Header logo is


2018


A machine from machines
A machine from machines

Fischer, P.

Nature Physics, 14, pages: 1072–1073, July 2018 (misc)

Abstract
Building spinning microrotors that self-assemble and synchronize to form a gear sounds like an impossible feat. However, it has now been achieved using only a single type of building block -- a colloid that self-propels.

pf

link (url) DOI [BibTex]

2018


link (url) DOI [BibTex]


no image
Nanorobots propel through the eye

Zhiguang Wu, J. T. H. J. Q. W. M. S. F. Z. Z. W. M. D. S. S. T. Q. P. F.

Max Planck Society, 2018 (mpi_year_book)

Abstract
Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart developed specially coated nanometer-sized robots that could be moved actively through dense tissue like the vitreous of the eye. So far, the transport of such nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. Our work constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

pf

link (url) [BibTex]

2017


no image
Editorial for the Special Issue on Microdevices and Microsystems for Cell Manipulation

Hu, W., Ohta, A. T.

8, Multidisciplinary Digital Publishing Institute, September 2017 (misc)

pi

DOI [BibTex]

2017


DOI [BibTex]

2007


no image
Space exploration-towards bio-inspired climbing robots

Menon, C., Murphy, M., Sitti, M., Lan, N.

INTECH Open Access Publisher, 2007 (misc)

pi

[BibTex]

2007


[BibTex]