Header logo is



no image
X-ray Optics Fabrication Using Unorthodox Approaches

Sanli, U., Baluktsian, M., Ceylan, H., Sitti, M., Weigand, M., Schütz, G., Keskinbora, K.

Bulletin of the American Physical Society, APS, 2019 (article)

mms pi

[BibTex]

[BibTex]


Microrobotics and Microorganisms: Biohybrid Autonomous Cellular Robots
Microrobotics and Microorganisms: Biohybrid Autonomous Cellular Robots

Alapan, Y., Yasa, O., Yigit, B., Yasa, I. C., Erkoc, P., Sitti, M.

Annual Review of Control, Robotics, and Autonomous Systems, 2019 (article)

pi

[BibTex]

[BibTex]


Tailored Magnetic Springs for Shape-Memory Alloy Actuated Mechanisms in Miniature Robots
Tailored Magnetic Springs for Shape-Memory Alloy Actuated Mechanisms in Miniature Robots

Woodward, M. A., Sitti, M.

IEEE Transactions on Robotics, 35, 2019 (article)

Abstract
Animals can incorporate large numbers of actuators because of the characteristics of muscles; whereas, robots cannot, as typical motors tend to be large, heavy, and inefficient. However, shape-memory alloys (SMA), materials that contract during heating because of change in their crystal structure, provide another option. SMA, though, is unidirectional and therefore requires an additional force to reset (extend) the actuator, which is typically provided by springs or antagonistic actuation. These strategies, however, tend to limit the actuator's work output and functionality as their force-displacement relationships typically produce increasing resistive force with limited variability. In contrast, magnetic springs-composed of permanent magnets, where the interaction force between magnets mimics a spring force-have much more variable force-displacement relationships and scale well with SMA. However, as of yet, no method for designing magnetic springs for SMA-actuators has been demonstrated. Therefore, in this paper, we present a new methodology to tailor magnetic springs to the characteristics of these actuators, with experimental results both for the device and robot-integrated SMA-actuators. We found magnetic building blocks, based on sets of permanent magnets, which are well-suited to SMAs and have the potential to incorporate features such as holding force, state transitioning, friction minimization, auto-alignment, and self-mounting. We show magnetic springs that vary by more than 3 N in 750 $\mu$m and two SMA-actuated devices that allow the MultiMo-Bat to reach heights of up to 4.5 m without, and 3.6 m with, integrated gliding airfoils. Our results demonstrate the potential of this methodology to add previously impossible functionality to smart material actuators. We anticipate this methodology will inspire broader consideration of the use of magnetic springs in miniature robots and further study of the potential of tailored magnetic springs throughout mechanical systems.

pi

DOI [BibTex]


Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy
Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy

Son, D., Gilbert, H., Sitti, M.

Soft robotics, Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New …, 2019 (article)

pi

[BibTex]

[BibTex]


Thrust and Hydrodynamic Efficiency of the Bundled Flagella
Thrust and Hydrodynamic Efficiency of the Bundled Flagella

Danis, U., Rasooli, R., Chen, C., Dur, O., Sitti, M., Pekkan, K.

Micromachines, 10, 2019 (article)

pi

[BibTex]

[BibTex]


The near and far of a pair of magnetic capillary disks
The near and far of a pair of magnetic capillary disks

Koens, L., Wang, W., Sitti, M., Lauga, E.

Soft Matter, 2019 (article)

pi

[BibTex]

[BibTex]


Multifarious Transit Gates for Programmable Delivery of Bio‐functionalized Matters
Multifarious Transit Gates for Programmable Delivery of Bio‐functionalized Matters

Hu, X., Torati, S. R., Kim, H., Yoon, J., Lim, B., Kim, K., Sitti, M., Kim, C.

Small, Wiley Online Library, 2019 (article)

pi

[BibTex]

[BibTex]


Multi-functional soft-bodied jellyfish-like swimming
Multi-functional soft-bodied jellyfish-like swimming

Ren, Z., Hu, W., Dong, X., Sitti, M.

Nature communications, 10, 2019 (article)

pi

[BibTex]


no image
Welcome to Progress in Biomedical Engineering

Sitti, M.

Progress in Biomedical Engineering, 1, IOP Publishing, 2019 (article)

pi

[BibTex]

[BibTex]


Mechanics of a pressure-controlled adhesive membrane for soft robotic gripping on curved surfaces
Mechanics of a pressure-controlled adhesive membrane for soft robotic gripping on curved surfaces

Song, S., Drotlef, D., Paik, J., Majidi, C., Sitti, M.

Extreme Mechanics Letters, Elsevier, 2019 (article)

pi

[BibTex]


Graphene oxide synergistically enhances antibiotic efficacy in Vancomycin resistance Staphylococcus aureus
Graphene oxide synergistically enhances antibiotic efficacy in Vancomycin resistance Staphylococcus aureus

Singh, V., Kumar, V., Kashyap, S., Singh, A. V., Kishore, V., Sitti, M., Saxena, P. S., Srivastava, A.

ACS Applied Bio Materials, ACS Publications, 2019 (article)

pi

[BibTex]

[BibTex]


Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design
Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design

Singh, A. V., Laux, P., Luch, A., Sudrik, C., Wiehr, S., Wild, A., Santamauro, G., Bill, J., Sitti, M.

Toxicology Mechanisms and Methods, 2019 (article)

pi

[BibTex]

[BibTex]


Multifunctional and biodegradable self-propelled protein motors
Multifunctional and biodegradable self-propelled protein motors

Pena-Francesch, A., Giltinan, J., Sitti, M.

Nature communications, 10, Nature Publishing Group, 2019 (article)

pi

[BibTex]

[BibTex]


Automated Generation of Reactive Programs from Human Demonstration for Orchestration of Robot Behaviors
Automated Generation of Reactive Programs from Human Demonstration for Orchestration of Robot Behaviors

Berenz, V., Bjelic, A., Mainprice, J.

ArXiv, 2019 (article)

Abstract
Social robots or collaborative robots that have to interact with people in a reactive way are difficult to program. This difficulty stems from the different skills required by the programmer: to provide an engaging user experience the behavior must include a sense of aesthetics while robustly operating in a continuously changing environment. The Playful framework allows composing such dynamic behaviors using a basic set of action and perception primitives. Within this framework, a behavior is encoded as a list of declarative statements corresponding to high-level sensory-motor couplings. To facilitate non-expert users to program such behaviors, we propose a Learning from Demonstration (LfD) technique that maps motion capture of humans directly to a Playful script. The approach proceeds by identifying the sensory-motor couplings that are active at each step using the Viterbi path in a Hidden Markov Model (HMM). Given these activation patterns, binary classifiers called evaluations are trained to associate activations to sensory data. Modularity is increased by clustering the sensory-motor couplings, leading to a hierarchical tree structure. The novelty of the proposed approach is that the learned behavior is encoded not in terms of trajectories in a task space, but as couplings between sensory information and high-level motor actions. This provides advantages in terms of behavioral generalization and reactivity displayed by the robot.

am

Support Video link (url) [BibTex]


Mobile microrobots for active therapeutic delivery
Mobile microrobots for active therapeutic delivery

Erkoc, P., Yasa, I. C., Ceylan, H., Yasa, O., Alapan, Y., Sitti, M.

Advanced Therapeutics, Wiley Online Library, 2019 (article)

pi

[BibTex]

[BibTex]


Shape-encoded dynamic assembly of mobile micromachines
Shape-encoded dynamic assembly of mobile micromachines

Alapan, Y., Yigit, B., Beker, O., Demirörs, A. F., Sitti, M.

Nature, 18, 2019 (article)

pi

[BibTex]

[BibTex]


Microfluidics Integrated Lithography‐Free Nanophotonic Biosensor for the Detection of Small Molecules
Microfluidics Integrated Lithography‐Free Nanophotonic Biosensor for the Detection of Small Molecules

Sreekanth, K. V., Sreejith, S., Alapan, Y., Sitti, M., Lim, C. T., Singh, R.

Advanced Optical Materials, 2019 (article)

pi

[BibTex]

[BibTex]


ENGINEERING Bio-inspired robotic collectives
ENGINEERING Bio-inspired robotic collectives

Sitti, M.

Nature, 567, pages: 314-315, Macmillan Publishers Ltd., London, England, 2019 (article)

pi

[BibTex]

[BibTex]


Peptide-Induced Biomineralization of Tin Oxide (SnO2) Nanoparticles for Antibacterial Applications
Peptide-Induced Biomineralization of Tin Oxide (SnO2) Nanoparticles for Antibacterial Applications

Singh, A. V., Jahnke, T., Xiao, Y., Wang, S., Yu, Y., David, H., Richter, G., Laux, P., Luch, A., Srivastava, A., Saxena, P. S., Bill, J., Sitti, M.

Journal of nanoscience and nanotechnology, 19, American Scientific Publishers, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Electromechanical actuation of dielectric liquid crystal elastomers for soft robotics

Davidson, Z., Shahsavan, H., Guo, Y., Hines, L., Xia, Y., Yang, S., Sitti, M.

Bulletin of the American Physical Society, APS, 2019 (article)

pi

[BibTex]

[BibTex]


Learning to Navigate Endoscopic Capsule Robots
Learning to Navigate Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Gilbert, H. B., Mahmood, F., Durr, N. J., Araujo, H., Sarı, A. E., Ajay, A., Sitti, M.

IEEE Robotics and Automation Letters, 4, 2019 (article)

pi

[BibTex]

[BibTex]


Order and Information in the Phases of a Torque-driven Artificial Collective System
Order and Information in the Phases of a Torque-driven Artificial Collective System

Wang, W., Gardi, G., Kishore, V., Koens, L., Son, D., Gilbert, H., Harwani, P., Lauga, E., Sitti, M.

arXiv preprint arXiv:1910.11226, 2019 (article)

pi

[BibTex]

[BibTex]

2016


A New Perspective and Extension of the Gaussian Filter
A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Garcia Cifuentes, C., Kappler, D., Schaal, S.

The International Journal of Robotics Research, 35(14):1731-1749, December 2016 (article)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. The GF represents the belief of the current state by a Gaussian distribution, whose mean is an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependences in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end, we view the GF as the solution to a constrained optimization problem. From this new perspective, the GF is seen as a special case of a much broader class of filters, obtained by relaxing the constraint on the form of the approximate posterior. On this basis, we outline some conditions which potential generalizations have to satisfy in order to maintain the computational efficiency of the GF. We propose one concrete generalization which corresponds to the standard GF using a pseudo measurement instead of the actual measurement. Extending an existing GF implementation in this manner is trivial. Nevertheless, we show that this small change can have a major impact on the estimation accuracy.

am ics

PDF DOI Project Page [BibTex]

2016


PDF DOI Project Page [BibTex]


Bioengineered and biohybrid bacteria-based systems for drug delivery
Bioengineered and biohybrid bacteria-based systems for drug delivery

Hosseinidoust, Z., Mostaghaci, B., Yasa, O., Park, B., Singh, A. V., Sitti, M.

Advanced Drug Delivery Reviews, 106, pages: 27-44, Elsevier, November 2016 (article)

Abstract
The use of bacterial cells as agents of medical therapy has a long history. Research that was ignited over a century ago with the accidental infection of cancer patients has matured into a platform technology that offers the promise of opening up new potential frontiers in medical treatment. Bacterial cells exhibit unique characteristics that make them well-suited as smart drug delivery agents. Our ability to genetically manipulate the molecular machinery of these cells enables the customization of their therapeutic action as well as its precise tuning and spatio-temporal control, allowing for the design of unique, complex therapeutic functions, unmatched by current drug delivery systems. Early results have been promising, but there are still many important challenges that must be addressed. We present a review of promises and challenges of employing bioengineered bacteria in drug delivery systems and introduce the biohybrid design concept as a new additional paradigm in bacteria-based drug delivery.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


A 5-D localization method for a magnetically manipulated untethered robot using a 2-D array of Hall-effect sensors
A 5-D localization method for a magnetically manipulated untethered robot using a 2-D array of Hall-effect sensors

Son, D., Yim, S., Sitti, M.

IEEE/ASME Transactions on Mechatronics, 21(2):708-716, IEEE, October 2016 (article)

Abstract
This paper introduces a new five-dimensional localization method for an untethered meso-scale magnetic robot, which is manipulated by a computer-controlled electromagnetic system. The developed magnetic localization setup is a two-dimensional array of mono-axial Hall-effect sensors, which measure the perpendicular magnetic fields at their given positions. We introduce two steps for localizing a magnetic robot more accurately. First, the dipole modeled magnetic field of the electromagnet is subtracted from the measured data in order to determine the robot's magnetic field. Secondly, the subtracted magnetic field is twice differentiated in the perpendicular direction of the array, so that the effect of the electromagnetic field in the localization process is minimized. Five variables regarding the position and orientation of the robot are determined by minimizing the error between the measured magnetic field and the modeled magnetic field in an optimization method. The resulting position error is 2.1±0.8 mm and angular error is 6.7±4.3° within the applicable range (5 cm) of magnetic field sensors at 200 Hz. The proposed localization method would be used for the position feedback control of untethered magnetic devices or robots for medical applications in the future.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


High-Performance Multiresponsive Paper Actuators
High-Performance Multiresponsive Paper Actuators

Amjadi, M., Sitti, M.

ACS Nano, 10(11):10202-10210, American Chemical Society, October 2016 (article)

Abstract
There is an increasing demand for soft actuators because of their importance in soft robotics, artificial muscles, biomimetic devices, and beyond. However, the development of soft actuators capable of low-voltage operation, powerful actuation, and programmable shape-changing is still challenging. In this work, we propose programmable bilayer actuators that operate based on the large hygroscopic contraction of the copy paper and simultaneously large thermal expansion of the polypropylene film upon increasing the temperature. The electrothermally activated bending actuators can function with low voltages (≤ 8 V), low input electric power per area (P ≤ 0.14 W cm–2), and low temperature changes (≤ 35 °C). They exhibit reversible shape-changing behavior with curvature radii up to 1.07 cm–1 and bending angle of 360°, accompanied by powerful actuation. Besides the electrical activation, they can be powered by humidity or light irradiation. We finally demonstrate the use of our paper actuators as a soft gripper robot and a lightweight paper wing for aerial robotics.

pi

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


Programmable assembly of heterogeneous microparts by an untethered mobile capillary microgripper
Programmable assembly of heterogeneous microparts by an untethered mobile capillary microgripper

Giltinan, J., Diller, E., Sitti, M.

Lab on a Chip, 16(22):4445-4457, Royal Society of Chemistry, October 2016 (article)

Abstract
At the sub-millimeter scale, capillary forces enable robust and reversible adhesion between biological organisms and varied substrates. Current human-engineered mobile untethered micromanipulation systems rely on forces which scale poorly or utilize gripper-part designs that promote manipulation. Capillary forces, alternatively, are dependent upon the surface chemistry (which is scale independent) and contact perimeter, which conforms to the part surface. We report a mobile capillary microgripper that is able to pick and place parts of various materials and geometries, and is thus ideal for microassembly tasks that cannot be accomplished by large tethered manipulators. We achieve the programmable assembly of sub-millimeter parts in an enclosed three-dimensional aqueous environment by creating a capillary bridge between the targeted part and a synthetic, untethered, mobile body. The parts include both hydrophilic and hydrophobic components: hydrogel, kapton, human hair, and biological tissue. The 200 μm untethered system can be controlled with five-degrees-of-freedom and advances progress towards autonomous desktop manufacturing for tissue engineering, complex micromachines, microfluidic devices, and meta-materials.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Composition-dependent underwater adhesion of catechol-bearing hydrogels
Composition-dependent underwater adhesion of catechol-bearing hydrogels

Wu, H., Sariola, V., Zhao, J., Ding, H., Sitti, M., Bettinger, C. J.

Polymer International, 65(11):1355-1359, John Wiley & Sons, Ltd, September 2016 (article)

Abstract
Interfacial adhesion-mediated transfer printing processes can integrate functional electronic microstructures with polymeric substrates that are bendable and stretchable. Transfer printing has also been extended to catechol-bearing adhesive hydrogels. This study presents indentation adhesion tests between catechol-bearing hydrogel substrates with catechol concentrations varying from 0 to 10% (mol/mol) and thin-film materials commonly used in microelectronic fabrication including polymers, noble metals and oxides. The results indicate that the interfacial adhesion of catechol-bearing hydrogels is positively correlated with the concentration of catechol-bearing monomers as well as the retraction velocity during transfer printing. This study can inform transfer printing processes for microfabricated structures to compliant hydrated substrates such as hygroscopic monomers, mesoporous polymer networks and hydrogels. © 2016 Society of Chemical Industry

pi

DOI [BibTex]

DOI [BibTex]


Bacteria-Driven Particles: Patterned and Specific Attachment of Bacteria on Biohybrid Bacteria-Driven Microswimmers (Adv. Healthcare Mater. 18/2016)
Bacteria-Driven Particles: Patterned and Specific Attachment of Bacteria on Biohybrid Bacteria-Driven Microswimmers (Adv. Healthcare Mater. 18/2016)

Singh, A. V., Sitti, M.

Advanced Healthcare Materials, 5(18):2306-2306, September 2016 (article)

Abstract
On page 2325, Ajay Vikram Singh and Metin Sitti propose a facile surface patterning technique and a specific, strong biotin–streptavidin bonding of bacteria on patterned surfaces to fabricate Janus particles that are propelled by the attached bacteria. Such bacteria-driven Janus microswimmers could be used for future medicine in targeted drug delivery and environmental remediation.

pi

DOI Project Page [BibTex]


The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system
The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system

Stark, A. Y., Klittich, M. R., Sitti, M., Niewiarowski, P. H., Dhinojwala, A.

Scientific Reports, 6, pages: 30936, Nature Publishing Group, August 2016 (article)

Abstract
The adhesive system of geckos has inspired hundreds of synthetic adhesives. While this system has been used relentlessly as a source of inspiration, less work has been done in reverse, where synthetics are used to test questions and hypotheses about the natural system. Here we take such an approach. We tested shear adhesion of a mushroom-tipped synthetic gecko adhesive under conditions that produced perplexing results in the natural adhesive system. Synthetic samples were tested at two temperatures (12 °C and 32 °C) and four different humidity levels (30%, 55%, 70%, and 80% RH). Surprisingly, adhesive performance of the synthetic samples matched that of living geckos, suggesting that uncontrolled parameters in the natural system, such as surface chemistry and material changes, may not be as influential in whole-animal performance as previously thought. There was one difference, however, when comparing natural and synthetic adhesive performance. At 12 °C and 80% RH, adhesion of the synthetic structures was lower than expected based on the natural system’s performance. Our approach highlights a unique opportunity for both biologists and material scientists, where new questions and hypotheses can be fueled by joint comparisons of the natural and synthetic systems, ultimately improving knowledge of both.

pi

DOI [BibTex]

DOI [BibTex]


Magnetic propulsion of robotic sperms at low-Reynolds number
Magnetic propulsion of robotic sperms at low-Reynolds number

Khalil, I. S., Fatih Tabak, A., Klingner, A., Sitti, M.

Applied Physics Letters, 109(3):033701, AIP Publishing, July 2016 (article)

Abstract
We investigate the microswimming behaviour of robotic sperms in viscous fluids. These robotic sperms are fabricated from polystyrene dissolved in dimethyl formamide and iron-oxide nanoparticles. This composition allows the nanoparticles to be concentrated within the bead of the robotic sperm and provide magnetic dipole, whereas the flexibility of the ultra-thin tail enables flagellated locomotion using magnetic fields in millitesla range. We show that these robotic sperms have similar morphology and swimming behaviour to those of sperm cells. Moreover, we show experimentally that our robotic sperms swim controllably at an average speed of approximately one body length per second (around 125 μm s−1), and they are relatively faster than the microswimmers that depend on planar wave propulsion in low-Reynolds number fluids.

pi

DOI [BibTex]

DOI [BibTex]


Six-degree-of-freedom magnetic actuation for wireless microrobotics
Six-degree-of-freedom magnetic actuation for wireless microrobotics

Diller, E., Giltinan, J., Lum, G. Z., Ye, Z., Sitti, M.

The International Journal of Robotics Research, 35(1-3):114-128, SAGE Publications Sage UK: London, England, June 2016 (article)

Abstract
Existing remotely actuated magnetic microrobots exhibit a maximum of only five-degree-of-freedom (DOF) actuation, as creation of a driving torque about the microrobot magnetization axis is not achievable. This lack of full orientation control limits the effectiveness of existing microrobots for precision tasks of object manipulation and orientation for advanced medical, biological and micromanufacturing applications. This paper presents a magnetic actuation method that allows remotely powered microrobots to achieve full six-DOF actuation by considering the case of a non-uniform magnetization profile within the microrobot body. This non-uniform magnetization allows for additional rigid-body torques to be induced from magnetic forces via a moment arm. A general analytical model presents the working principle for continuous and discrete magnetization profiles, which is applied to permanent or non-permanent (soft) magnet bodies. Several discrete-magnetization designs are also presented which possess reduced coupling between magnetic forces and induced rigid-body torques. Design guidelines are introduced which can be followed to ensure that a magnetic microrobot design is capable of six-DOF actuation. A simple permanent-magnet prototype is fabricated and used to quantitatively demonstrate the accuracy of the analytical model in a constrained-DOF environment and qualitatively for free motion in a viscous liquid three-dimensional environment. Results show that desired forces and torques can be created with high precision and limited parasitic actuation, allowing for full six-DOF actuation using limited feedback control

pi

DOI [BibTex]

DOI [BibTex]


Gallium Adhesion: Phase Change of Gallium Enables Highly Reversible and Switchable Adhesion (Adv. Mater. 25/2016)
Gallium Adhesion: Phase Change of Gallium Enables Highly Reversible and Switchable Adhesion (Adv. Mater. 25/2016)

Ye, Z., Lum, G. Z., Song, S., Rich, S., Sitti, M.

Advanced Materials, 28(25):5087-5087, May 2016 (article)

Abstract
Gallium exhibits highly reversible and switchable adhesion when it undergoes a solid–liquid phase transition. The robustness of gallium is notable as it exhibits strong performance on a wide range of smooth and rough surfaces, under both dry and wet conditions. Gallium may therefore find numerous applications in transfer printing, robotics, electronic packaging, and biomedicine.

pi

DOI [BibTex]


Patterned and Specific Attachment of Bacteria on Biohybrid Bacteria-Driven Microswimmers
Patterned and Specific Attachment of Bacteria on Biohybrid Bacteria-Driven Microswimmers

Singh, A. V., Sitti, M.

Advanced Healthcare Materials, 5(18):2325-2331, May 2016 (article)

Abstract
A surface patterning technique and a specific and strong biotin–streptavidin bonding of bacteria on patterned surfaces are proposed to fabricate Janus particles that are propelled by the attached bacteria. Bacteria-driven Janus microswimmers with diameters larger than 3 μm show enhanced mean propulsion speed. Such microswimmers could be used for future applications such as targeted drug delivery and environmental remediation.

pi

DOI [BibTex]


Shape-programmable magnetic soft matter
Shape-programmable magnetic soft matter

Lum, G. Z., Ye, Z., Dong, X., Marvi, H., Erin, O., Hu, W., Sitti, M.

Proceedings of the National Academy of Sciences, 113(41):E6007–E6015, National Acad Sciences, May 2016 (article)

Abstract
Shape-programmable matter is a class of active materials whose geometry can be controlled to potentially achieve mechanical functionalities beyond those of traditional machines. Among these materials, magnetically actuated matter is particularly promising for achieving complex time-varying shapes at small scale (overall dimensions smaller than 1 cm). However, previous work can only program these materials for limited applications, as they rely solely on human intuition to approximate the required magnetization profile and actuating magnetic fields for their materials. Here, we propose a universal programming methodology that can automatically generate the required magnetization profile and actuating fields for soft matter to achieve new time-varying shapes. The universality of the proposed method can therefore inspire a vast number of miniature soft devices that are critical in robotics, smart engineering surfaces and materials, and biomedical devices. Our proposed method includes theoretical formulations, computational strategies, and fabrication procedures for programming magnetic soft matter. The presented theory and computational method are universal for programming 2D or 3D time-varying shapes, whereas the fabrication technique is generic only for creating planar beams. Based on the proposed programming method, we created a jellyfish-like robot, a spermatozoid-like undulating swimmer, and an artificial cilium that could mimic the complex beating patterns of its biological counterpart.

pi

DOI [BibTex]

DOI [BibTex]


Inflated soft actuators with reversible stable deformations
Inflated soft actuators with reversible stable deformations

Hines, L., Petersen, K., Sitti, M.

Advanced Materials, 28(19):3690-3696, March 2016 (article)

Abstract
Most soft robotic systems are currently dependent on bulky compressors or pumps. A soft actuation method is presented combining hyperelastic membranes and dielectric elastomer actuators to switch between stable deformations of sealed chambers. This method is capable of large repeatable deformations, and has a number of stable states proportional to the number of actuatable membranes in the chamber.

pi

DOI Project Page [BibTex]