Header logo is


2017


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J., Schaal, S.

In Springer Handbook of Robotics, pages: 357-394, 15, 2nd, (Editors: Siciliano, Bruno and Khatib, Oussama), Springer International Publishing, 2017 (inbook)

am ei

Project Page [BibTex]

2017


Project Page [BibTex]

2013


no image
Using Torque Redundancy to Optimize Contact Forces in Legged Robots

Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.

In Redundancy in Robot Manipulators and Multi-Robot Systems, 57, pages: 35-51, Lecture Notes in Electrical Engineering, Springer Berlin Heidelberg, 2013 (incollection)

Abstract
The development of legged robots for complex environments requires controllers that guarantee both high tracking performance and compliance with the environment. More specifically the control of contact interaction with the environment is of crucial importance to ensure stable, robust and safe motions. In the following, we present an inverse dynamics controller that exploits torque redundancy to directly and explicitly minimize any combination of linear and quadratic costs in the contact constraints and in the commands. Such a result is particularly relevant for legged robots as it allows to use torque redundancy to directly optimize contact interactions. For example, given a desired locomotion behavior, it can guarantee the minimization of contact forces to reduce slipping on difficult terrains while ensuring high tracking performance of the desired motion. The proposed controller is very simple and computationally efficient, and most importantly it can greatly improve the performance of legged locomotion on difficult terrains as can be seen in the experimental results.

am mg

link (url) [BibTex]

2013


link (url) [BibTex]

2008


no image
Hydrogen adsorption (Carbon, Zeolites, Nanocubes)

Hirscher, M., Panella, B.

In Hydrogen as a Future Energy Carrier, pages: 173-188, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008 (incollection)

mms

[BibTex]

2008


[BibTex]


no image
Ma\ssgeschneiderte Speichermaterialien

Hirscher, M.

In Von Brennstoffzellen bis Leuchtdioden (Energie und Chemie - Ein Bündnis für die Zukunft), pages: 31-33, Deutsche Bunsen-Gesellschaft für Physikalische Chemie e.V., Frankfurt am Main, 2008 (incollection)

mms

[BibTex]

[BibTex]


no image
Adaptive stair-climbing behaviour with a hybrid legged-wheeled robot

Eich, M., Grimminger, F., Kirchner, F.

In Advances In Mobile Robotics, pages: 768-775, World Scientific, August 2008 (incollection)

am

DOI [BibTex]

DOI [BibTex]

2001


no image
Influence of grain boundary phase transitions on the properties of Cu-Bi polycrystals

Straumal, B. B., Sluchanko, N.E., Gust, W.

In Defects and Diffusion in Metals III: An Annual Retrospective III, 188-1, pages: 185-194, Defect and Diffusion Forum, 2001 (incollection)

mms

[BibTex]

2001


[BibTex]

1996


no image
From isolation to cooperation: An alternative of a system of experts

Schaal, S., Atkeson, C. G.

In Advances in Neural Information Processing Systems 8, pages: 605-611, (Editors: Touretzky, D. S.;Mozer, M. C.;Hasselmo, M. E.), MIT Press, Cambridge, MA, 1996, clmc (inbook)

Abstract
We introduce a constructive, incremental learning system for regression problems that models data by means of locally linear experts. In contrast to other approaches, the experts are trained independently and do not compete for data during learning. Only when a prediction for a query is required do the experts cooperate by blending their individual predictions. Each expert is trained by minimizing a penalized local cross validation error using second order methods. In this way, an expert is able to adjust the size and shape of the receptive field in which its predictions are valid, and also to adjust its bias on the importance of individual input dimensions. The size and shape adjustment corresponds to finding a local distance metric, while the bias adjustment accomplishes local dimensionality reduction. We derive asymptotic results for our method. In a variety of simulations we demonstrate the properties of the algorithm with respect to interference, learning speed, prediction accuracy, feature detection, and task oriented incremental learning. 

am

link (url) [BibTex]

1996


link (url) [BibTex]