Header logo is


2016


no image
Consistent Kernel Mean Estimation for Functions of Random Variables

Simon-Gabriel*, C. J., Ścibior*, A., Tolstikhin, I., Schölkopf, B.

Advances in Neural Information Processing Systems 29, pages: 1732-1740, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016, *joint first authors (conference)

ei

link (url) Project Page Project Page Project Page [BibTex]

2016


link (url) Project Page Project Page Project Page [BibTex]


Thumb xl nonlinear approximate vs exact
A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Garcia Cifuentes, C., Kappler, D., Schaal, S.

The International Journal of Robotics Research, 35(14):1731-1749, December 2016 (article)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. The GF represents the belief of the current state by a Gaussian distribution, whose mean is an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependences in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end, we view the GF as the solution to a constrained optimization problem. From this new perspective, the GF is seen as a special case of a much broader class of filters, obtained by relaxing the constraint on the form of the approximate posterior. On this basis, we outline some conditions which potential generalizations have to satisfy in order to maintain the computational efficiency of the GF. We propose one concrete generalization which corresponds to the standard GF using a pseudo measurement instead of the actual measurement. Extending an existing GF implementation in this manner is trivial. Nevertheless, we show that this small change can have a major impact on the estimation accuracy.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Understanding Probabilistic Sparse Gaussian Process Approximations

Bauer, M., van der Wilk, M., Rasmussen, C. E.

Advances in Neural Information Processing Systems 29, pages: 1533-1541, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Minimax Estimation of Maximum Mean Discrepancy with Radial Kernels

Tolstikhin, I., Sriperumbudur, B. K., Schölkopf, B.

Advances in Neural Information Processing Systems 29, pages: 1930-1938, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Local-utopia Policy Selection for Multi-objective Reinforcement Learning

Parisi, S., Blank, A., Viernickel, T., Peters, J.

In IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pages: 1-7, IEEE, December 2016 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Lifelong Learning with Weighted Majority Votes

Pentina, A., Urner, R.

Advances in Neural Information Processing Systems 29, pages: 3612-3620, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Active Nearest-Neighbor Learning in Metric Spaces

Kontorovich, A., Sabato, S., Urner, R.

Advances in Neural Information Processing Systems 29, pages: 856-864, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Predictive and Self Triggering for Event-based State Estimation

Trimpe, S.

In Proceedings of the 55th IEEE Conference on Decision and Control (CDC), pages: 3098-3105, Las Vegas, NV, USA, December 2016 (inproceedings)

am ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Catching heuristics are optimal control policies

Belousov, B., Neumann, G., Rothkopf, C., Peters, J.

Advances in Neural Information Processing Systems 29, pages: 1426-1434, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Incremental Imitation Learning of Context-Dependent Motor Skills

Ewerton, M., Maeda, G., Kollegger, G., Wiemeyer, J., Peters, J.

IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 351-358, IEEE, November 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Using Probabilistic Movement Primitives for Striking Movements

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages: 502-508, November 2016 (conference)

am ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Demonstration Based Trajectory Optimization for Generalizable Robot Motions

Koert, D., Maeda, G., Lioutikov, R., Neumann, G., Peters, J.

IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 351-358, IEEE, November 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl screen shot 2019 01 07 at 11.54.16
Jointly Learning Trajectory Generation and Hitting Point Prediction in Robot Table Tennis

Huang, Y., Büchler, D., Koc, O., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages: 650-655, November 2016 (conference)

am ei

final link (url) DOI Project Page [BibTex]

final link (url) DOI Project Page [BibTex]


no image
Deep Spiking Networks for Model-based Planning in Humanoids

Tanneberg, D., Paraschos, A., Peters, J., Rueckert, E.

IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 656-661, IEEE, November 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Anticipative Interaction Primitives for Human-Robot Collaboration

Maeda, G., Maloo, A., Ewerton, M., Lioutikov, R., Peters, J.

AAAI Fall Symposium Series. Shared Autonomy in Research and Practice, pages: 325-330, November 2016 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
The Role of Measurement Uncertainty in Optimal Control for Contact Interactions
Workshop on the Algorithmic Foundations of Robotics, pages: 22, November 2016 (conference)

Abstract
Stochastic Optimal Control (SOC) typically considers noise only in the process model, i.e. unknown disturbances. However, in many robotic applications that involve interaction with the environment, such as locomotion and manipulation, uncertainty also comes from lack of pre- cise knowledge of the world, which is not an actual disturbance. We de- velop a computationally efficient SOC algorithm, based on risk-sensitive control, that takes into account uncertainty in the measurements. We include the dynamics of an observer in such a way that the control law explicitly depends on the current measurement uncertainty. We show that high measurement uncertainty leads to low impedance behaviors, a result in contrast with the effects of process noise variance that creates stiff behaviors. Simulation results on a simple 2D manipulator show that our controller can create better interaction with the environment under uncertain contact locations than traditional SOC approaches.

am

arXiv [BibTex]

arXiv [BibTex]


no image
Unifying distillation and privileged information

Lopez-Paz, D., Schölkopf, B., Bottou, L., Vapnik, V.

International Conference on Learning Representations (ICLR), November 2016 (conference)

ei

Arxiv Project Page [BibTex]

Arxiv Project Page [BibTex]


no image
Qualitative User Reactions to a Hand-Clapping Humanoid Robot

Fitter, N. T., Kuchenbecker, K. J.

In Social Robotics: 8th International Conference, ICSR 2016, Kansas City, MO, USA, November 1-3, 2016 Proceedings, 9979, pages: 317-327, Lecture Notes in Artificial Intelligence, Springer International Publishing, November 2016, Oral presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Designing and Assessing Expressive Open-Source Faces for the Baxter Robot

Fitter, N. T., Kuchenbecker, K. J.

In Social Robotics: 8th International Conference, ICSR 2016, Kansas City, MO, USA, November 1-3, 2016 Proceedings, 9979, pages: 340-350, Lecture Notes in Artificial Intelligence, Springer International Publishing, November 2016, Oral presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Rhythmic Timing in Playful Human-Robot Social Motor Coordination

Fitter, N. T., Hawkes, D. T., Kuchenbecker, K. J.

In Social Robotics: 8th International Conference, ICSR 2016, Kansas City, MO, USA, November 1-3, 2016 Proceedings, 9979, pages: 296-305, Lecture Notes in Artificial Intelligence, Springer International Publishing, November 2016, Oral presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
An electro-active polymer based lens module for dynamically varying focal system

Yun, S., Park, S., Nam, S., Park, B., Park, S. K., Mun, S., Lim, J. M., Kyung, K.

Applied Physics Letters, 109(14):141908, October 2016 (article)

Abstract
We demonstrate a polymer-based active-lens module allowing a dynamic focus controllable optical system with a wide tunable range. The active-lens module is composed of parallelized two active- lenses with a convex and a concave shaped hemispherical lens structure, respectively. Under opera- tion with dynamic input voltage signals, each active-lens produces translational movement bi-directionally responding to a hybrid driving force that is a combination of an electro-active response of a thin dielectric elastomer membrane and an electro-static attraction force. Since the proposed active lens module widely modulates a gap-distance between lens-elements, an optical system based on the active-lens module provides widely-variable focusing for selective imaging of objects in arbitrary position.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning High-Order Filters for Efficient Blind Deconvolution of Document Photographs

Xiao, L., Wang, J., Heidrich, W., Hirsch, M.

Computer Vision - ECCV 2016, Lecture Notes in Computer Science, LNCS 9907, Part III, pages: 734-749, (Editors: Bastian Leibe, Jiri Matas, Nicu Sebe and Max Welling), Springer, October 2016 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Adaptive Training Strategies for BCIs

Sharma, D., Tanneberg, D., Grosse-Wentrup, M., Peters, J., Rueckert, E.

Cybathlon Symposium, October 2016 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl img
Learning Where to Search Using Visual Attention

Kloss, A., Kappler, D., Lensch, H. P. A., Butz, M. V., Schaal, S., Bohg, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, IEEE, IROS, October 2016 (conference)

Abstract
One of the central tasks for a household robot is searching for specific objects. It does not only require localizing the target object but also identifying promising search locations in the scene if the target is not immediately visible. As computation time and hardware resources are usually limited in robotics, it is desirable to avoid expensive visual processing steps that are exhaustively applied over the entire image. The human visual system can quickly select those image locations that have to be processed in detail for a given task. This allows us to cope with huge amounts of information and to efficiently deploy the limited capacities of our visual system. In this paper, we therefore propose to use human fixation data to train a top-down saliency model that predicts relevant image locations when searching for specific objects. We show that the learned model can successfully prune bounding box proposals without rejecting the ground truth object locations. In this aspect, the proposed model outperforms a model that is trained only on the ground truth segmentations of the target object instead of fixation data.

am

Project Page [BibTex]

PDF Project Page [BibTex]


Thumb xl oxfordlight
Parameter Learning for Improving Binary Descriptor Matching

Sankaran, B., Ramalingam, S., Taguchi, Y.

In International Conference on Intelligent Robots and Systems (IROS) 2016, IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2016 (inproceedings)

Abstract
Binary descriptors allow fast detection and matching algorithms in computer vision problems. Though binary descriptors can be computed at almost two orders of magnitude faster than traditional gradient based descriptors, they suffer from poor matching accuracy in challenging conditions. In this paper we propose three improvements for binary descriptors in their computation and matching that enhance their performance in comparison to traditional binary and non-binary descriptors without compromising their speed. This is achieved by learning some weights and threshold parameters that allow customized matching under some variations such as lighting and viewpoint. Our suggested improvements can be easily applied to any binary descriptor. We demonstrate our approach on the ORB (Oriented FAST and Rotated BRIEF) descriptor and compare its performance with the traditional ORB and SIFT descriptors on a wide variety of datasets. In all instances, our enhancements outperform standard ORB and is comparable to SIFT.

am

[BibTex]

[BibTex]


no image
Experiments with Hierarchical Reinforcement Learning of Multiple Grasping Policies

Osa, T., Peters, J., Neumann, G.

International Symposium on Experimental Robotics (ISER), 1, pages: 160-172, Springer Proceedings in Advanced Robotics, (Editors: Dana Kulic, Yoshihiko Nakamura, Oussama Khatib and Gentiane Venture), Springer, October 2016 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Stable Reinforcement Learning with Autoencoders for Tactile and Visual Data

van Hoof, H., Chen, N., Karl, M., van der Smagt, P., Peters, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), pages: 3928-3934, IEEE, October 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A New Trajectory Generation Framework in Robotic Table Tennis

Koc, O., Maeda, G., Peters, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), pages: 3750-3756, October 2016 (conference)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl gadde
Superpixel Convolutional Networks using Bilateral Inceptions

Gadde, R., Jampani, V., Kiefel, M., Kappler, D., Gehler, P.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, Springer, 14th European Conference on Computer Vision, October 2016 (inproceedings)

Abstract
In this paper we propose a CNN architecture for semantic image segmentation. We introduce a new “bilateral inception” module that can be inserted in existing CNN architectures and performs bilateral filtering, at multiple feature-scales, between superpixels in an image. The feature spaces for bilateral filtering and other parameters of the module are learned end-to-end using standard backpropagation techniques. The bilateral inception module addresses two issues that arise with general CNN segmentation architectures. First, this module propagates information between (super) pixels while respecting image edges, thus using the structured information of the problem for improved results. Second, the layer recovers a full resolution segmentation result from the lower resolution solution of a CNN. In the experiments, we modify several existing CNN architectures by inserting our inception modules between the last CNN (1 × 1 convolution) layers. Empirical results on three different datasets show reliable improvements not only in comparison to the baseline networks, but also in comparison to several dense-pixel prediction techniques such as CRFs, while being competitive in time.

am ps

pdf supplementary poster Project Page Project Page [BibTex]

pdf supplementary poster Project Page Project Page [BibTex]


no image
Probabilistic Decomposition of Sequential Force Interaction Tasks into Movement Primitives

Manschitz, S., Gienger, M., Kober, J., Peters, J.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 3920-3927, IEEE, October 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl thumb
Barrista - Caffe Well-Served

Lassner, C., Kappler, D., Kiefel, M., Gehler, P.

In ACM Multimedia Open Source Software Competition, ACM OSSC16, October 2016 (inproceedings)

Abstract
The caffe framework is one of the leading deep learning toolboxes in the machine learning and computer vision community. While it offers efficiency and configurability, it falls short of a full interface to Python. With increasingly involved procedures for training deep networks and reaching depths of hundreds of layers, creating configuration files and keeping them consistent becomes an error prone process. We introduce the barrista framework, offering full, pythonic control over caffe. It separates responsibilities and offers code to solve frequently occurring tasks for pre-processing, training and model inspection. It is compatible to all caffe versions since mid 2015 and can import and export .prototxt files. Examples are included, e.g., a deep residual network implemented in only 172 lines (for arbitrary depths), comparing to 2320 lines in the official implementation for the equivalent model.

am ps

pdf link (url) DOI Project Page [BibTex]

pdf link (url) DOI Project Page [BibTex]


no image
Multi-task logistic regression in brain-computer interfaces

Fiebig, K., Jayaram, V., Peters, J., Grosse-Wentrup, M.

6th Workshop on Brain-Machine Interface Systems at IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016), pages: 002307-002312, IEEE, October 2016 (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Active Tactile Object Exploration with Gaussian Processes

Yi, Z., Calandra, R., Veiga, F., van Hoof, H., Hermans, T., Zhang, Y., Peters, J.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 4925-4930, IEEE, October 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Using IMU Data to Demonstrate Hand-Clapping Games to a Robot

Fitter, N. T., Kuchenbecker, K. J.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 851 - 856, October 2016, Interactive presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Wrinkle structures formed by formulating UV-crosslinkable liquid prepolymers

Park, S. K., Kwark, Y., Nam, S., Park, S., Park, B., Yun, S., Moon, J., Lee, J., Yu, B., Kyung, K.

Polymer, 99, pages: 447-452, September 2016 (article)

Abstract
Artificial wrinkles have recently been in the spotlight due to their potential use in high-tech applications. A spontaneously wrinkled film can be fabricated from UV-crosslinkable liquid prepolymers. Here, we controlled the wrinkle formation by simply formulating two UV-crosslinkable liquid prepolymers, tetraethylene glycol bis(4-ethenyl-2,3,5,6-tetrafluorophenyl) ether (TEGDSt) and tetraethylene glycol diacrylate (TEGDA). The wrinkles were formed from the TEGDSt/TEGDA formulated prepolymer layers containing up to 30 wt% of TEGDA. The wrinkle formation depended upon the rate of photo-crosslinking reaction of the formulated prepolymers. The first order apparent rate constant, kapp, was between ca. 5.7 × 10−3 and 12.2 × 10−3 s−1 for the wrinkle formation. The wrinkle structures were modulated within the kapp mainly due to variation in the extent of shrinkage of the formulated prepolymer layers with the content of TEGDA

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Numerical Investigation of Frictional Forces Between a Finger and a Textured Surface During Active Touch

Khojasteh, B., Janko, M., Visell, Y.

Extended abstract presented in form of an oral presentation at the 3rd International Conference on BioTribology (ICoBT), London, England, September 2016 (misc)

Abstract
The biomechanics of the human finger pad has been investigated in relation to motor behaviour and sensory function in the upper limb. While the frictional properties of the finger pad are important for grip and grasp function, recent attention has also been given to the roles played by friction when perceiving a surface via sliding contact. Indeed, the mechanics of sliding contact greatly affect stimuli felt by the finger scanning a surface. Past research has shed light on neural mechanisms of haptic texture perception, but the relation with time-resolved frictional contact interactions is unknown. Current biotribological models cannot predict time-resolved frictional forces felt by a finger as it slides on a rough surface. This constitutes a missing link in understanding the mechanical basis of texture perception. To ameliorate this, we developed a two-dimensional finite element numerical simulation of a human finger pad in sliding contact with a textured surface. Our model captures bulk mechanical properties, including hyperelasticity, dissipation, and tissue heterogeneity, and contact dynamics. To validate it, we utilized a database of measurements that we previously captured with a variety of human fingers and surfaces. By designing the simulations to match the measurements, we evaluated the ability of the FEM model to predict time-resolved sliding frictional forces. We varied surface texture wavelength, sliding speed, and normal forces in the experiments. An analysis of the results indicated that both time- and frequency-domain features of forces produced during finger-surface sliding interactions were reproduced, including many of the phenomena that we observed in analyses of real measurements, including quasiperiodicity, harmonic distortion and spectral decay in the frequency domain, and their dependence on kinetics and surface properties. The results shed light on frictional signatures of surface texture during active touch, and may inform understanding of the role played by friction in texture discrimination.

hi

[BibTex]

[BibTex]


no image
On Version Space Compression

Ben-David, S., Urner, R.

Algorithmic Learning Theory - 27th International Conference (ALT), 9925, pages: 50-64, Lecture Notes in Computer Science, (Editors: Ortner, R., Simon, H. U., and Zilles, S.), September 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Contextual Policy Search for Linear and Nonlinear Generalization of a Humanoid Walking Controller

Abdolmaleki, A., Lau, N., Reis, L., Peters, J., Neumann, G.

Journal of Intelligent & Robotic Systems, 83(3-4):393-408, (Editors: Luis Almeida, Lino Marques ), September 2016, Special Issue: Autonomous Robot Systems (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Learning Probabilistic Features from EMG Data for Predicting Knee Abnormalities

Kohlschuetter, J., Peters, J., Rueckert, E.

XIV Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON), pages: 668-672, (Editors: Kyriacou, E., Christofides, S., and Pattichis, C. S.), September 2016 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Planning with Information-Processing Constraints and Model Uncertainty in Markov Decision Processes

Grau-Moya, J, Leibfried, F, Genewein, T, Braun, DA

Machine Learning and Knowledge Discovery in Databases, pages: 475-491, Lecture Notes in Computer Science; 9852, Springer, Cham, Switzerland, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery (ECML PKDD), September 2016 (conference)

Abstract
Information-theoretic principles for learning and acting have been proposed to solve particular classes of Markov Decision Problems. Mathematically, such approaches are governed by a variational free energy principle and allow solving MDP planning problems with information-processing constraints expressed in terms of a Kullback-Leibler divergence with respect to a reference distribution. Here we consider a generalization of such MDP planners by taking model uncertainty into account. As model uncertainty can also be formalized as an information-processing constraint, we can derive a unified solution from a single generalized variational principle. We provide a generalized value iteration scheme together with a convergence proof. As limit cases, this generalized scheme includes standard value iteration with a known model, Bayesian MDP planning, and robust planning. We demonstrate the benefits of this approach in a grid world simulation.

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl 2016 lightfield depth
Depth Estimation Through a Generative Model of Light Field Synthesis

Sajjadi, M. S. M., Köhler, R., Schölkopf, B., Hirsch, M.

Pattern Recognition - 38th German Conference (GCPR), 9796, pages: 426-438, Lecture Notes in Computer Science, (Editors: Rosenhahn, B. and Andres, B.), Springer International Publishing, September 2016 (conference)

ei

Arxiv Project link (url) DOI [BibTex]

Arxiv Project link (url) DOI [BibTex]


no image
ProtonPack: A Visuo-Haptic Data Acquisition System for Robotic Learning of Surface Properties

Burka, A., Hu, S., Helgeson, S., Krishnan, S., Gao, Y., Hendricks, L. A., Darrell, T., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pages: 58-65, 2016, Oral presentation given by Burka (inproceedings)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Bidirektionale Interaktion zwischen Mensch und Roboter beim Bewegungslernen (BIMROB)

Kollegger, G., Ewerton, M., Peters, J., Wiemeyer, J.

11. Symposium der DVS Sportinformatik, September 2016 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
A Low-cost Sensor Glove with Vibrotactile Feedback and Multiple Finger Joint and Hand Motion Sensing for Human-Robot Interaction

Weber, P., Rueckert, E., Calandra, R., Peters, J., Beckerle, P.

25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pages: 99-104, August 2016 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Experimental and causal view on information integration in autonomous agents

Geiger, P., Hofmann, K., Schölkopf, B.

Proceedings of the 6th International Workshop on Combinations of Intelligent Methods and Applications (CIMA), pages: 21-28, (Editors: Hatzilygeroudis, I. and Palade, V.), August 2016 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Equipping the Baxter Robot with Human-Inspired Hand-Clapping Skills

Fitter, N. T., Kuchenbecker, K. J.

In Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pages: 105-112, 2016 (inproceedings)

hi

[BibTex]

[BibTex]


Thumb xl romo and mini
Behavioral Learning and Imitation for Music-Based Robotic Therapy for Children with Autism Spectrum Disorder

Burns, R., Nizambad, S., Park, C. H., Jeon, M., Howard, A.

Workshop paper (5 pages) at the RO-MAN Workshop on Behavior Adaptation, Interaction and Learning for Assistive Robotics, August 2016 (misc)

Abstract
In this full workshop paper, we discuss the positive impacts of robot, music, and imitation therapies on children with autism. We also discuss the use of Laban Motion Analysis (LMA) to identify emotion through movement and posture cues. We present our preliminary studies of the "Five Senses" game that our two robots, Romo the penguin and Darwin Mini, partake in. Using an LMA-focused approach (enabled by our skeletal tracking Kinect algorithm), we find that our participants show increased frequency of movement and speed when the game has a musical accompaniment. Therefore, participants may have increased engagement with our robots and game if music is present. We also begin exploring motion learning for future works.

hi

link (url) [BibTex]

link (url) [BibTex]


no image
Manifold Gaussian Processes for Regression

Calandra, R., Peters, J., Rasmussen, C. E., Deisenroth, M. P.

International Joint Conference on Neural Networks (IJCNN), pages: 3338-3345, IEEE, July 2016 (conference)

ei

DOI [BibTex]

DOI [BibTex]