Header logo is


2020


Label Efficient Visual Abstractions for Autonomous Driving
Label Efficient Visual Abstractions for Autonomous Driving

Behl, A., Chitta, K., Prakash, A., Ohn-Bar, E., Geiger, A.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, October 2020 (conference)

Abstract
It is well known that semantic segmentation can be used as an effective intermediate representation for learning driving policies. However, the task of street scene semantic segmentation requires expensive annotations. Furthermore, segmentation algorithms are often trained irrespective of the actual driving task, using auxiliary image-space loss functions which are not guaranteed to maximize driving metrics such as safety or distance traveled per intervention. In this work, we seek to quantify the impact of reducing segmentation annotation costs on learned behavior cloning agents. We analyze several segmentation-based intermediate representations. We use these visual abstractions to systematically study the trade-off between annotation efficiency and driving performance, ie, the types of classes labeled, the number of image samples used to learn the visual abstraction model, and their granularity (eg, object masks vs. 2D bounding boxes). Our analysis uncovers several practical insights into how segmentation-based visual abstractions can be exploited in a more label efficient manner. Surprisingly, we find that state-of-the-art driving performance can be achieved with orders of magnitude reduction in annotation cost. Beyond label efficiency, we find several additional training benefits when leveraging visual abstractions, such as a significant reduction in the variance of the learned policy when compared to state-of-the-art end-to-end driving models.

avg

pdf slides video Project Page [BibTex]

2020


pdf slides video Project Page [BibTex]


Convolutional Occupancy Networks
Convolutional Occupancy Networks

Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.

In European Conference on Computer Vision (ECCV), Springer International Publishing, Cham, August 2020 (inproceedings)

Abstract
Recently, implicit neural representations have gained popularity for learning-based 3D reconstruction. While demonstrating promising results, most implicit approaches are limited to comparably simple geometry of single objects and do not scale to more complicated or large-scale scenes. The key limiting factor of implicit methods is their simple fully-connected network architecture which does not allow for integrating local information in the observations or incorporating inductive biases such as translational equivariance. In this paper, we propose Convolutional Occupancy Networks, a more flexible implicit representation for detailed reconstruction of objects and 3D scenes. By combining convolutional encoders with implicit occupancy decoders, our model incorporates inductive biases, enabling structured reasoning in 3D space. We investigate the effectiveness of the proposed representation by reconstructing complex geometry from noisy point clouds and low-resolution voxel representations. We empirically find that our method enables the fine-grained implicit 3D reconstruction of single objects, scales to large indoor scenes, and generalizes well from synthetic to real data.

avg

pdf suppmat video Project Page [BibTex]

pdf suppmat video Project Page [BibTex]


Learning Sensory-Motor Associations from Demonstration
Learning Sensory-Motor Associations from Demonstration

Berenz, V., Bjelic, A., Herath, L., Mainprice, J.

29th IEEE International Conference on Robot and Human Interactive Communication (Ro-Man 2020), August 2020 (conference) Accepted

Abstract
We propose a method which generates reactive robot behavior learned from human demonstration. In order to do so, we use the Playful programming language which is based on the reactive programming paradigm. This allows us to represent the learned behavior as a set of associations between sensor and motor primitives in a human readable script. Distinguishing between sensor and motor primitives introduces a supplementary level of granularity and more importantly enforces feedback, increasing adaptability and robustness. As the experimental section shows, useful behaviors may be learned from a single demonstration covering a very limited portion of the task space.

am

[BibTex]

[BibTex]


Category Level Object Pose Estimation via Neural Analysis-by-Synthesis
Category Level Object Pose Estimation via Neural Analysis-by-Synthesis

Chen, X., Dong, Z., Song, J., Geiger, A., Hilliges, O.

In European Conference on Computer Vision (ECCV), Springer International Publishing, Cham, August 2020 (inproceedings)

Abstract
Many object pose estimation algorithms rely on the analysis-by-synthesis framework which requires explicit representations of individual object instances. In this paper we combine a gradient-based fitting procedure with a parametric neural image synthesis module that is capable of implicitly representing the appearance, shape and pose of entire object categories, thus rendering the need for explicit CAD models per object instance unnecessary. The image synthesis network is designed to efficiently span the pose configuration space so that model capacity can be used to capture the shape and local appearance (i.e., texture) variations jointly. At inference time the synthesized images are compared to the target via an appearance based loss and the error signal is backpropagated through the network to the input parameters. Keeping the network parameters fixed, this allows for iterative optimization of the object pose, shape and appearance in a joint manner and we experimentally show that the method can recover orientation of objects with high accuracy from 2D images alone. When provided with depth measurements, to overcome scale ambiguities, the method can accurately recover the full 6DOF pose successfully.

avg

Project Page pdf suppmat [BibTex]

Project Page pdf suppmat [BibTex]


Learning of sub-optimal gait controllers for magnetic walking soft millirobots
Learning of sub-optimal gait controllers for magnetic walking soft millirobots

Culha, U., Demir, S. O., Trimpe, S., Sitti, M.

In Proceedings of Robotics: Science and Systems, July 2020, Culha and Demir are equally contributing authors (inproceedings)

Abstract
Untethered small-scale soft robots have promising applications in minimally invasive surgery, targeted drug delivery, and bioengineering applications as they can access confined spaces in the human body. However, due to highly nonlinear soft continuum deformation kinematics, inherent stochastic variability during fabrication at the small scale, and lack of accurate models, the conventional control methods cannot be easily applied. Adaptivity of robot control is additionally crucial for medical operations, as operation environments show large variability, and robot materials may degrade or change over time,which would have deteriorating effects on the robot motion and task performance. Therefore, we propose using a probabilistic learning approach for millimeter-scale magnetic walking soft robots using Bayesian optimization (BO) and Gaussian processes (GPs). Our approach provides a data-efficient learning scheme to find controller parameters while optimizing the stride length performance of the walking soft millirobot robot within a small number of physical experiments. We demonstrate adaptation to fabrication variabilities in three different robots and to walking surfaces with different roughness. We also show an improvement in the learning performance by transferring the learning results of one robot to the others as prior information.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


SIMULTANEOUS CALIBRATION METHOD FOR MAGNETIC LOCALIZATION AND ACTUATION SYSTEMS
SIMULTANEOUS CALIBRATION METHOD FOR MAGNETIC LOCALIZATION AND ACTUATION SYSTEMS

Sitti, M., Son, D., Dong, X.

June 2020, US Patent App. 16/696,605 (misc)

Abstract
The invention relates to a method of simultaneously calibrating magnetic actuation and sensing systems for a workspace, wherein the actuation system comprises a plurality of magnetic actuators and the sensing system comprises a plurality of magnetic sensors, wherein all the measured data is fed into a calibration model, wherein the calibration model is based on a sensor measurement model and a magnetic actuation model, and wherein a solution of the model parameters is found via a numerical solver order to calibrate both the actuation and sensing systems at the same time.

pi

[BibTex]


Statistical reprogramming of macroscopic self-assembly with dynamic boundaries
Statistical reprogramming of macroscopic self-assembly with dynamic boundaries

Culha, U., Davidson, Z. S., Mastrangeli, M., Sitti, M.

Proceedings of the National Academy of Sciences, 117(21):11306-11313, May 2020 (article)

Abstract
Self-assembly is a ubiquitous process that can generate complex and functional structures via local interactions among a large set of simpler components. The ability to program the self-assembly pathway of component sets elucidates fundamental physics and enables alternative competitive fabrication technologies. Reprogrammability offers further opportunities for tuning structural and material properties but requires reversible selection from multistable self-assembling patterns, which remains a challenge. Here, we show statistical reprogramming of two-dimensional (2D), noncompact self-assembled structures by the dynamic confinement of orbitally shaken and magnetically repulsive millimeter-scale particles. Under a constant shaking regime, we control the rate of radius change of an assembly arena via moving hard boundaries and select among a finite set of self-assembled patterns repeatably and reversibly. By temporarily trapping particles in topologically identified stable states, we also demonstrate 2D reprogrammable stiffness and three-dimensional (3D) magnetic clutching of the self-assembled structures. Our reprogrammable system has prospective implications for the design of granular materials in a multitude of physical scales where out-of-equilibrium self-assembly can be realized with different numbers or types of particles. Our dynamic boundary regulation may also enable robust bottom-up control strategies for novel robotic assembly applications by designing more complex spatiotemporal interactions using mobile robots.

pi

DOI [BibTex]

DOI [BibTex]


Gripping apparatus and method of producing a gripping apparatus
Gripping apparatus and method of producing a gripping apparatus

Song, S., Sitti, M., Drotlef, D., Majidi, C.

Google Patents, Febuary 2020, US Patent App. 16/610,209 (patent)

Abstract
The present invention relates to a gripping apparatus comprising a membrane; a flexible housing; with said membrane being fixedly connected to a periphery of the housing. The invention further relates to a method of producing a gripping apparatus.

pi

[BibTex]

[BibTex]


Method of actuating a shape changeable member, shape changeable member and actuating system
Method of actuating a shape changeable member, shape changeable member and actuating system

Hu, W., Lum, G. Z., Mastrangeli, M., Sitti, M.

Google Patents, January 2020, US Patent App. 16/477,593 (patent)

Abstract
The present invention relates to a method of actuating a shape changeable member of actuatable material. The invention further relates to a shape changeable member and to a system comprising such a shape changeable member and a magnetic field apparatus.

pi

[BibTex]


Self-supervised motion deblurring
Self-supervised motion deblurring

Liu, P., Janai, J., Pollefeys, M., Sattler, T., Geiger, A.

IEEE Robotics and Automation Letters, 2020 (article)

Abstract
Motion blurry images challenge many computer vision algorithms, e.g., feature detection, motion estimation, or object recognition. Deep convolutional neural networks are state-of-the-art for image deblurring. However, obtaining training data with corresponding sharp and blurry image pairs can be difficult. In this paper, we present a differentiable reblur model for self-supervised motion deblurring, which enables the network to learn from real-world blurry image sequences without relying on sharp images for supervision. Our key insight is that motion cues obtained from consecutive images yield sufficient information to inform the deblurring task. We therefore formulate deblurring as an inverse rendering problem, taking into account the physical image formation process: we first predict two deblurred images from which we estimate the corresponding optical flow. Using these predictions, we re-render the blurred images and minimize the difference with respect to the original blurry inputs. We use both synthetic and real dataset for experimental evaluations. Our experiments demonstrate that self-supervised single image deblurring is really feasible and leads to visually compelling results.

avg

pdf Project Page Blog [BibTex]

pdf Project Page Blog [BibTex]


Thermal Effects on the Crystallization Kinetics, and Interfacial Adhesion of Single-Crystal Phase-Change Gallium
Thermal Effects on the Crystallization Kinetics, and Interfacial Adhesion of Single-Crystal Phase-Change Gallium

Yunusa, M., Lahlou, A., Sitti, M.

Advanced Materials, Wiley Online Library, 2020 (article)

Abstract
Although substrates play an important role upon crystallization of supercooled liquids, the influences of surface temperature and thermal property have remained elusive. Here, the crystallization of supercooled phase‐change gallium (Ga) on substrates with different thermal conductivity is studied. The effect of interfacial temperature on the crystallization kinetics, which dictates thermo‐mechanical stresses between the substrate and the crystallized Ga, is investigated. At an elevated surface temperature, close to the melting point of Ga, an extended single‐crystal growth of Ga on dielectric substrates due to layering effect and annealing is realized without the application of external fields. Adhesive strength at the interfaces depends on the thermal conductivity and initial surface temperature of the substrates. This insight can be applicable to other liquid metals for industrial applications, and sheds more light on phase‐change memory crystallization.

pi

[BibTex]


Nanoerythrosome-functionalized biohybrid microswimmers
Nanoerythrosome-functionalized biohybrid microswimmers

Buss, N., Yasa, O., Alapan, Y., Akolpoglu, M. B., Sitti, M.

APL Bioengineering, 4, AIP Publishing LLC, 2020 (article)

pi

[BibTex]

[BibTex]


Injectable Nanoelectrodes Enable Wireless Deep Brain Stimulation of Native Tissue in Freely Moving Mice
Injectable Nanoelectrodes Enable Wireless Deep Brain Stimulation of Native Tissue in Freely Moving Mice

Kozielski, K. L., Jahanshahi, A., Gilbert, H. B., Yu, Y., Erin, O., Francisco, D., Alosaimi, F., Temel, Y., Sitti, M.

bioRxiv, Cold Spring Harbor Laboratory, 2020 (article)

pi

[BibTex]

[BibTex]


Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy
Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy

Son, D., Gilbert, H., Sitti, M.

Soft robotics, Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New …, 2020 (article)

pi

[BibTex]

[BibTex]


Mechanical coupling of puller and pusher active microswimmers influences motility
Mechanical coupling of puller and pusher active microswimmers influences motility

Singh, A. V., Kishore, V., Santamauro, G., Yasa, O., Bill, J., Sitti, M.

Langmuir, ACS Publications, 2020 (article)

pi

[BibTex]


Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image
Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image

Paschalidou, D., Gool, L., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
Humans perceive the 3D world as a set of distinct objects that are characterized by various low-level (geometry, reflectance) and high-level (connectivity, adjacency, symmetry) properties. Recent methods based on convolutional neural networks (CNNs) demonstrated impressive progress in 3D reconstruction, even when using a single 2D image as input. However, the majority of these methods focuses on recovering the local 3D geometry of an object without considering its part-based decomposition or relations between parts. We address this challenging problem by proposing a novel formulation that allows to jointly recover the geometry of a 3D object as a set of primitives as well as their latent hierarchical structure without part-level supervision. Our model recovers the higher level structural decomposition of various objects in the form of a binary tree of primitives, where simple parts are represented with fewer primitives and more complex parts are modeled with more components. Our experiments on the ShapeNet and D-FAUST datasets demonstrate that considering the organization of parts indeed facilitates reasoning about 3D geometry.

avg

pdf suppmat Video 2 Project Page Slides Poster Video 1 [BibTex]

pdf suppmat Video 2 Project Page Slides Poster Video 1 [BibTex]


Excursion Search for Constrained Bayesian Optimization under a Limited Budget of Failures
Excursion Search for Constrained Bayesian Optimization under a Limited Budget of Failures

Marco, A., Rohr, A. V., Baumann, D., Hernández-Lobato, J. M., Trimpe, S.

2020 (proceedings) In revision

Abstract
When learning to ride a bike, a child falls down a number of times before achieving the first success. As falling down usually has only mild consequences, it can be seen as a tolerable failure in exchange for a faster learning process, as it provides rich information about an undesired behavior. In the context of Bayesian optimization under unknown constraints (BOC), typical strategies for safe learning explore conservatively and avoid failures by all means. On the other side of the spectrum, non conservative BOC algorithms that allow failing may fail an unbounded number of times before reaching the optimum. In this work, we propose a novel decision maker grounded in control theory that controls the amount of risk we allow in the search as a function of a given budget of failures. Empirical validation shows that our algorithm uses the failures budget more efficiently in a variety of optimization experiments, and generally achieves lower regret, than state-of-the-art methods. In addition, we propose an original algorithm for unconstrained Bayesian optimization inspired by the notion of excursion sets in stochastic processes, upon which the failures-aware algorithm is built.

ics am

arXiv code (python) PDF [BibTex]


Towards 5-DoF Control of an Untethered Magnetic Millirobot via MRI Gradient Coils
Towards 5-DoF Control of an Untethered Magnetic Millirobot via MRI Gradient Coils

Onder Erin, D. A. M. E. T., Sitti, M.

In IEEE International Conference on Robotics and Automation (ICRA), 2020 (inproceedings)

pi

[BibTex]

[BibTex]


Microribbons composed of directionally self-assembled nanoflakes as highly stretchable ionic neural electrodes
Microribbons composed of directionally self-assembled nanoflakes as highly stretchable ionic neural electrodes

Zhang, M., Guo, R., Chen, K., Wang, Y., Niu, J., Guo, Y., Zhang, Y., Yin, Z., Xia, K., Zhou, B., Wang, H., He, W., Liu, J., Sitti, M., Zhang, Y.

Proceedings of the National Academy of Sciences, National Academy of Sciences, 2020 (article)

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms
Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms

Dong, X., Sitti, M.

The International Journal of Robotics Research, 2020 (article)

Abstract
Magnetically actuated mobile microrobots can access distant, enclosed, and small spaces, such as inside microfluidic channels and the human body, making them appealing for minimally invasive tasks. Despite their simplicity when scaling down, creating collective microrobots that can work closely and cooperatively, as well as reconfigure their formations for different tasks, would significantly enhance their capabilities such as manipulation of objects. However, a challenge of realizing such cooperative magnetic microrobots is to program and reconfigure their formations and collective motions with under-actuated control signals. This article presents a method of controlling 2D static and time-varying formations among collective self-repelling ferromagnetic microrobots (100 μm to 350 μm in diameter, up to 260 in number) by spatially and temporally programming an external magnetic potential energy distribution at the air–water interface or on solid surfaces. A general design method is introduced to program external magnetic potential energy using ferromagnets. A predictive model of the collective system is also presented to predict the formation and guide the design procedure. With the proposed method, versatile complex static formations are experimentally demonstrated and the programmability and scaling effects of formations are analyzed. We also demonstrate the collective mobility of these magnetic microrobots by controlling them to exhibit bio-inspired collective behaviors such as aggregation, directional motion with arbitrary swarm headings, and rotational swarming motion. Finally, the functions of the produced microrobotic swarm are demonstrated by controlling them to navigate through cluttered environments and complete reconfigurable cooperative manipulation tasks.

pi

DOI [BibTex]


Magnetic Resonance Imaging System--Driven Medical Robotics
Magnetic Resonance Imaging System–Driven Medical Robotics

Erin, O., Boyvat, M., Tiryaki, M. E., Phelan, M., Sitti, M.

Advanced Intelligent Systems, 2, Wiley Online Library, 2020 (article)

Abstract
Magnetic resonance imaging (MRI) system–driven medical robotics is an emerging field that aims to use clinical MRI systems not only for medical imaging but also for actuation, localization, and control of medical robots. Submillimeter scale resolution of MR images for soft tissues combined with the electromagnetic gradient coil–based magnetic actuation available inside MR scanners can enable theranostic applications of medical robots for precise image‐guided minimally invasive interventions. MRI‐driven robotics typically does not introduce new MRI instrumentation for actuation but instead focuses on converting already available instrumentation for robotic purposes. To use the advantages of this technology, various medical devices such as untethered mobile magnetic robots and tethered active catheters have been designed to be powered magnetically inside MRI systems. Herein, the state‐of‐the‐art progress, challenges, and future directions of MRI‐driven medical robotic systems are reviewed.

pi

[BibTex]

[BibTex]


Characterization and Thermal Management of a DC Motor-Driven Resonant Actuator for Miniature Mobile Robots with Oscillating Limbs
Characterization and Thermal Management of a DC Motor-Driven Resonant Actuator for Miniature Mobile Robots with Oscillating Limbs

Colmenares, D., Kania, R., Liu, M., Sitti, M.

arXiv preprint arXiv:2002.00798, 2020 (article)

Abstract
In this paper, we characterize the performance of and develop thermal management solutions for a DC motor-driven resonant actuator developed for flapping wing micro air vehicles. The actuator, a DC micro-gearmotor connected in parallel with a torsional spring, drives reciprocal wing motion. Compared to the gearmotor alone, this design increased torque and power density by 161.1% and 666.8%, respectively, while decreasing the drawn current by 25.8%. Characterization of the actuator, isolated from nonlinear aerodynamic loading, results in standard metrics directly comparable to other actuators. The micro-motor, selected for low weight considerations, operates at high power for limited duration due to thermal effects. To predict system performance, a lumped parameter thermal circuit model was developed. Critical model parameters for this micro-motor, two orders of magnitude smaller than those previously characterized, were identified experimentally. This included the effects of variable winding resistance, bushing friction, speed-dependent forced convection, and the addition of a heatsink. The model was then used to determine a safe operation envelope for the vehicle and to design a weight-optimal heatsink. This actuator design and thermal modeling approach could be applied more generally to improve the performance of any miniature mobile robot or device with motor-driven oscillating limbs or loads.

pi

[BibTex]


Pros and Cons: Magnetic versus Optical Microrobots
Pros and Cons: Magnetic versus Optical Microrobots

Sitti, M., Wiersma, D. S.

Advanced Materials, Wiley Online Library, 2020 (article)

Abstract
Mobile microrobotics has emerged as a new robotics field within the last decade to create untethered tiny robots that can access and operate in unprecedented, dangerous, or hard‐to‐reach small spaces noninvasively toward disruptive medical, biotechnology, desktop manufacturing, environmental remediation, and other potential applications. Magnetic and optical actuation methods are the most widely used actuation methods in mobile microrobotics currently, in addition to acoustic and biological (cell‐driven) actuation approaches. The pros and cons of these actuation methods are reported here, depending on the given context. They can both enable long‐range, fast, and precise actuation of single or a large number of microrobots in diverse environments. Magnetic actuation has unique potential for medical applications of microrobots inside nontransparent tissues at high penetration depths, while optical actuation is suitable for more biotechnology, lab‐/organ‐on‐a‐chip, and desktop manufacturing types of applications with much less surface penetration depth requirements or with transparent environments. Combining both methods in new robot designs can have a strong potential of combining the pros of both methods. There is still much progress needed in both actuation methods to realize the potential disruptive applications of mobile microrobots in real‐world conditions.

pi

[BibTex]

[BibTex]


Selectively Controlled Magnetic Microrobots with Opposing Helices
Selectively Controlled Magnetic Microrobots with Opposing Helices

Giltinan, J., Katsamba, P., Wang, W., Lauga, E., Sitti, M.

Applied Physics Letters, 116, AIP Publishing LLC, 2020 (article)

pi

[BibTex]

[BibTex]


no image
A Real-Robot Dataset for Assessing Transferability of Learned Dynamics Models

Agudelo-España, D., Zadaianchuk, A., Wenk, P., Garg, A., Akpo, J., Grimminger, F., Viereck, J., Naveau, M., Righetti, L., Martius, G., Krause, A., Schölkopf, B., Bauer, S., Wüthrich, M.

IEEE International Conference on Robotics and Automation (ICRA), 2020 (conference) Accepted

am al ei mg

Project Page PDF [BibTex]

Project Page PDF [BibTex]


Towards Unsupervised Learning of Generative Models for 3D Controllable Image Synthesis
Towards Unsupervised Learning of Generative Models for 3D Controllable Image Synthesis

Liao, Y., Schwarz, K., Mescheder, L., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
In recent years, Generative Adversarial Networks have achieved impressive results in photorealistic image synthesis. This progress nurtures hopes that one day the classical rendering pipeline can be replaced by efficient models that are learned directly from images. However, current image synthesis models operate in the 2D domain where disentangling 3D properties such as camera viewpoint or object pose is challenging. Furthermore, they lack an interpretable and controllable representation. Our key hypothesis is that the image generation process should be modeled in 3D space as the physical world surrounding us is intrinsically three-dimensional. We define the new task of 3D controllable image synthesis and propose an approach for solving it by reasoning both in 3D space and in the 2D image domain. We demonstrate that our model is able to disentangle latent 3D factors of simple multi-object scenes in an unsupervised fashion from raw images. Compared to pure 2D baselines, it allows for synthesizing scenes that are consistent wrt. changes in viewpoint or object pose. We further evaluate various 3D representations in terms of their usefulness for this challenging task.

avg

pdf suppmat Video 2 Project Page Video 1 Slides Poster [BibTex]

pdf suppmat Video 2 Project Page Video 1 Slides Poster [BibTex]


Microscale Polarization Color Pixels from Liquid Crystal Elastomers
Microscale Polarization Color Pixels from Liquid Crystal Elastomers

Guo, Y., Shahsavan, H., Sitti, M.

Advanced Optical Materials, Wiley Online Library, 2020 (article)

pi

[BibTex]

[BibTex]


Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications
Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications

Souri, H., Banerjee, H., Jusufi, A., Radacsi, N., Stokes, A. A., Park, I., Sitti, M., Amjadi, M.

Advanced Intelligent Systems, 2020 (article)

bio pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Ultrasound-guided Wireless Tubular Robotic Anchoring System
Ultrasound-guided Wireless Tubular Robotic Anchoring System

Wang, T., Hu, W., Ren, Z., Sitti, M.

IEEE Robotics and Automation Letters, 5, pages: 4859 - 4866, IEEE, 2020 (article)

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Combining learned and analytical models for predicting action effects from sensory data
Combining learned and analytical models for predicting action effects from sensory data

Kloss, A., Schaal, S., Bohg, J.

International Journal of Robotics Research, 2020 (article) Accepted

Abstract
One of the most basic skills a robot should possess is predicting the effect of physical interactions with objects in the environment. This enables optimal action selection to reach a certain goal state. Traditionally, dynamics are approximated by physics-based analytical models. These models rely on specific state representations that may be hard to obtain from raw sensory data, especially if no knowledge of the object shape is assumed. More recently, we have seen learning approaches that can predict the effect of complex physical interactions directly from sensory input. It is however an open question how far these models generalize beyond their training data. In this work, we investigate the advantages and limitations of neural network based learning approaches for predicting the effects of actions based on sensory input and show how analytical and learned models can be combined to leverage the best of both worlds. As physical interaction task, we use planar pushing, for which there exists a well-known analytical model and a large real-world dataset. We propose to use a convolutional neural network to convert raw depth images or organized point clouds into a suitable representation for the analytical model and compare this approach to using neural networks for both, perception and prediction. A systematic evaluation of the proposed approach on a very large real-world dataset shows two main advantages of the hybrid architecture. Compared to a pure neural network, it significantly (i) reduces required training data and (ii) improves generalization to novel physical interaction.

am

arXiv pdf link (url) [BibTex]


Microfibers with mushroom-shaped tips for optimal adhesion
Microfibers with mushroom-shaped tips for optimal adhesion

Sitti, M., Aksak, B.

Google Patents, 2020, US Patent 10,689,549 (misc)

pi

[BibTex]

[BibTex]


Learning Neural Light Transport
Learning Neural Light Transport

Sanzenbacher, P., Mescheder, L., Geiger, A.

Arxiv, 2020 (article)

Abstract
In recent years, deep generative models have gained significance due to their ability to synthesize natural-looking images with applications ranging from virtual reality to data augmentation for training computer vision models. While existing models are able to faithfully learn the image distribution of the training set, they often lack controllability as they operate in 2D pixel space and do not model the physical image formation process. In this work, we investigate the importance of 3D reasoning for photorealistic rendering. We present an approach for learning light transport in static and dynamic 3D scenes using a neural network with the goal of predicting photorealistic images. In contrast to existing approaches that operate in the 2D image domain, our approach reasons in both 3D and 2D space, thus enabling global illumination effects and manipulation of 3D scene geometry. Experimentally, we find that our model is able to produce photorealistic renderings of static and dynamic scenes. Moreover, it compares favorably to baselines which combine path tracing and image denoising at the same computational budget.

avg

arxiv [BibTex]


Cohesive self-organization of mobile microrobotic swarms
Cohesive self-organization of mobile microrobotic swarms

Yigit, B., Alapan, Y., Sitti, M.

arXiv preprint arXiv:1907.05856, 2020 (article)

pi

[BibTex]

[BibTex]


Bio-inspired Flexible Twisting Wings Increase Lift and Efficiency of a Flapping Wing Micro Air Vehicle
Bio-inspired Flexible Twisting Wings Increase Lift and Efficiency of a Flapping Wing Micro Air Vehicle

Colmenares, D., Kania, R., Zhang, W., Sitti, M.

arXiv preprint arXiv:2001.11586, 2020 (article)

Abstract
We investigate the effect of wing twist flexibility on lift and efficiency of a flapping-wing micro air vehicle capable of liftoff. Wings used previously were chosen to be fully rigid due to modeling and fabrication constraints. However, biological wings are highly flexible and other micro air vehicles have successfully utilized flexible wing structures for specialized tasks. The goal of our study is to determine if dynamic twisting of flexible wings can increase overall aerodynamic lift and efficiency. A flexible twisting wing design was found to increase aerodynamic efficiency by 41.3%, translational lift production by 35.3%, and the effective lift coefficient by 63.7% compared to the rigid-wing design. These results exceed the predictions of quasi-steady blade element models, indicating the need for unsteady computational fluid dynamics simulations of twisted flapping wings.

pi

[BibTex]

[BibTex]


Acoustically powered surface-slipping mobile microrobots
Acoustically powered surface-slipping mobile microrobots

Aghakhani, A., Yasa, O., Wrede, P., Sitti, M.

Proceedings of the National Academy of Sciences, 117, National Acad Sciences, 2020 (article)

Abstract
Untethered synthetic microrobots have significant potential to revolutionize minimally invasive medical interventions in the future. However, their relatively slow speed and low controllability near surfaces typically are some of the barriers standing in the way of their medical applications. Here, we introduce acoustically powered microrobots with a fast, unidirectional surface-slipping locomotion on both flat and curved surfaces. The proposed three-dimensionally printed, bullet-shaped microrobot contains a spherical air bubble trapped inside its internal body cavity, where the bubble is resonated using acoustic waves. The net fluidic flow due to the bubble oscillation orients the microrobot's axisymmetric axis perpendicular to the wall and then propels it laterally at very high speeds (up to 90 body lengths per second with a body length of 25 µm) while inducing an attractive force toward the wall. To achieve unidirectional locomotion, a small fin is added to the microrobot’s cylindrical body surface, which biases the propulsion direction. For motion direction control, the microrobots are coated anisotropically with a soft magnetic nanofilm layer, allowing steering under a uniform magnetic field. Finally, surface locomotion capability of the microrobots is demonstrated inside a three-dimensional circular cross-sectional microchannel under acoustic actuation. Overall, the combination of acoustic powering and magnetic steering can be effectively utilized to actuate and navigate these microrobots in confined and hard-to-reach body location areas in a minimally invasive fashion.

pi

[BibTex]

[BibTex]


Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving
Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving

Prakash, A., Behl, A., Ohn-Bar, E., Chitta, K., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
Data aggregation techniques can significantly improve vision-based policy learning within a training environment, e.g., learning to drive in a specific simulation condition. However, as on-policy data is sequentially sampled and added in an iterative manner, the policy can specialize and overfit to the training conditions. For real-world applications, it is useful for the learned policy to generalize to novel scenarios that differ from the training conditions. To improve policy learning while maintaining robustness when training end-to-end driving policies, we perform an extensive analysis of data aggregation techniques in the CARLA environment. We demonstrate how the majority of them have poor generalization performance, and develop a novel approach with empirically better generalization performance compared to existing techniques. Our two key ideas are (1) to sample critical states from the collected on-policy data based on the utility they provide to the learned policy in terms of driving behavior, and (2) to incorporate a replay buffer which progressively focuses on the high uncertainty regions of the policy's state distribution. We evaluate the proposed approach on the CARLA NoCrash benchmark, focusing on the most challenging driving scenarios with dense pedestrian and vehicle traffic. Our approach improves driving success rate by 16% over state-of-the-art, achieving 87% of the expert performance while also reducing the collision rate by an order of magnitude without the use of any additional modality, auxiliary tasks, architectural modifications or reward from the environment.

avg

pdf suppmat Video 2 Project Page Slides Video 1 [BibTex]

pdf suppmat Video 2 Project Page Slides Video 1 [BibTex]


no image
Morphology-Dependent Immunogenicity Obliges a Compromise on the Locomotion-Focused Design of Medical Microrobots

Ceren, , Hakan, , Ugur, , Anna-Maria, , Metin,

Science Robotics, 2020 (article) Accepted

pi

[BibTex]

[BibTex]


Selection for Function: From Chemically Synthesized Prototypes to 3D-Printed Microdevices
Selection for Function: From Chemically Synthesized Prototypes to 3D-Printed Microdevices

Bachmann, F., Giltinan, J., Codutti, A., Klumpp, S., Sitti, M., Faivre, D.

Advanced Intelligent Systems, 2020 (article)

pi

[BibTex]

[BibTex]


Biosynthetic self-healing materials for soft machines
Biosynthetic self-healing materials for soft machines

Pena-Francesch, A., Jung, H., Demirel, M. C., Sitti, M.

Nature Materials , 2020 (article)

pi

DOI [BibTex]

DOI [BibTex]


Bioinspired underwater locomotion of light-driven liquid crystal gels
Bioinspired underwater locomotion of light-driven liquid crystal gels

Shahsavan, H., Aghakhani, A., Zeng, H., Guo, Y., Davidson, Z. S., Priimagi, A., Sitti, M.

Proceedings of the National Academy of Sciences, National Acad Sciences, 2020 (article)

Abstract
Untethered dynamic shape programming and control of soft materials have significant applications in technologies such as soft robots, medical devices, organ-on-a-chip, and optical devices. Here, we present a solution to remotely actuate and move soft materials underwater in a fast, efficient, and controlled manner using photoresponsive liquid crystal gels (LCGs). LCG constructs with engineered molecular alignment show a low and sharp phase-transition temperature and experience considerable density reduction by light exposure, thereby allowing rapid and reversible shape changes. We demonstrate different modes of underwater locomotion, such as crawling, walking, jumping, and swimming, by localized and time-varying illumination of LCGs. The diverse locomotion modes of smart LCGs can provide a new toolbox for designing efficient light-fueled soft robots in fluid-immersed media.

pi

[BibTex]

[BibTex]


Learning Situational Driving
Learning Situational Driving

Ohn-Bar, E., Prakash, A., Behl, A., Chitta, K., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
Human drivers have a remarkable ability to drive in diverse visual conditions and situations, e.g., from maneuvering in rainy, limited visibility conditions with no lane markings to turning in a busy intersection while yielding to pedestrians. In contrast, we find that state-of-the-art sensorimotor driving models struggle when encountering diverse settings with varying relationships between observation and action. To generalize when making decisions across diverse conditions, humans leverage multiple types of situation-specific reasoning and learning strategies. Motivated by this observation, we develop a framework for learning a situational driving policy that effectively captures reasoning under varying types of scenarios. Our key idea is to learn a mixture model with a set of policies that can capture multiple driving modes. We first optimize the mixture model through behavior cloning, and show it to result in significant gains in terms of driving performance in diverse conditions. We then refine the model by directly optimizing for the driving task itself, i.e., supervised with the navigation task reward. Our method is more scalable than methods assuming access to privileged information, e.g., perception labels, as it only assumes demonstration and reward-based supervision. We achieve over 98% success rate on the CARLA driving benchmark as well as state-of-the-art performance on a newly introduced generalization benchmark.

avg

pdf suppmat Video 2 Project Page Video 1 Slides [BibTex]

pdf suppmat Video 2 Project Page Video 1 Slides [BibTex]


On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner
On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner

Schmitt, C., Donne, S., Riegler, G., Koltun, V., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
We propose a novel formulation for joint recovery of camera pose, object geometry and spatially-varying BRDF. The input to our approach is a sequence of RGB-D images captured by a mobile, hand-held scanner that actively illuminates the scene with point light sources. Compared to previous works that jointly estimate geometry and materials from a hand-held scanner, we formulate this problem using a single objective function that can be minimized using off-the-shelf gradient-based solvers. By integrating material clustering as a differentiable operation into the optimization process, we avoid pre-processing heuristics and demonstrate that our model is able to determine the correct number of specular materials independently. We provide a study on the importance of each component in our formulation and on the requirements of the initial geometry. We show that optimizing over the poses is crucial for accurately recovering fine details and that our approach naturally results in a semantically meaningful material segmentation.

avg

pdf Project Page Slides Video Poster [BibTex]

pdf Project Page Slides Video Poster [BibTex]