Header logo is


2020


no image
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach

Karimi*, A., von Kügelgen*, J., Schölkopf, B., Valera, I.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020, *equal contribution (conference) Accepted

ei

arXiv [BibTex]

2020


arXiv [BibTex]


Grasping Field: Learning Implicit Representations for Human Grasps
Grasping Field: Learning Implicit Representations for Human Grasps

Karunratanakul, K., Yang, J., Zhang, Y., Black, M., Muandet, K., Tang, S.

In International Conference on 3D Vision (3DV), November 2020 (inproceedings)

Abstract
Robotic grasping of house-hold objects has made remarkable progress in recent years. Yet, human grasps are still difficult to synthesize realistically. There are several key reasons: (1) the human hand has many degrees of freedom (more than robotic manipulators); (2) the synthesized hand should conform to the surface of the object; and (3) it should interact with the object in a semantically and physically plausible manner. To make progress in this direction, we draw inspiration from the recent progress on learning-based implicit representations for 3D object reconstruction. Specifically, we propose an expressive representation for human grasp modelling that is efficient and easy to integrate with deep neural networks. Our insight is that every point in a three-dimensional space can be characterized by the signed distances to the surface of the hand and the object, respectively. Consequently, the hand, the object, and the contact area can be represented by implicit surfaces in a common space, in which the proximity between the hand and the object can be modelled explicitly. We name this 3D to 2D mapping as Grasping Field, parameterize it with a deep neural network, and learn it from data. We demonstrate that the proposed grasping field is an effective and expressive representation for human grasp generation. Specifically, our generative model is able to synthesize high-quality human grasps, given only on a 3D object point cloud. The extensive experiments demonstrate that our generative model compares favorably with a strong baseline and approaches the level of natural human grasps. Furthermore, based on the grasping field representation, we propose a deep network for the challenging task of 3D hand-object interaction reconstruction from a single RGB image. Our method improves the physical plausibility of the hand-object contact reconstruction and achieves comparable performance for 3D hand reconstruction compared to state-of-the-art methods. Our model and code are available for research purpose at https://github.com/korrawe/grasping_field.

ei ps

pdf arXiv code [BibTex]


no image
MYND: Unsupervised Evaluation of Novel BCI Control Strategies on Consumer Hardware

Hohmann, M. R., Konieczny, L., Hackl, M., Wirth, B., Zaman, T., Enficiaud, R., Grosse-Wentrup, M., Schölkopf, B.

Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (UIST), October 2020 (conference) Accepted

ei

arXiv DOI [BibTex]

arXiv DOI [BibTex]


A Gamified App that Helps People Overcome Self-Limiting Beliefs by Promoting Metacognition
A Gamified App that Helps People Overcome Self-Limiting Beliefs by Promoting Metacognition

Amo, V., Lieder, F.

SIG 8 Meets SIG 16, September 2020 (conference) Accepted

Abstract
Previous research has shown that approaching learning with a growth mindset is key for maintaining motivation and overcoming setbacks. Mindsets are systems of beliefs that people hold to be true. They influence a person's attitudes, thoughts, and emotions when they learn something new or encounter challenges. In clinical psychology, metareasoning (reflecting on one's mental processes) and meta-awareness (recognizing thoughts as mental events instead of equating them to reality) have proven effective for overcoming maladaptive thinking styles. Hence, they are potentially an effective method for overcoming self-limiting beliefs in other domains as well. However, the potential of integrating assisted metacognition into mindset interventions has not been explored yet. Here, we propose that guiding and training people on how to leverage metareasoning and meta-awareness for overcoming self-limiting beliefs can significantly enhance the effectiveness of mindset interventions. To test this hypothesis, we develop a gamified mobile application that guides and trains people to use metacognitive strategies based on Cognitive Restructuring (CR) and Acceptance Commitment Therapy (ACT) techniques. The application helps users to identify and overcome self-limiting beliefs by working with aversive emotions when they are triggered by fixed mindsets in real-life situations. Our app aims to help people sustain their motivation to learn when they face inner obstacles (e.g. anxiety, frustration, and demotivation). We expect the application to be an effective tool for helping people better understand and develop the metacognitive skills of emotion regulation and self-regulation that are needed to overcome self-limiting beliefs and develop growth mindsets.

re

A gamified app that helps people overcome self-limiting beliefs by promoting metacognition [BibTex]


no image
Model-Agnostic Counterfactual Explanations for Consequential Decisions

Karimi, A., Barthe, G., Balle, B., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 895-905, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei plg

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
More Powerful Selective Kernel Tests for Feature Selection

Lim, J. N., Yamada, M., Jitkrittum, W., Terada, Y., Matsui, S., Shimodaira, H.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 820-830, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Bayesian Online Prediction of Change Points

Agudelo-España, D., Gomez-Gonzalez, S., Bauer, S., Schölkopf, B., Peters, J.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 320-329, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Semi-supervised learning, causality, and the conditional cluster assumption

von Kügelgen, J., Mey, A., Loog, M., Schölkopf, B.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI) , 124, pages: 1-10, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Kernel Conditional Moment Test via Maximum Moment Restriction

Muandet, K., Jitkrittum, W., Kübler, J. M.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 41-50, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
On the design of consequential ranking algorithms

Tabibian, B., Gómez, V., De, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 171-180, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Importance Sampling via Local Sensitivity

Raj, A., Musco, C., Mackey, L.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 3099-3109, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
A Continuous-time Perspective for Modeling Acceleration in Riemannian Optimization

F Alimisis, F., Orvieto, A., Becigneul, G., Lucchi, A.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 1297-1307, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Fair Decisions Despite Imperfect Predictions

Kilbertus, N., Gomez Rodriguez, M., Schölkopf, B., Muandet, K., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 277-287, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei plg

link (url) [BibTex]

link (url) [BibTex]


no image
Integrals over Gaussians under Linear Domain Constraints

Gessner, A., Kanjilal, O., Hennig, P.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 2764-2774, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Modular Block-diagonal Curvature Approximations for Feedforward Architectures

Dangel, F., Harmeling, S., Hennig, P.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 799-808, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Testing Goodness of Fit of Conditional Density Models with Kernels

Jitkrittum, W., Kanagawa, H., Schölkopf, B.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 221-230, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
How to navigate everyday distractions: Leveraging optimal feedback to train attention control

Wirzberger, M., Lado, A., Eckerstorfer, L., Oreshnikov, I., Passy, J., Stock, A., Shenhav, A., Lieder, F.

Annual Meeting of the Cognitive Science Society, July 2020 (conference)

Abstract
To stay focused on their chosen tasks, people have to inhibit distractions. The underlying attention control skills can improve through reinforcement learning, which can be accelerated by giving feedback. We applied the theory of metacognitive reinforcement learning to develop a training app that gives people optimal feedback on their attention control while they are working or studying. In an eight-day field experiment with 99 participants, we investigated the effect of this training on people's productivity, sustained attention, and self-control. Compared to a control condition without feedback, we found that participants receiving optimal feedback learned to focus increasingly better (f = .08, p < .01) and achieved higher productivity scores (f = .19, p < .01) during the training. In addition, they evaluated their productivity more accurately (r = .12, p < .01). However, due to asymmetric attrition problems, these findings need to be taken with a grain of salt.

re sf

How to navigate everyday distractions: Leveraging optimal feedback to train attention control DOI Project Page [BibTex]


no image
Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization

Negiar, G., Dresdner, G., Tsai, A. Y., El Ghaoui, L., Locatello, F., Freund, R. M., Pedregosa, F.

37th International Conference on Machine Learning (ICML), pages: 296-305, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Variational Autoencoders with Riemannian Brownian Motion Priors

Kalatzis, D., Eklund, D., Arvanitidis, G., Hauberg, S.

37th International Conference on Machine Learning (ICML), pages: 6789-6799, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Variational Bayes in Private Settings (VIPS) (Extended Abstract)

Foulds, J. R., Park, M., Chaudhuri, K., Welling, M.

Proceedings of the 29th International Joint Conference on Artificial Intelligence, (IJCAI-PRICAI), pages: 5050-5054, (Editors: Christian Bessiere), International Joint Conferences on Artificial Intelligence Organization, July 2020, Journal track (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Weakly-Supervised Disentanglement Without Compromises

Locatello, F., Poole, B., Rätsch, G., Schölkopf, B., Bachem, O., Tschannen, M.

37th International Conference on Machine Learning (ICML), pages: 7753-7764, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Constant Curvature Graph Convolutional Networks

Bachmann*, G., Becigneul*, G., Ganea, O.

37th International Conference on Machine Learning (ICML), pages: 9118-9128, July 2020, *equal contribution (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

Kristiadi, A., Hein, M., Hennig, P.

37th International Conference on Machine Learning (ICML), pages: 1226-1236, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Leveraging Machine Learning to Automatically Derive Robust Planning Strategies from Biased Models of the Environment

Kemtur, A., Jain, Y. R., Mehta, A., Callaway, F., Consul, S., Stojcheski, J., Lieder, F.

CogSci 2020, July 2020, Anirudha Kemtur and Yash Raj Jain contributed equally to this publication. (conference)

Abstract
Teaching clever heuristics is a promising approach to improve decision-making. We can leverage machine learning to discover clever strategies automatically. Current methods require an accurate model of the decision problems people face in real life. But most models are misspecified because of limited information and cognitive biases. To address this problem we develop strategy discovery methods that are robust to model misspecification. Robustness is achieved by model-ing model-misspecification and handling uncertainty about the real-world according to Bayesian inference. We translate our methods into an intelligent tutor that automatically discovers and teaches robust planning strategies. Our robust cognitive tutor significantly improved human decision-making when the model was so biased that conventional cognitive tutors were no longer effective. These findings highlight that our robust strategy discovery methods are a significant step towards leveraging artificial intelligence to improve human decision-making in the real world.

re

Project Page [BibTex]

Project Page [BibTex]


no image
Differentiable Likelihoods for Fast Inversion of ‘Likelihood-Free’ Dynamical Systems

Kersting, H., Krämer, N., Schiegg, M., Daniel, C., Tiemann, M., Hennig, P.

37th International Conference on Machine Learning (ICML), pages: 2655-2665, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Kernel Conditional Density Operators

Schuster, I., Mollenhauer, M., Klus, S., Muandet, K.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 993-1004, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, June 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
A Kernel Mean Embedding Approach to Reducing Conservativeness in Stochastic Programming and Control

Zhu, J., Diehl, M., Schölkopf, B.

2nd Annual Conference on Learning for Dynamics and Control (L4DC), 120, pages: 915-923, Proceedings of Machine Learning Research, (Editors: Alexandre M. Bayen and Ali Jadbabaie and George Pappas and Pablo A. Parrilo and Benjamin Recht and Claire Tomlin and Melanie Zeilinger), PMLR, June 2020 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


FootTile: a Rugged Foot Sensor for Force and Center of Pressure Sensing in Soft Terrain
FootTile: a Rugged Foot Sensor for Force and Center of Pressure Sensing in Soft Terrain

Felix Ruppert, , Badri-Spröwitz, A.

In Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, International Conference on Robotics and Automation, May 2020 (inproceedings) Accepted

Abstract
In this paper, we present FootTile, a foot sensor for reaction force and center of pressure sensing in challenging terrain. We compare our sensor design to standard biomechanical devices, force plates and pressure plates. We show that FootTile can accurately estimate force and pressure distribution during legged locomotion. FootTile weighs 0.9g, has a sampling rate of 330 Hz, a footprint of 10×10 mm and can easily be adapted in sensor range to the required load case. In three experiments, we validate: first, the performance of the individual sensor, second an array of FootTiles for center of pressure sensing and third the ground reaction force estimation during locomotion in granular substrate. We then go on to show the accurate sensing capabilities of the waterproof sensor in liquid mud, as a showcase for real world rough terrain use.

dlg

Youtube1 Youtube2 Presentation link (url) [BibTex]

Youtube1 Youtube2 Presentation link (url) [BibTex]


no image
Disentangling Factors of Variations Using Few Labels

Locatello, F., Tschannen, M., Bauer, S., Rätsch, G., Schölkopf, B., Bachem, O.

8th International Conference on Learning Representations (ICLR), April 2020 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Mixed-curvature Variational Autoencoders

Skopek, O., Ganea, O., Becigneul, G.

8th International Conference on Learning Representations (ICLR), April 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Non-linear interlinkages and key objectives amongst the Paris Agreement and the Sustainable Development Goals
Non-linear interlinkages and key objectives amongst the Paris Agreement and the Sustainable Development Goals

Laumann, F., von Kügelgen, J., Barahona, M.

ICLR 2020 Workshop "Tackling Climate Change with Machine Learning", April 2020 (conference)

ei

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
Counterfactuals uncover the modular structure of deep generative models

Besserve, M., Mehrjou, A., Sun, R., Schölkopf, B.

8th International Conference on Learning Representations (ICLR), April 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Towards causal generative scene models via competition of experts
Towards causal generative scene models via competition of experts

von Kügelgen*, J., Ustyuzhaninov*, I., Gehler, P., Bethge, M., Schölkopf, B.

ICLR 2020 Workshop "Causal Learning for Decision Making", April 2020, *equal contribution (conference)

ei

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
On Mutual Information Maximization for Representation Learning

Tschannen, M., Djolonga, J., Rubenstein, P. K., Gelly, S., Lucic, M.

8th International Conference on Learning Representations (ICLR), April 2020 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

8th International Conference on Learning Representations (ICLR) , April 2020, *equal contribution (conference)

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

ei ps

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Radial and Directional Posteriors for Bayesian Deep Learning

Oh, C., Adamczewski, K., Park, M.

Proceedings of the 34th Conference on Artificial Intelligence (AAAI), 34(4):5298-5305, AAAI Press, Febuary 2020, AAAI Technical Track: Machine Learning (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
ODIN: ODE-Informed Regression for Parameter and State Inference in Time-Continuous Dynamical Systems

Wenk, P., Abbati, G., Osborne, M. A., Schölkopf, B., Krause, A., Bauer, S.

Proceedings of the 34th Conference on Artificial Intelligence (AAAI), 34(4):6364-6371, AAAI Press, Febuary 2020, AAAI Technical Track: Machine Learning (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Interpretable and Differentially Private Predictions

Harder, F., Bauer, M., Park, M.

Proceedings of the 34th Conference on Artificial Intelligence (AAAI), 34(4):4083-4090, AAAI Press, Febuary 2020, AAAI Technical Track: Machine Learning (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Commentary on the Unsupervised Learning of Disentangled Representations

Locatello, F., Bauer, S., Lucic, M., Rätsch, G., Gelly, S., Schölkopf, B., Bachem, O.

Proceedings of the 34th Conference on Artificial Intelligence (AAAI), 34(9):13681-13684, AAAI Press, Febuary 2020, Sister Conference Track (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
ACTrain: Ein KI-basiertes Aufmerksamkeitstraining für die Wissensarbeit [ACTrain: An AI-based attention training for knowledge work]

Wirzberger, M., Oreshnikov, I., Passy, J., Lado, A., Shenhav, A., Lieder, F.

66th Spring Conference of the German Ergonomics Society, 2020 (conference)

Abstract
Unser digitales Zeitalter lebt von Informationen und stellt unsere begrenzte Verarbeitungskapazität damit täglich auf die Probe. Gerade in der Wissensarbeit haben ständige Ablenkungen erhebliche Leistungseinbußen zur Folge. Unsere intelligente Anwendung ACTrain setzt genau an dieser Stelle an und verwandelt Computertätigkeiten in eine Trainingshalle für den Geist. Feedback auf Basis maschineller Lernverfahren zeigt anschaulich den Wert auf, sich nicht von einer selbst gewählten Aufgabe ablenken zu lassen. Diese metakognitive Einsicht soll zum Durchhalten motivieren und das zugrunde liegende Fertigkeitsniveau der Aufmerksamkeitskontrolle stärken. In laufenden Feldexperimenten untersuchen wir die Frage, ob das Training mit diesem optimalen Feedback die Aufmerksamkeits- und Selbstkontrollfertigkeiten im Vergleich zu einer Kontrollgruppe ohne Feedback verbessern kann.

re sf

link (url) Project Page [BibTex]


no image
A Real-Robot Dataset for Assessing Transferability of Learned Dynamics Models

Agudelo-España, D., Zadaianchuk, A., Wenk, P., Garg, A., Akpo, J., Grimminger, F., Viereck, J., Naveau, M., Righetti, L., Martius, G., Krause, A., Schölkopf, B., Bauer, S., Wüthrich, M.

IEEE International Conference on Robotics and Automation (ICRA), 2020 (conference) Accepted

am al ei mg

Project Page PDF [BibTex]

Project Page PDF [BibTex]


Worst-Case Risk Quantification under Distributional Ambiguity using Kernel Mean Embedding in Moment Problem
Worst-Case Risk Quantification under Distributional Ambiguity using Kernel Mean Embedding in Moment Problem

Zhu, J., Jitkrittum, W., Diehl, M., Schölkopf, B.

In 59th IEEE Conference on Decision and Control (CDC), 2020 (inproceedings) Accepted

ei

[BibTex]

[BibTex]


no image
Divide-and-Conquer Monte Carlo Tree Search for goal directed planning

Parascandolo*, G., Buesing*, L., Merel, J., Hasenclever, L., Aslanides, J., Hamrick, J. B., Heess, N., Neitz, A., Weber, T.

2020, *equal contribution (conference) Submitted

ei

arXiv [BibTex]

arXiv [BibTex]

2009


no image
A computational model of human table tennis for robot application

Mülling, K., Peters, J.

In AMS 2009, pages: 57-64, (Editors: Dillmann, R. , J. Beyerer, C. Stiller, M. Zöllner, T. Gindele), Springer, Berlin, Germany, Autonome Mobile Systeme, December 2009 (inproceedings)

Abstract
Table tennis is a difficult motor skill which requires all basic components of a general motor skill learning system. In order to get a step closer to such a generic approach to the automatic acquisition and refinement of table tennis, we study table tennis from a human motor control point of view. We make use of the basic models of discrete human movement phases, virtual hitting points, and the operational timing hypothesis. Using these components, we create a computational model which is aimed at reproducing human-like behavior. We verify the functionality of this model in a physically realistic simulation of a BarrettWAM.

ei

Web DOI [BibTex]

2009


Web DOI [BibTex]


no image
A PAC-Bayesian Approach to Formulation of Clustering Objectives

Seldin, Y., Tishby, N.

In Proceedings of the NIPS 2009 Workshop "Clustering: Science or Art? Towards Principled Approaches", pages: 1-4, NIPS Workshop "Clustering: Science or Art? Towards Principled Approaches", December 2009 (inproceedings)

Abstract
Clustering is a widely used tool for exploratory data analysis. However, the theoretical understanding of clustering is very limited. We still do not have a well-founded answer to the seemingly simple question of “how many clusters are present in the data?”, and furthermore a formal comparison of clusterings based on different optimization objectives is far beyond our abilities. The lack of good theoretical support gives rise to multiple heuristics that confuse the practitioners and stall development of the field. We suggest that the ill-posed nature of clustering problems is caused by the fact that clustering is often taken out of its subsequent application context. We argue that one does not cluster the data just for the sake of clustering it, but rather to facilitate the solution of some higher level task. By evaluation of the clustering’s contribution to the solution of the higher level task it is possible to compare different clusterings, even those obtained by different optimization objectives. In the preceding work it was shown that such an approach can be applied to evaluation and design of co-clustering solutions. Here we suggest that this approach can be extended to other settings, where clustering is applied.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning new basic Movements for Robotics

Kober, J., Peters, J.

In AMS 2009, pages: 105-112, (Editors: Dillmann, R. , J. Beyerer, C. Stiller, M. Zöllner, T. Gindele), Springer, Berlin, Germany, Autonome Mobile Systeme, December 2009 (inproceedings)

Abstract
Obtaining novel skills is one of the most important problems in robotics. Machine learning techniques may be a promising approach for automatic and autonomous acquisition of movement policies. However, this requires both an appropriate policy representation and suitable learning algorithms. Employing the most recent form of the dynamical systems motor primitives originally introduced by Ijspeert et al. [1], we show how both discrete and rhythmic tasks can be learned using a concerted approach of both imitation and reinforcement learning, and present our current best performing learning algorithms. Finally, we show that it is possible to include a start-up phase in rhythmic primitives. We apply our approach to two elementary movements, i.e., Ball-in-a-Cup and Ball-Paddling, which can be learned on a real Barrett WAM robot arm at a pace similar to human learning.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Notes on Graph Cuts with Submodular Edge Weights

Jegelka, S., Bilmes, J.

In pages: 1-6, NIPS Workshop on Discrete Optimization in Machine Learning: Submodularity, Sparsity & Polyhedra (DISCML), December 2009 (inproceedings)

Abstract
Generalizing the cost in the standard min-cut problem to a submodular cost function immediately makes the problem harder. Not only do we prove NP hardness even for nonnegative submodular costs, but also show a lower bound of (|V |1/3) on the approximation factor for the (s, t) cut version of the problem. On the positive side, we propose and compare three approximation algorithms with an overall approximation factor of O(min{|V |,p|E| log |V |}) that appear to do well in practice.

ei

PDF Web [BibTex]

PDF Web [BibTex]