Correa, M., Guenther, J. P., Ruppert, J., Bill, J., Rothenstein, D., Fischer, P.

Catalysts, 9, pages: 723, August 2019 (article)

Abstract
Enzyme-based biocatalysis exhibits multiple advantages over inorganic catalysts, including the biocompatibility and the unchallenged specificity of enzymes towards their substrate. The recovery and repeated use of enzymes is essential for any realistic application in biotechnology, but is not easily achieved with current strategies. For this purpose, enzymes are often immobilized on inorganic scaffolds, which could entail a reduction of the enzymes’ activity. Here, we show that immobilization to a nano-scaled biological scaffold, a nanonetwork of end-to-end cross-linked M13 bacteriophages, ensures high enzymatic activity and at the same time allows for the simple recovery of the enzymes. The bacteriophages have been genetically engineered to express AviTags at their ends, which permit biotinylation and their specific end-to-end self-assembly while allowing space on the major coat protein for enzyme coupling. We demonstrate that the phages form nanonetwork structures and that these so-called nanonets remain highly active even after re-using the nanonets multiple times in a flow-through reactor.

pf

link (url) DOI [BibTex]


Thumb xl special issue adv opt mat
Light-controlled micromotors and soft microrobots

Palagi, S., Singh, D. P., Fischer, P.

Adv. Opt. Mat., 7, pages: 1900370, August 2019 (article)

Abstract
Mobile microscale devices and microrobots can be powered by catalytic reactions (chemical micromotors) or by external fields. This report is focused on the role of light as a versatile means for wirelessly powering and controlling such microdevices. Recent advances in the development of autonomous micromotors are discussed, where light permits their actuation with unprecedented control and thereby enables advances in the field of active matter. In addition, structuring the light field is a new means to drive soft microrobots that are based on (photo‐) responsive polymers. The behavior of the two main classes of thermo‐ and photoresponsive polymers adopted in microrobotics (poly(N‐isopropylacrylamide) and liquid‐crystal elastomers) is analyzed, and recent applications are reported. The advantages and limitations of controlling micromotors and microrobots by light are reviewed, and some of the remaining challenges in the development of novel photo‐active materials for micromotors and microrobots are discussed.

pf

link (url) DOI [BibTex]


Thumb xl marss 42 palagi
Soft Continuous Surface for Micromanipulation driven by Light-controlled Hydrogels

Choi, E., Jeong, H., Qiu, T., Fischer, P., Palagi, S.

4th IEEE International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), July 2019 (conference)

Abstract
Remotely controlled, automated actuation and manipulation at the microscale is essential for a number of micro-manufacturing, biology, and lab-on-a-chip applications. To transport and manipulate micro-objects, arrays of remotely controlled micro-actuators are required, which, in turn, typically require complex and expensive solid-state chips. Here, we show that a continuous surface can function as a highly parallel, many-degree of freedom, wirelessly-controlled microactuator with seamless deformation. The soft continuous surface is based on a hydrogel that undergoes a volume change in response to applied light. The fabrication of the hydrogels and the characterization of their optical and thermomechanical behaviors are reported. The temperature-dependent localized deformation of the hydrogel is also investigated by numerical simulations. Static and dynamic deformations are obtained in the soft material by projecting light fields at high spatial resolution onto the surface. By controlling such deformations in open loop and especially closed loop, automated photoactuation is achieved. The surface deformations are then exploited to examine how inert microbeads can be manipulated autonomously on the surface. We believe that the proposed approach suggests ways to implement universal 2D micromanipulation schemes that can be useful for automation in microfabrication and lab-on-a-chip applications.

pf

[BibTex]

[BibTex]


Thumb xl kindney phantom
Soft Phantom for the Training of Renal Calculi Diagnostics and Lithotripsy

Li., D., Suarez-Ibarrola, R., Choi, E., Jeong, M., Gratzke, C., Miernik, A., Fischer, P., Qiu, T.

41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), July 2019 (conference)

Abstract
Organ models are important for medical training and surgical planning. With the fast development of additive fabrication technologies, including 3D printing, the fabrication of 3D organ phantoms with precise anatomical features becomes possible. Here, we develop the first high-resolution kidney phantom based on soft material assembly, by combining 3D printing and polymer molding techniques. The phantom exhibits both the detailed anatomy of a human kidney and the elasticity of soft tissues. The phantom assembly can be separated into two parts on the coronal plane, thus large renal calculi are readily placed at any desired location of the calyx. With our sealing method, the assembled phantom withstands a hydraulic pressure that is four times the normal intrarenal pressure, thus it allows the simulation of medical procedures under realistic pressure conditions. The medical diagnostics of the renal calculi is performed by multiple imaging modalities, including X-ray, ultrasound imaging and endoscopy. The endoscopic lithotripsy is also successfully performed on the phantom. The use of a multifunctional soft phantom assembly thus shows great promise for the simulation of minimally invasive medical procedures under realistic conditions.

pf

[BibTex]

[BibTex]


Thumb xl marss qiu
A Magnetic Actuation System for the Active Microrheology in Soft Biomaterials

Jeong, M., Choi, E., Li., D., Palagi, S., Fischer, P., Qiu, T.

4th IEEE International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), July 2019 (conference)

Abstract
Microrheology is a key technique to characterize soft materials at small scales. The microprobe is wirelessly actuated and therefore typically only low forces or torques can be applied, which limits the range of the applied strain. Here, we report a new magnetic actuation system for microrheology consisting of an array of rotating permanent magnets, which achieves a rotating magnetic field with a spatially homogeneous high field strength of ~100 mT in a working volume of ~20×20×20 mm3. Compared to a traditional electromagnetic coil system, the permanent magnet assembly is portable and does not require cooling, and it exerts a large magnetic torque on the microprobe that is an order of magnitude higher than previous setups. Experimental results demonstrate that the measurement range of the soft gels’ elasticity covers at least five orders of magnitude. With the large actuation torque, it is also possible to study the fracture mechanics of soft biomaterials at small scales.

pf

[BibTex]

[BibTex]


Thumb xl teaser v2
Accurate Vision-based Manipulation through Contact Reasoning

Kloss, A., Bauza, M., Wu, J., Tenenbaum, J. B., Rodriguez, A., Bohg, J.

In International Conference on Robotics and Automation, May 2019 (inproceedings) Submitted

Abstract
Planning contact interactions is one of the core challenges of many robotic tasks. Optimizing contact locations while taking dynamics into account is computationally costly and in only partially observed environments, executing contact-based tasks often suffers from low accuracy. We present an approach that addresses these two challenges for the problem of vision-based manipulation. First, we propose to disentangle contact from motion optimization. Thereby, we improve planning efficiency by focusing computation on promising contact locations. Second, we use a hybrid approach for perception and state estimation that combines neural networks with a physically meaningful state representation. In simulation and real-world experiments on the task of planar pushing, we show that our method is more efficient and achieves a higher manipulation accuracy than previous vision-based approaches.

am

Video link (url) [BibTex]

Video link (url) [BibTex]


Thumb xl learning tactile servoing thumbnail
Learning Latent Space Dynamics for Tactile Servoing

Sutanto, G., Ratliff, N., Sundaralingam, B., Chebotar, Y., Su, Z., Handa, A., Fox, D.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2019, IEEE, International Conference on Robotics and Automation, May 2019 (inproceedings) Accepted

am

pdf video [BibTex]

pdf video [BibTex]


Thumb xl m13 bacteriophages
Self-Assembled Phage-Based Colloids for High Localized Enzymatic Activity

Alarcon-Correa, M., Guenther, J., Troll, J., Kadiri, V. M., Bill, J., Fischer, P., Rothenstein, D.

ACS Nano, March 2019 (article)

Abstract
Catalytically active colloids are model systems for chemical motors and active matter. It is desirable to replace the inorganic catalysts and the toxic fuels that are often used, with biocompatible enzymatic reactions. However, compared to inorganic catalysts, enzyme-coated colloids tend to exhibit less activity. Here, we show that the self-assembly of genetically engineered M13 bacteriophages that bind enzymes to magnetic beads ensures high and localized enzymatic activity. These phage-decorated colloids provide a proteinaceous environment for directed enzyme immobilization. The magnetic properties of the colloidal carrier particle permit repeated enzyme recovery from a reaction solution, while the enzymatic activity is retained. Moreover, localizing the phage-based construct with a magnetic field in a microcontainer allows the enzyme-phage-colloids to function as an enzymatic micropump, where the enzymatic reaction generates a fluid flow. This system shows the fastest fluid flow reported to date by a biocompatible enzymatic micropump. In addition, it is functional in complex media including blood where the enzyme driven micropump can be powered at the physiological blood-urea concentration.

pf

link (url) DOI [BibTex]


Thumb xl jcp pfg nmr
Absolute diffusion measurements of active enzyme solutions by NMR

Guenther, J., Majer, G., Fischer, P.

J. Chem. Phys., 150(124201), March 2019 (article)

Abstract
The diffusion of enzymes is of fundamental importance for many biochemical processes. Enhanced or directed enzyme diffusion can alter the accessibility of substrates and the organization of enzymes within cells. Several studies based on fluorescence correlation spectroscopy (FCS) report enhanced diffusion of enzymes upon interaction with their substrate or inhibitor. In this context, major importance is given to the enzyme fructose-bisphosphate aldolase, for which enhanced diffusion has been reported even though the catalysed reaction is endothermic. Additionally, enhanced diffusion of tracer particles surrounding the active aldolase enzymes has been reported. These studies suggest that active enzymes can act as chemical motors that self-propel and give rise to enhanced diffusion. However, fluorescence studies of enzymes can, despite several advantages, suffer from artefacts. Here we show that the absolute diffusion coefficients of active enzyme solutions can be determined with Pulsed Field Gradient Nuclear Magnetic Resonance (PFG-NMR). The advantage of PFG-NMR is that the motion of the molecule of interest is directly observed in its native state without the need for any labelling. Further, PFG-NMR is model-free and thus yields absolute diffusion constants. Our PFG-NMR experiments of solutions containing active fructose-bisphosphate aldolase from rabbit muscle do not show any diffusion enhancement for the active enzymes nor the surrounding molecules. Additionally, we do not observe any diffusion enhancement of aldolase in the presence of its inhibitor pyrophosphate.

pf

link (url) DOI [BibTex]


Thumb xl activeoptorheologicalmedium
Chemical Nanomotors at the Gram Scale Form a Dense Active Optorheological Medium

Choudhury, U., Singh, D. P., Qiu, T., Fischer, P.

Adv. Mat., (1807382), Febuary 2019 (article)

Abstract
The rheological properties of a colloidal suspension are a function of the concentration of the colloids and their interactions. While suspensions of passive colloids are well studied and have been shown to form crystals, gels, and glasses, examples of energy‐consuming “active” colloidal suspensions are still largely unexplored. Active suspensions of biological matter, such as motile bacteria or dense mixtures of active actin–motor–protein mixtures have, respectively, reveals superfluid‐like and gel‐like states. Attractive inanimate systems for active matter are chemically self‐propelled particles. It has so far been challenging to use these swimming particles at high enough densities to affect the bulk material properties of the suspension. Here, it is shown that light‐triggered asymmetric titanium dioxide that self‐propel, can be obtained in large quantities, and self‐organize to make a gram‐scale active medium. The suspension shows an activity‐dependent tenfold reversible change in its bulk viscosity.

pf

link (url) DOI [BibTex]


Thumb xl hyperrayleigh
First Observation of Optical Activity in Hyper-Rayleigh Scattering

Collins, J., Rusimova, K., Hooper, D., Jeong, H. H., Ohnoutek, L., Pradaux-Caggiano, F., Verbiest, T., Carbery, D., Fischer, P., Valev, V.

Phys. Rev. X, 9(011024), January 2019 (article)

Abstract
Chiral nano- or metamaterials and surfaces enable striking photonic properties, such as negative refractive index and superchiral light, driving promising applications in novel optical components, nanorobotics, and enhanced chiral molecular interactions with light. In characterizing chirality, although nonlinear chiroptical techniques are typically much more sensitive than their linear optical counterparts, separating true chirality from anisotropy is a major challenge. Here, we report the first observation of optical activity in second-harmonic hyper-Rayleigh scattering (HRS). We demonstrate the effect in a 3D isotropic suspension of Ag nanohelices in water. The effect is 5 orders of magnitude stronger than linear optical activity and is well pronounced above the multiphoton luminescence background. Because of its sensitivity, isotropic environment, and straightforward experimental geometry, HRS optical activity constitutes a fundamental experimental breakthrough in chiral photonics for media including nanomaterials, metamaterials, and chemical molecules.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl screenshot from 2019 03 21 12 11 19
Automated Generation of Reactive Programs from Human Demonstration for Orchestration of Robot Behaviors

Berenz, V., Bjelic, A., Mainprice, J.

ArXiv, 2019 (article)

Abstract
Social robots or collaborative robots that have to interact with people in a reactive way are difficult to program. This difficulty stems from the different skills required by the programmer: to provide an engaging user experience the behavior must include a sense of aesthetics while robustly operating in a continuously changing environment. The Playful framework allows composing such dynamic behaviors using a basic set of action and perception primitives. Within this framework, a behavior is encoded as a list of declarative statements corresponding to high-level sensory-motor couplings. To facilitate non-expert users to program such behaviors, we propose a Learning from Demonstration (LfD) technique that maps motion capture of humans directly to a Playful script. The approach proceeds by identifying the sensory-motor couplings that are active at each step using the Viterbi path in a Hidden Markov Model (HMM). Given these activation patterns, binary classifiers called evaluations are trained to associate activations to sensory data. Modularity is increased by clustering the sensory-motor couplings, leading to a hierarchical tree structure. The novelty of the proposed approach is that the learned behavior is encoded not in terms of trajectories in a task space, but as couplings between sensory information and high-level motor actions. This provides advantages in terms of behavioral generalization and reactivity displayed by the robot.

am

Support Video link (url) [BibTex]

2013


Thumb xl impact battery
Probabilistic Object Tracking Using a Range Camera

Wüthrich, M., Pastor, P., Kalakrishnan, M., Bohg, J., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3195-3202, IEEE, November 2013 (inproceedings)

Abstract
We address the problem of tracking the 6-DoF pose of an object while it is being manipulated by a human or a robot. We use a dynamic Bayesian network to perform inference and compute a posterior distribution over the current object pose. Depending on whether a robot or a human manipulates the object, we employ a process model with or without knowledge of control inputs. Observations are obtained from a range camera. As opposed to previous object tracking methods, we explicitly model self-occlusions and occlusions from the environment, e.g, the human or robotic hand. This leads to a strongly non-linear observation model and additional dependencies in the Bayesian network. We employ a Rao-Blackwellised particle filter to compute an estimate of the object pose at every time step. In a set of experiments, we demonstrate the ability of our method to accurately and robustly track the object pose in real-time while it is being manipulated by a human or a robot.

am

arXiv Video Code Video DOI Project Page [BibTex]

2013


arXiv Video Code Video DOI Project Page [BibTex]


Thumb xl multi modal
3-D Object Reconstruction of Symmetric Objects by Fusing Visual and Tactile Sensing

Illonen, J., Bohg, J., Kyrki, V.

The International Journal of Robotics Research, 33(2):321-341, Sage, October 2013 (article)

Abstract
In this work, we propose to reconstruct a complete 3-D model of an unknown object by fusion of visual and tactile information while the object is grasped. Assuming the object is symmetric, a first hypothesis of its complete 3-D shape is generated. A grasp is executed on the object with a robotic manipulator equipped with tactile sensors. Given the detected contacts between the fingers and the object, the initial full object model including the symmetry parameters can be refined. This refined model will then allow the planning of more complex manipulation tasks. The main contribution of this work is an optimal estimation approach for the fusion of visual and tactile data applying the constraint of object symmetry. The fusion is formulated as a state estimation problem and solved with an iterative extended Kalman filter. The approach is validated experimentally using both artificial and real data from two different robotic platforms.

am

Web DOI Project Page [BibTex]

Web DOI Project Page [BibTex]


Thumb xl submodularity nips
Learning and Optimization with Submodular Functions

Sankaran, B., Ghazvininejad, M., He, X., Kale, D., Cohen, L.

ArXiv, May 2013 (techreport)

Abstract
In many naturally occurring optimization problems one needs to ensure that the definition of the optimization problem lends itself to solutions that are tractable to compute. In cases where exact solutions cannot be computed tractably, it is beneficial to have strong guarantees on the tractable approximate solutions. In order operate under these criterion most optimization problems are cast under the umbrella of convexity or submodularity. In this report we will study design and optimization over a common class of functions called submodular functions. Set functions, and specifically submodular set functions, characterize a wide variety of naturally occurring optimization problems, and the property of submodularity of set functions has deep theoretical consequences with wide ranging applications. Informally, the property of submodularity of set functions concerns the intuitive principle of diminishing returns. This property states that adding an element to a smaller set has more value than adding it to a larger set. Common examples of submodular monotone functions are entropies, concave functions of cardinality, and matroid rank functions; non-monotone examples include graph cuts, network flows, and mutual information. In this paper we will review the formal definition of submodularity; the optimization of submodular functions, both maximization and minimization; and finally discuss some applications in relation to learning and reasoning using submodular functions.

am

arxiv link (url) [BibTex]

arxiv link (url) [BibTex]


Thumb xl featureextraction
Hypothesis Testing Framework for Active Object Detection

Sankaran, B., Atanasov, N., Le Ny, J., Koletschka, T., Pappas, G., Daniilidis, K.

In IEEE International Conference on Robotics and Automation (ICRA), May 2013, clmc (inproceedings)

Abstract
One of the central problems in computer vision is the detection of semantically important objects and the estimation of their pose. Most of the work in object detection has been based on single image processing and its performance is limited by occlusions and ambiguity in appearance and geometry. This paper proposes an active approach to object detection by controlling the point of view of a mobile depth camera. When an initial static detection phase identifies an object of interest, several hypotheses are made about its class and orientation. The sensor then plans a sequence of view-points, which balances the amount of energy used to move with the chance of identifying the correct hypothesis. We formulate an active M-ary hypothesis testing problem, which includes sensor mobility, and solve it using a point-based approximate POMDP algorithm. The validity of our approach is verified through simulation and experiments with real scenes captured by a kinect sensor. The results suggest a significant improvement over static object detection.

am

pdf [BibTex]

pdf [BibTex]


no image
Action and Goal Related Decision Variables Modulate the Competition Between Multiple Potential Targets

Enachescu, V, Christopoulos, Vassilios N, Schrater, P. R., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2013), February 2013 (inproceedings)

am

[BibTex]

[BibTex]


Thumb xl toc image
Hybrid nanocolloids with programmed three-dimensional shape and material composition

Mark, A. G., Gibbs, J. G., Lee, T., Fischer, P.

NATURE MATERIALS, 12(9):802-807, 2013, Max Planck Press Release. (article)

Abstract
Tuning the optical(1,2), electromagnetic(3,4) and mechanical properties of a material requires simultaneous control over its composition and shape(5). This is particularly challenging for complex structures at the nanoscale because surface-energy minimization generally causes small structures to be highly symmetric(5). Here we combine low-temperature shadow deposition with nanoscale patterning to realize nanocolloids with anisotropic three-dimensional shapes, feature sizes down to 20 nm and a wide choice of materials. We demonstrate the versatility of the fabrication scheme by growing three-dimensional hybrid nanostructures that contain several functional materials with the lowest possible symmetry, and by fabricating hundreds of billions of plasmonic nanohelices, which we use as chiral metafluids with record circular dichroism and tunable chiroptical properties.

Max Planck Press Release.

pf

Video - Fabrication of Designer Nanostructures DOI [BibTex]


no image
Optimal control of reaching includes kinematic constraints

Mistry, M., Theodorou, E., Schaal, S., Kawato, M.

Journal of Neurophysiology, 2013, clmc (article)

Abstract
We investigate adaptation under a reaching task with an acceleration-based force field perturbation designed to alter the nominal straight hand trajectory in a potentially benign manner:pushing the hand of course in one direction before subsequently restoring towards the target. In this particular task, an explicit strategy to reduce motor effort requires a distinct deviation from the nominal rectilinear hand trajectory. Rather, our results display a clear directional preference during learning, as subjects adapted perturbed curved trajectories towards their initial baselines. We model this behavior using the framework of stochastic optimal control theory and an objective function that trades-of the discordant requirements of 1) target accuracy, 2) motor effort, and 3) desired trajectory. Our work addresses the underlying objective of a reaching movement, and we suggest that robustness, particularly against internal model uncertainly, is as essential to the reaching task as terminal accuracy and energy effciency.

am

PDF [BibTex]

PDF [BibTex]


Thumb xl fig1
Chiral Colloidal Molecules And Observation of The Propeller Effect

Schamel, D., Pfeifer, M., Gibbs, J. G., Miksch, B., Mark, A. G., Fischer, P.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 135(33):12353-12359, 2013 (article)

Abstract
Chiral molecules play an important role in biological and chemical processes, but physical effects due to their symmetry-breaking are generally weak. Several physical chiral separation schemes which could potentially be useful, including the propeller effect, have therefore not yet been demonstrated at the molecular scale. However, it has been proposed that complex nonspherical colloidal particles could act as ``colloidal molecules{''} in mesoscopic model systems to permit the visualization of molecular phenomena that are otherwise difficult to observe. Unfortunately, it is difficult to synthesize such colloids because surface minimization generally favors the growth of symmetric particles. Here we demonstrate the production of large numbers of complex colloids with glancing angle physical vapor deposition. We use chiral colloids to demonstrate the Baranova and Zel'dovich (Baranova, N. B.; Zel'dovich, B. Y. Chem. Phys. Lett. 1978, 57, 435) propeller effect: the separation of a racemic mixture by application of a rotating field that couples to the dipole moment of the enantiomers and screw propels them in opposite directions. The handedness of the colloidal suspensions is monitored with circular differential light scattering. An exact solution for the colloid's propulsion is derived, and comparisons between the colloidal system and the corresponding effect at the molecular scale are made.

pf

Video - Nanospropellers DOI [BibTex]

Video - Nanospropellers DOI [BibTex]


Thumb xl screen shot 2015 08 23 at 00.29.36
Fusing visual and tactile sensing for 3-D object reconstruction while grasping

Ilonen, J., Bohg, J., Kyrki, V.

In IEEE International Conference on Robotics and Automation (ICRA), pages: 3547-3554, 2013 (inproceedings)

Abstract
In this work, we propose to reconstruct a complete 3-D model of an unknown object by fusion of visual and tactile information while the object is grasped. Assuming the object is symmetric, a first hypothesis of its complete 3-D shape is generated from a single view. This initial model is used to plan a grasp on the object which is then executed with a robotic manipulator equipped with tactile sensors. Given the detected contacts between the fingers and the object, the full object model including the symmetry parameters can be refined. This refined model will then allow the planning of more complex manipulation tasks. The main contribution of this work is an optimal estimation approach for the fusion of visual and tactile data applying the constraint of object symmetry. The fusion is formulated as a state estimation problem and solved with an iterative extended Kalman filter. The approach is validated experimentally using both artificial and real data from two different robotic platforms.

am

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl toc image
Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy

Pfeifer, M., Ruf, A., Fischer, P.

OPTICS EXPRESS, 21(22):25643-25654, 2013 (article)

Abstract
We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated. (C) 2013 Optical Society of America

pf

DOI [BibTex]


no image
Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors

Ijspeert, A., Nakanishi, J., Pastor, P., Hoffmann, H., Schaal, S.

Neural Computation, (25):328-373, 2013, clmc (article)

Abstract
Nonlinear dynamical systems have been used in many disciplines to model complex behaviors, including biological motor control, robotics, perception, economics, traffic prediction, and neuroscience. While often the unexpected emergent behavior of nonlinear systems is the focus of investigations, it is of equal importance to create goal-directed behavior (e.g., stable locomotion from a system of coupled oscillators under perceptual guidance). Modeling goal-directed behavior with nonlinear systems is, however, rather difficult due to the parameter sensitivity of these systems, their complex phase transitions in response to subtle parameter changes, and the difficulty of analyzing and predicting their long-term behavior; intuition and time-consuming parameter tuning play a major role. This letter presents and reviews dynamical movement primitives, a line of research for modeling attractor behaviors of autonomous nonlinear dynamical systems with the help of statistical learning techniques. The essence of our approach is to start with a simple dynamical system, such as a set of linear differential equations, and transform those into a weakly nonlinear system with prescribed attractor dynamics by meansof a learnable autonomous forcing term. Both point attractors and limit cycle attractors of almost arbitrary complexity can be generated. We explain the design principle of our approach and evaluate its properties in several example applications in motor control and robotics.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl applied physics cover vol 103 number 21
Plasmonic nanohelix metamaterials with tailorable giant circular dichroism

Gibbs, J. G., Mark, A. G., Eslami, S., Fischer, P.

APPLIED PHYSICS LETTERS, 103(21), 2013, Featured cover article. (article)

Abstract
Plasmonic nanohelix arrays are shown to interact with electromagnetic fields in ways not typically seen with ordinary matter. Chiral metamaterials (CMMs) with feature sizes small with respect to the wavelength of visible light are a promising route to experimentally achieve such phenomena as negative refraction without the need for simultaneously negative e and mu. Here we not only show that giant circular dichroism in the visible is achievable with hexagonally arranged plasmonic nanohelix arrays, but that we can precisely tune the optical activity via morphology and lattice spacing. The discrete dipole approximation is implemented to support experimental data. (C) 2013 AIP Publishing LLC.

Featured cover article.

pf

DOI [BibTex]

DOI [BibTex]


no image
Learning Objective Functions for Manipulation

Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In 2013 IEEE International Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
We present an approach to learning objective functions for robotic manipulation based on inverse reinforcement learning. Our path integral inverse reinforcement learning algorithm can deal with high-dimensional continuous state-action spaces, and only requires local optimality of demonstrated trajectories. We use L 1 regularization in order to achieve feature selection, and propose an efficient algorithm to minimize the resulting convex objective function. We demonstrate our approach by applying it to two core problems in robotic manipulation. First, we learn a cost function for redundancy resolution in inverse kinematics. Second, we use our method to learn a cost function over trajectories, which is then used in optimization-based motion planning for grasping and manipulation tasks. Experimental results show that our method outperforms previous algorithms in high-dimensional settings.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Using Torque Redundancy to Optimize Contact Forces in Legged Robots

Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.

In Redundancy in Robot Manipulators and Multi-Robot Systems, 57, pages: 35-51, Lecture Notes in Electrical Engineering, Springer Berlin Heidelberg, 2013 (incollection)

Abstract
The development of legged robots for complex environments requires controllers that guarantee both high tracking performance and compliance with the environment. More specifically the control of contact interaction with the environment is of crucial importance to ensure stable, robust and safe motions. In the following, we present an inverse dynamics controller that exploits torque redundancy to directly and explicitly minimize any combination of linear and quadratic costs in the contact constraints and in the commands. Such a result is particularly relevant for legged robots as it allows to use torque redundancy to directly optimize contact interactions. For example, given a desired locomotion behavior, it can guarantee the minimization of contact forces to reduce slipping on difficult terrains while ensuring high tracking performance of the desired motion. The proposed controller is very simple and computationally efficient, and most importantly it can greatly improve the performance of legged locomotion on difficult terrains as can be seen in the experimental results.

am mg

link (url) [BibTex]

link (url) [BibTex]


no image
Optimal distribution of contact forces with inverse-dynamics control

Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.

The International Journal of Robotics Research, 32(3):280-298, March 2013 (article)

Abstract
The development of legged robots for complex environments requires controllers that guarantee both high tracking performance and compliance with the environment. More specifically the control of the contact interaction with the environment is of crucial importance to ensure stable, robust and safe motions. In this contribution we develop an inverse-dynamics controller for floating-base robots under contact constraints that can minimize any combination of linear and quadratic costs in the contact constraints and the commands. Our main result is the exact analytical derivation of the controller. Such a result is particularly relevant for legged robots as it allows us to use torque redundancy to directly optimize contact interactions. For example, given a desired locomotion behavior, we can guarantee the minimization of contact forces to reduce slipping on difficult terrains while ensuring high tracking performance of the desired motion. The main advantages of the controller are its simplicity, computational efficiency and robustness to model inaccuracies. We present detailed experimental results on simulated humanoid and quadruped robots as well as a real quadruped robot. The experiments demonstrate that the controller can greatly improve the robustness of locomotion of the robots.1

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task Error Models for Manipulation

Pastor, P., Kalakrishnan, M., Binney, J., Kelly, J., Righetti, L., Sukhatme, G. S., Schaal, S.

In 2013 IEEE Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
Precise kinematic forward models are important for robots to successfully perform dexterous grasping and manipulation tasks, especially when visual servoing is rendered infeasible due to occlusions. A lot of research has been conducted to estimate geometric and non-geometric parameters of kinematic chains to minimize reconstruction errors. However, kinematic chains can include non-linearities, e.g. due to cable stretch and motor-side encoders, that result in significantly different errors for different parts of the state space. Previous work either does not consider such non-linearities or proposes to estimate non-geometric parameters of carefully engineered models that are robot specific. We propose a data-driven approach that learns task error models that account for such unmodeled non-linearities. We argue that in the context of grasping and manipulation, it is sufficient to achieve high accuracy in the task relevant state space. We identify this relevant state space using previously executed joint configurations and learn error corrections for those. Therefore, our system is developed to generate subsequent executions that are similar to previous ones. The experiments show that our method successfully captures the non-linearities in the head kinematic chain (due to a counterbalancing spring) and the arm kinematic chains (due to cable stretch) of the considered experimental platform, see Fig. 1. The feasibility of the presented error learning approach has also been evaluated in independent DARPA ARM-S testing contributing to successfully complete 67 out of 72 grasping and manipulation tasks.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2007


Thumb xl toc image
Frequency-domain displacement sensing with a fiber ring-resonator containing a variable gap

Vollmer, F., Fischer, P.

SENSORS AND ACTUATORS A-PHYSICAL, 134(2):410-413, 2007 (article)

Abstract
Ring-resonators are in general not amenable to strain-free (non-contact) displacement measurements. We show that this limitation may be overcome if the ring-resonator, here a fiber-loop, is designed to contain a gap, such that the light traverses a free-space part between two aligned waveguide ends. Displacements are determined with nanometer sensitivity by measuring the associated changes in the resonance frequencies. Miniaturization should increase the sensitivity of the ring-resonator interferometer. Ring geometries that contain an optical circulator can be used to profile reflective samples. (c) 2006 Elsevier B.V. All rights reserved.

pf

DOI [BibTex]

2007


DOI [BibTex]


no image
Towards Machine Learning of Motor Skills

Peters, J., Schaal, S., Schölkopf, B.

In Proceedings of Autonome Mobile Systeme (AMS), pages: 138-144, (Editors: K Berns and T Luksch), 2007, clmc (inproceedings)

Abstract
Autonomous robots that can adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and cognitive sciences. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning or human insights would not be able to model all the perceptuomotor tasks that a robot should fulfill. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two ma jor components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting.

am ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Reinforcement Learning for Optimal Control of Arm Movements

Theodorou, E., Peters, J., Schaal, S.

In Abstracts of the 37st Meeting of the Society of Neuroscience., Neuroscience, 2007, clmc (inproceedings)

Abstract
Every day motor behavior consists of a plethora of challenging motor skills from discrete movements such as reaching and throwing to rhythmic movements such as walking, drumming and running. How this plethora of motor skills can be learned remains an open question. In particular, is there any unifying computa-tional framework that could model the learning process of this variety of motor behaviors and at the same time be biologically plausible? In this work we aim to give an answer to these questions by providing a computational framework that unifies the learning mechanism of both rhythmic and discrete movements under optimization criteria, i.e., in a non-supervised trial-and-error fashion. Our suggested framework is based on Reinforcement Learning, which is mostly considered as too costly to be a plausible mechanism for learning com-plex limb movement. However, recent work on reinforcement learning with pol-icy gradients combined with parameterized movement primitives allows novel and more efficient algorithms. By using the representational power of such mo-tor primitives we show how rhythmic motor behaviors such as walking, squash-ing and drumming as well as discrete behaviors like reaching and grasping can be learned with biologically plausible algorithms. Using extensive simulations and by using different reward functions we provide results that support the hy-pothesis that Reinforcement Learning could be a viable candidate for motor learning of human motor behavior when other learning methods like supervised learning are not feasible.

am ei

[BibTex]

[BibTex]


no image
Reinforcement learning by reward-weighted regression for operational space control

Peters, J., Schaal, S.

In Proceedings of the 24th Annual International Conference on Machine Learning, pages: 745-750, ICML, 2007, clmc (inproceedings)

Abstract
Many robot control problems of practical importance, including operational space control, can be reformulated as immediate reward reinforcement learning problems. However, few of the known optimization or reinforcement learning algorithms can be used in online learning control for robots, as they are either prohibitively slow, do not scale to interesting domains of complex robots, or require trying out policies generated by random search, which are infeasible for a physical system. Using a generalization of the EM-base reinforcement learning framework suggested by Dayan & Hinton, we reduce the problem of learning with immediate rewards to a reward-weighted regression problem with an adaptive, integrated reward transformation for faster convergence. The resulting algorithm is efficient, learns smoothly without dangerous jumps in solution space, and works well in applications of complex high degree-of-freedom robots.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Policy gradient methods for machine learning

Peters, J., Theodorou, E., Schaal, S.

In Proceedings of the 14th INFORMS Conference of the Applied Probability Society, pages: 97-98, Eindhoven, Netherlands, July 9-11, 2007, 2007, clmc (inproceedings)

Abstract
We present an in-depth survey of policy gradient methods as they are used in the machine learning community for optimizing parameterized, stochastic control policies in Markovian systems with respect to the expected reward. Despite having been developed separately in the reinforcement learning literature, policy gradient methods employ likelihood ratio gradient estimators as also suggested in the stochastic simulation optimization community. It is well-known that this approach to policy gradient estimation traditionally suffers from three drawbacks, i.e., large variance, a strong dependence on baseline functions and a inefficient gradient descent. In this talk, we will present a series of recent results which tackles each of these problems. The variance of the gradient estimation can be reduced significantly through recently introduced techniques such as optimal baselines, compatible function approximations and all-action gradients. However, as even the analytically obtainable policy gradients perform unnaturally slow, it required the step from ÔvanillaÕ policy gradient methods towards natural policy gradients in order to overcome the inefficiency of the gradient descent. This development resulted into the Natural Actor-Critic architecture which can be shown to be very efficient in application to motor primitive learning for robotics.

am ei

[BibTex]

[BibTex]


no image
Policy Learning for Motor Skills

Peters, J., Schaal, S.

In Proceedings of 14th International Conference on Neural Information Processing (ICONIP), pages: 233-242, (Editors: Ishikawa, M. , K. Doya, H. Miyamoto, T. Yamakawa), 2007, clmc (inproceedings)

Abstract
Policy learning which allows autonomous robots to adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and cognitive sciences. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach policy learning with the goal of an application to motor skill refinement in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i.e., firstly, we study policy learning algorithms which can be applied in the general setting of motor skill learning, and, secondly, we study a theoretically well-founded general approach to representing the required control structures for task representation and execution.

am ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Reinforcement learning for operational space control

Peters, J., Schaal, S.

In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, pages: 2111-2116, IEEE Computer Society, ICRA, 2007, clmc (inproceedings)

Abstract
While operational space control is of essential importance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in complex robots, e.g., humanoid robots. In such cases, learning control methods can offer an interesting alternative to analytical control algorithms. However, the resulting supervised learning problem is ill-defined as it requires to learn an inverse mapping of a usually redundant system, which is well known to suffer from the property of non-convexity of the solution space, i.e., the learning system could generate motor commands that try to steer the robot into physically impossible configurations. The important insight that many operational space control algorithms can be reformulated as optimal control problems, however, allows addressing this inverse learning problem in the framework of reinforcement learning. However, few of the known optimization or reinforcement learning algorithms can be used in online learning control for robots, as they are either prohibitively slow, do not scale to interesting domains of complex robots, or require trying out policies generated by random search, which are infeasible for a physical system. Using a generalization of the EM-based reinforcement learning framework suggested by Dayan & Hinton, we reduce the problem of learning with immediate rewards to a reward-weighted regression problem with an adaptive, integrated reward transformation for faster convergence. The resulting algorithm is efficient, learns smoothly without dangerous jumps in solution space, and works well in applications of complex high degree-of-freedom robots.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Relative Entropy Policy Search

Peters, J.

CLMC Technical Report: TR-CLMC-2007-2, Computational Learning and Motor Control Lab, Los Angeles, CA, 2007, clmc (techreport)

Abstract
This technical report describes a cute idea of how to create new policy search approaches. It directly relates to the Natural Actor-Critic methods but allows the derivation of one shot solutions. Future work may include the application to interesting problems.

am ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


Thumb xl toc image
Observation of the Faraday effect via beam deflection in a longitudinal magnetic field

Ghosh, A., Hill, W., Fischer, P.

PHYSICAL REVIEW A, 76(5), 2007 (article)

Abstract
We show that magnetic-field-induced circular differential deflection of light can be observed in reflection or refraction at a single interface. The difference in the reflection or refraction angles between the two circular polarization components is a function of the magnetic-field strength and the Verdet constant, and permits the observation of the Faraday effect not via polarization rotation in transmission, but via changes in the propagation direction. Deflection measurements do not suffer from n-pi ambiguities and are shown to be another means to map magnetic fields with high axial resolution, or to determine the sign and magnitude of magnetic-field pulses in a single measurement.

pf

DOI [BibTex]


no image
Using reward-weighted regression for reinforcement learning of task space control

Peters, J., Schaal, S.

In Proceedings of the 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, pages: 262-267, Honolulu, Hawaii, April 1-5, 2007, 2007, clmc (inproceedings)

Abstract
In this paper, we evaluate different versions from the three main kinds of model-free policy gradient methods, i.e., finite difference gradients, `vanilla' policy gradients and natural policy gradients. Each of these methods is first presented in its simple form and subsequently refined and optimized. By carrying out numerous experiments on the cart pole regulator benchmark we aim to provide a useful baseline for future research on parameterized policy search algorithms. Portable C++ code is provided for both plant and algorithms; thus, the results in this paper can be reevaluated, reused and new algorithms can be inserted with ease.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Evaluation of Policy Gradient Methods and Variants on the Cart-Pole Benchmark

Riedmiller, M., Peters, J., Schaal, S.

In Proceedings of the 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, pages: 254-261, ADPRL, 2007, clmc (inproceedings)

Abstract
In this paper, we evaluate different versions from the three main kinds of model-free policy gradient methods, i.e., finite difference gradients, `vanilla' policy gradients and natural policy gradients. Each of these methods is first presented in its simple form and subsequently refined and optimized. By carrying out numerous experiments on the cart pole regulator benchmark we aim to provide a useful baseline for future research on parameterized policy search algorithms. Portable C++ code is provided for both plant and algorithms; thus, the results in this paper can be reevaluated, reused and new algorithms can be inserted with ease.

am ei

PDF [BibTex]

PDF [BibTex]


Thumb xl toc image
Circular differential double diffraction in chiral media

Ghosh, A., Fazal, F. M., Fischer, P.

OPTICS LETTERS, 32(13):1836-1838, 2007 (article)

Abstract
In an optically active liquid the diffraction angle depends on the circular polarization state of the incident light beam. We report the observation of circular differential diffraction in an isotropic chiral medium, and we demonstrate that double diffraction is an alternate means to determine the handedness (enantiomeric excess) of a solution. (c) 2007 Optical Society of America.

pf

DOI [BibTex]

DOI [BibTex]


no image
Uncertain 3D Force Fields in Reaching Movements: Do Humans Favor Robust or Average Performance?

Mistry, M., Theodorou, E., Hoffmann, H., Schaal, S.

In Abstracts of the 37th Meeting of the Society of Neuroscience, 2007, clmc (inproceedings)

am

PDF [BibTex]

PDF [BibTex]


no image
Applying the episodic natural actor-critic architecture to motor primitive learning

Peters, J., Schaal, S.

In Proceedings of the 2007 European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, April 25-27, 2007, clmc (inproceedings)

Abstract
In this paper, we investigate motor primitive learning with the Natural Actor-Critic approach. The Natural Actor-Critic consists out of actor updates which are achieved using natural stochastic policy gradients while the critic obtains the natural policy gradient by linear regression. We show that this architecture can be used to learn the Òbuilding blocks of movement generationÓ, called motor primitives. Motor primitives are parameterized control policies such as splines or nonlinear differential equations with desired attractor properties. We show that our most modern algorithm, the Episodic Natural Actor-Critic outperforms previous algorithms by at least an order of magnitude. We demonstrate the efficiency of this reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic robot arm.

am

link (url) [BibTex]

link (url) [BibTex]


no image
The new robotics - towards human-centered machines

Schaal, S.

HFSP Journal Frontiers of Interdisciplinary Research in the Life Sciences, 1(2):115-126, 2007, clmc (article)

Abstract
Research in robotics has moved away from its primary focus on industrial applications. The New Robotics is a vision that has been developed in past years by our own university and many other national and international research instiutions and addresses how increasingly more human-like robots can live among us and take over tasks where our current society has shortcomings. Elder care, physical therapy, child education, search and rescue, and general assistance in daily life situations are some of the examples that will benefit from the New Robotics in the near future. With these goals in mind, research for the New Robotics has to embrace a broad interdisciplinary approach, ranging from traditional mathematical issues of robotics to novel issues in psychology, neuroscience, and ethics. This paper outlines some of the important research problems that will need to be resolved to make the New Robotics a reality.

am

link (url) [BibTex]

link (url) [BibTex]


no image
A computational model of human trajectory planning based on convergent flow fields

Hoffman, H., Schaal, S.

In Abstracts of the 37st Meeting of the Society of Neuroscience, San Diego, CA, Nov. 3-7, 2007, clmc (inproceedings)

Abstract
A popular computational model suggests that smooth reaching movements are generated in humans by minimizing a difference vector between hand and target in visual coordinates (Shadmehr and Wise, 2005). To achieve such a task, the optimal joint accelerations may be pre-computed. However, this pre-planning is inflexible towards perturbations of the limb, and there is strong evidence that reaching movements can be modified on-line at any moment during the movement. Thus, next-state planning models (Bullock and Grossberg, 1988) have been suggested that compute the current control command from a function of the goal state such that the overall movement smoothly converges to the goal (see Shadmehr and Wise (2005) for an overview). So far, these models have been restricted to simple point-to-point reaching movements with (approximately) straight trajectories. Here, we present a computational model for learning and executing arbitrary trajectories that combines ideas from pattern generation with dynamic systems and the observation of convergent force fields, which control a frog leg after spinal stimulation (Giszter et al., 1993). In our model, we incorporate the following two observations: first, the orientation of vectors in a force field is invariant over time, but their amplitude is modulated by a time-varying function, and second, two force fields add up when stimulated simultaneously (Giszter et al., 1993). This addition of convergent force fields varying over time results in a virtual trajectory (a moving equilibrium point) that correlates with the actual leg movement (Giszter et al., 1993). Our next-state planner is a set of differential equations that provide the desired end-effector or joint accelerations using feedback of the current state of the limb. These accelerations can be interpreted as resulting from a damped spring that links the current limb position with a virtual trajectory. This virtual trajectory can be learned to realize any desired limb trajectory and velocity profile, and learning is efficient since the time-modulated sum of convergent force fields equals a sum of weighted basis functions (Gaussian time pulses). Thus, linear algebra is sufficient to compute these weights, which correspond to points on the virtual trajectory. During movement execution, the differential equation corrects automatically for perturbations and brings back smoothly the limb towards the goal. Virtual trajectories can be rescaled and added allowing to build a set of movement primitives to describe movements more complex than previously learned. We demonstrate the potential of the suggested model by learning and generating a wide variety of movements.

am

[BibTex]

[BibTex]


no image
A Computational Model of Arm Trajectory Modification Using Dynamic Movement Primitives

Mohajerian, P., Hoffmann, H., Mistry, M., Schaal, S.

In Abstracts of the 37st Meeting of the Society of Neuroscience, San Diego, CA, Nov 3-7, 2007, clmc (inproceedings)

Abstract
Several scientists used a double-step target-displacement protocol to investigate how an unexpected upcoming new target modifies ongoing discrete movements. Interesting observations are the initial direction of the movement, the spatial path of the movement to the second target, and the amplification of the speed in the second movement. Experimental data show that the above properties are influenced by the movement reaction time and the interstimulus interval between the onset of the first and second target. Hypotheses in the literature concerning the interpretation of the observed data include a) the second movement is superimposed on the first movement (Henis and Flash, 1995), b) the first movement is aborted and the second movement is planned to smoothly connect the current state of the arm with the new target (Hoff and Arbib, 1992), c) the second movement is initiated by a new control signal that replaces the first movement's control signal, but does not take the state of the system into account (Flanagan et al., 1993), and (d) the second movement is initiated by a new goal command, but the control structure stays unchanged, and feed-back from the current state is taken into account (Hoff and Arbib, 1993). We investigate target switching from the viewpoint of Dynamic Movement Primitives (DMPs). DMPs are trajectory planning units that are formalized as stable nonlinear attractor systems (Ijspeert et al., 2002). They are a useful framework for biological motor control as they are highly flexible in creating complex rhythmic and discrete behaviors that can quickly adapt to the inevitable perturbations of dynamically changing, stochastic environments. In this model, target switching is accomplished simply by updating the target input to the discrete movement primitive for reaching. The reaching trajectory in this model can be straight or take any other route; in contrast, the Hoff and Arbib (1993) model is restricted to straight reaching movement plans. In the present study, we use DMPs to reproduce in simulation a large number of target-switching experimental data from the literature and to show that online correction and the observed target switching phenomena can be accomplished by changing the goal state of an on-going DMP, without the need to switch to different movement primitives or to re-plan the movement. :

am

PDF [BibTex]

PDF [BibTex]