Header logo is


2011


Benchmark datasets for pose estimation and tracking
Benchmark datasets for pose estimation and tracking

Andriluka, M., Sigal, L., Black, M. J.

In Visual Analysis of Humans: Looking at People, pages: 253-274, (Editors: Moesland and Hilton and Kr"uger and Sigal), Springer-Verlag, London, 2011 (incollection)

ps

publisher's site Project Page [BibTex]

2011


publisher's site Project Page [BibTex]


Steerable random fields for image restoration and inpainting
Steerable random fields for image restoration and inpainting

Roth, S., Black, M. J.

In Markov Random Fields for Vision and Image Processing, pages: 377-387, (Editors: Blake, A. and Kohli, P. and Rother, C.), MIT Press, 2011 (incollection)

Abstract
This chapter introduces the concept of a Steerable Random Field (SRF). In contrast to traditional Markov random field (MRF) models in low-level vision, the random field potentials of a SRF are defined in terms of filter responses that are steered to the local image structure. This steering uses the structure tensor to obtain derivative responses that are either aligned with, or orthogonal to, the predominant local image structure. Analysis of the statistics of these steered filter responses in natural images leads to the model proposed here. Clique potentials are defined over steered filter responses using a Gaussian scale mixture model and are learned from training data. The SRF model connects random fields with anisotropic regularization and provides a statistical motivation for the latter. Steering the random field to the local image structure improves image denoising and inpainting performance compared with traditional pairwise MRFs.

ps

publisher site [BibTex]

publisher site [BibTex]


no image
Projected Newton-type methods in machine learning

Schmidt, M., Kim, D., Sra, S.

In Optimization for Machine Learning, pages: 305-330, MIT Press, Cambridge, MA, USA, 2011 (incollection)

Abstract
{We consider projected Newton-type methods for solving large-scale optimization problems arising in machine learning and related fields. We first introduce an algorithmic framework for projected Newton-type methods by reviewing a canonical projected (quasi-)Newton method. This method, while conceptually pleasing, has a high computation cost per iteration. Thus, we discuss two variants that are more scalable, namely, two-metric projection and inexact projection methods. Finally, we show how to apply the Newton-type framework to handle non-smooth objectives. Examples are provided throughout the chapter to illustrate machine learning applications of our framework.}

mms

link (url) [BibTex]

link (url) [BibTex]

2010


no image
Locally weighted regression for control

Ting, J., Vijayakumar, S., Schaal, S.

In Encyclopedia of Machine Learning, pages: 613-624, (Editors: Sammut, C.;Webb, G. I.), Springer, 2010, clmc (inbook)

Abstract
This is article addresses two topics: learning control and locally weighted regression.

am

link (url) [BibTex]

2010


link (url) [BibTex]


no image
Physisorption in porous materials

Hirscher, M., Panella, B.

In Handbook of Hydrogen Storage, pages: 39-62, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010 (incollection)

mms

[BibTex]

[BibTex]


no image
Adsorption technologies

Schmitz, B., Hirscher, M.

In Hydrogen and Fuel Cells, pages: 431-445, WILEY-VCH, Weinheim, 2010 (incollection)

mms

[BibTex]

[BibTex]

2008


no image
Hydrogen adsorption (Carbon, Zeolites, Nanocubes)

Hirscher, M., Panella, B.

In Hydrogen as a Future Energy Carrier, pages: 173-188, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008 (incollection)

mms

[BibTex]

2008


[BibTex]


no image
Ma\ssgeschneiderte Speichermaterialien

Hirscher, M.

In Von Brennstoffzellen bis Leuchtdioden (Energie und Chemie - Ein Bündnis für die Zukunft), pages: 31-33, Deutsche Bunsen-Gesellschaft für Physikalische Chemie e.V., Frankfurt am Main, 2008 (incollection)

mms

[BibTex]

[BibTex]


no image
Adaptive stair-climbing behaviour with a hybrid legged-wheeled robot

Eich, M., Grimminger, F., Kirchner, F.

In Advances In Mobile Robotics, pages: 768-775, World Scientific, August 2008 (incollection)

am

DOI [BibTex]

DOI [BibTex]

2001


no image
Influence of grain boundary phase transitions on the properties of Cu-Bi polycrystals

Straumal, B. B., Sluchanko, N.E., Gust, W.

In Defects and Diffusion in Metals III: An Annual Retrospective III, 188-1, pages: 185-194, Defect and Diffusion Forum, 2001 (incollection)

mms

[BibTex]

2001


[BibTex]

1996


no image
From isolation to cooperation: An alternative of a system of experts

Schaal, S., Atkeson, C. G.

In Advances in Neural Information Processing Systems 8, pages: 605-611, (Editors: Touretzky, D. S.;Mozer, M. C.;Hasselmo, M. E.), MIT Press, Cambridge, MA, 1996, clmc (inbook)

Abstract
We introduce a constructive, incremental learning system for regression problems that models data by means of locally linear experts. In contrast to other approaches, the experts are trained independently and do not compete for data during learning. Only when a prediction for a query is required do the experts cooperate by blending their individual predictions. Each expert is trained by minimizing a penalized local cross validation error using second order methods. In this way, an expert is able to adjust the size and shape of the receptive field in which its predictions are valid, and also to adjust its bias on the importance of individual input dimensions. The size and shape adjustment corresponds to finding a local distance metric, while the bias adjustment accomplishes local dimensionality reduction. We derive asymptotic results for our method. In a variety of simulations we demonstrate the properties of the algorithm with respect to interference, learning speed, prediction accuracy, feature detection, and task oriented incremental learning. 

am

link (url) [BibTex]

1996


link (url) [BibTex]