Header logo is


2020


Gripping apparatus and method of producing a gripping apparatus
Gripping apparatus and method of producing a gripping apparatus

Song, S., Sitti, M., Drotlef, D., Majidi, C.

Google Patents, Febuary 2020, US Patent App. 16/610,209 (patent)

Abstract
The present invention relates to a gripping apparatus comprising a membrane; a flexible housing; with said membrane being fixedly connected to a periphery of the housing. The invention further relates to a method of producing a gripping apparatus.

pi

[BibTex]

2020


[BibTex]


Method of actuating a shape changeable member, shape changeable member and actuating system
Method of actuating a shape changeable member, shape changeable member and actuating system

Hu, W., Lum, G. Z., Mastrangeli, M., Sitti, M.

Google Patents, January 2020, US Patent App. 16/477,593 (patent)

Abstract
The present invention relates to a method of actuating a shape changeable member of actuatable material. The invention further relates to a shape changeable member and to a system comprising such a shape changeable member and a magnetic field apparatus.

pi

[BibTex]


Methods, apparatuses, and systems for micromanipulation with adhesive fibrillar structures
Methods, apparatuses, and systems for micromanipulation with adhesive fibrillar structures

Sitti, M., Mengüç, Y.

US Patent 9,731,422, 2017 (patent)

Abstract
The present invention are methods for fabrication of micro- and/or nano-scale adhesive fibers and their use for movement and manipulation of objects. Further disclosed is a method of manipulating a part by providing a manipulation device with a plurality of fibers, where each fiber has a tip with a flat surface that is parallel to a backing layer, contacting the flat surfaces on an object, moving the object to a new location, then disengaging the tips from the object.

pi

link (url) [BibTex]


Methods of forming dry adhesive structures
Methods of forming dry adhesive structures

Sitti, M., Murphy, M., Aksak, B.

September 2015, US Patent 9,120,953 (patent)

Abstract
Methods of forming dry adhesives including a method of making a dry adhesive including applying a liquid polymer to the second end of the stem, molding the liquid polymer on the stem in a mold, wherein the mold includes a recess having a cross-sectional area that is less than a cross-sectional area of the second end of the stem, curing the liquid polymer in the mold to form a tip at the second end of the stem, wherein the tip includes a second layer stem; corresponding to the recess in the mold, and removing the tip from the mold after the liquid polymer cures.

pi

[BibTex]

[BibTex]


Micro-fiber arrays with tip coating and transfer method for preparing same
Micro-fiber arrays with tip coating and transfer method for preparing same

Sitti, M., Washburn, N. R., Glass, P. S., Chung, H.

July 2015, US Patent 9,079,215 (patent)

Abstract
Present invention describes a patterned and coated micro- and nano-scale fibers elastomeric material for enhanced adhesion in wet or dry environments. A multi-step fabrication process including optical lithography, micromolding, polymer synthesis, dipping, stamping, and photopolymerization is described to produce uniform arrays of micron-scale fibers with mushroom-shaped tips coated with a thin layer of an intrinsically adhesive synthetic polymer, such as lightly crosslinked p(DMA-co-MEA).

pi

[BibTex]

[BibTex]


Dry adhesives and methods for making dry adhesives
Dry adhesives and methods for making dry adhesives

Sitti, M., Murphy, M., Aksak, B.

March 2015, US Patent App. 14/625,162 (patent)

Abstract
Dry adhesives and methods for forming dry adhesives. A method of forming a dry adhesive structure on a substrate, comprises: forming a template backing layer of energy sensitive material on the substrate; forming a template layer of energy sensitive material on the template backing layer; exposing the template layer to a predetermined pattern of energy; removing a portion of the template layer related to the predetermined pattern of energy, and leaving a template structure formed from energy sensitive material and connected to the substrate via the template backing layer.

pi

[BibTex]

[BibTex]

2006


no image
Acquiring web page information without commitment to downloading the web page

Heilbron, L., Platt, J. C., Schölkopf, B., Simard, P. Y.

United States Patent, No 7155489, December 2006 (patent)

ei

[BibTex]

2006


[BibTex]


no image
Interactive images

Schölkopf, B., Toyama, K., Uyttendaele, M.

United States Patent, No 7120293, October 2006 (patent)

ei

[BibTex]

[BibTex]


no image
Pattern detection methods and systems and face detection methods and systems

Blake, A., Romdhani, S., Schölkopf, B., Torr, P. H. S.

United States Patent, No 7099504, August 2006 (patent)

ei

[BibTex]

[BibTex]


no image
MR/PET Attenuation Correction

Hofmann, M., Schölkopf, B., Steinke, F., Pichler, B.

Max-Planck-Gesellschaft, Biologische Kybernetik, July 2006 (patent)

ei

[BibTex]

[BibTex]


no image
Apparatus for Inspecting Alignment Film of Liquid Crystal Display and Method Thereof

Park, MW., Son, HI., Kim, SJ., Kim, KI., Yang, JW.

Max-Planck-Gesellschaft, Biologische Kybernetik, 2006 (patent)

ei

[BibTex]

[BibTex]


no image
Apparatus for Inspecting Flat Panel Display and Method Thereof

Yang, JW., Kim, KI., Son, HI.

Max-Planck-Gesellschaft, Biologische Kybernetik, 2006 (patent)

ei

[BibTex]

[BibTex]