Header logo is


2018


Learning from Outside the Viability Kernel: Why we Should Build Robots that can Fail with Grace
Learning from Outside the Viability Kernel: Why we Should Build Robots that can Fail with Grace

Heim, S., Sproewitz, A.

Proceedings of SIMPAR 2018, pages: 55-61, IEEE, 2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), May 2018 (conference)

dlg

link (url) DOI Project Page [BibTex]

2018


link (url) DOI Project Page [BibTex]


Shaping in Practice: Training Wheels to Learn Fast Hopping Directly in Hardware
Shaping in Practice: Training Wheels to Learn Fast Hopping Directly in Hardware

Heim, S., Ruppert, F., Sarvestani, A., Sproewitz, A.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, pages: 5076-5081, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)

Abstract
Learning instead of designing robot controllers can greatly reduce engineering effort required, while also emphasizing robustness. Despite considerable progress in simulation, applying learning directly in hardware is still challenging, in part due to the necessity to explore potentially unstable parameters. We explore the of concept shaping the reward landscape with training wheels; temporary modifications of the physical hardware that facilitate learning. We demonstrate the concept with a robot leg mounted on a boom learning to hop fast. This proof of concept embodies typical challenges such as instability and contact, while being simple enough to empirically map out and visualize the reward landscape. Based on our results we propose three criteria for designing effective training wheels for learning in robotics.

dlg

Video Youtube link (url) Project Page [BibTex]

Video Youtube link (url) Project Page [BibTex]


no image
Enhanced Non-Steady Gliding Performance of the MultiMo-Bat through Optimal Airfoil Configuration and Control Strategy

Kim, H., Woodward, M. A., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1382-1388, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Collectives of Spinning Mobile Microrobots for Navigation and Object Manipulation at the Air-Water Interface

Wang, W., Kishore, V., Koens, L., Lauga, E., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1-9, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Endo-VMFuseNet: A Deep Visual-Magnetic Sensor Fusion Approach for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Gilbert, H. B., Sari, A. E., Soylu, U., Sitti, M.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-7, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Endosensorfusion: Particle filtering-based multi-sensory data fusion with switching state-space model for endoscopic capsule robots

Turan, M., Almalioglu, Y., Gilbert, H., Araujo, H., Cemgil, T., Sitti, M.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-8, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Direct observations of sub-100 nm spin wave propagation in magnonic wave-guides

Träger, N., Gruszecki, P., Lisiecki, F., Förster, J., Weigand, M., Kuswik, P., Dubowik, J., Schütz, G., Krawczyk, M., Gräfe, J.

In 2018 IEEE International Magnetics Conference (INTERMAG 2018), IEEE, Singapore, 2018 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Interpreting FORC diagrams beyond the Preisach model: an experimental permalloy micro array investigation

Gross, F., Ilse, S., Schütz, G., Gräfe, J., Goering, E.

In 2018 IEEE International Magnetics Conference (INTERMAG 2018), IEEE, Singapore, 2018 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]

2017


no image
Synchronicity Trumps Mischief in Rhythmic Human-Robot Social-Physical Interaction

Fitter, N. T., Kuchenbecker, K. J.

In Proceedings of the International Symposium on Robotics Research (ISRR), Puerto Varas, Chile, December 2017 (inproceedings) In press

Abstract
Hand-clapping games and other forms of rhythmic social-physical interaction might help foster human-robot teamwork, but the design of such interactions has scarcely been explored. We leveraged our prior work to enable the Rethink Robotics Baxter Research Robot to competently play one-handed tempo-matching hand-clapping games with a human user. To understand how such a robot’s capabilities and behaviors affect user perception, we created four versions of this interaction: the hand clapping could be initiated by either the robot or the human, and the non-initiating partner could be either cooperative, yielding synchronous motion, or mischievously uncooperative. Twenty adults tested two clapping tempos in each of these four interaction modes in a random order, rating every trial on standardized scales. The study results showed that having the robot initiate the interaction gave it a more dominant perceived personality. Despite previous results on the intrigue of misbehaving robots, we found that moving synchronously with the robot almost always made the interaction more enjoyable, less mentally taxing, less physically demanding, and lower effort for users than asynchronous interactions caused by robot or human mischief. Taken together, our results indicate that cooperative rhythmic social-physical interaction has the potential to strengthen human-robot partnerships.

hi

[BibTex]

2017


[BibTex]


no image
Swimming in low reynolds numbers using planar and helical flagellar waves

Khalil, I. S. M., Tabak, A. F., Seif, M. A., Klingner, A., Adel, B., Sitti, M.

In International Conference on Intelligent Robots and Systems (IROS) 2017, pages: 1907-1912, International Conference on Intelligent Robots and Systems, September 2017 (inproceedings)

Abstract
In travelling towards the oviducts, sperm cells undergo transitions between planar to helical flagellar propulsion by a beating tail based on the viscosity of the environment. In this work, we aim to model and mimic this behaviour in low Reynolds number fluids using externally actuated soft robotic sperms. We numerically investigate the effects of transition between planar to helical flagellar propulsion on the swimming characteristics of the robotic sperm using a model based on resistive-force theory to study the role of viscous forces on its flexible tail. Experimental results are obtained using robots that contain magnetic particles within the polymer matrix of its head and an ultra-thin flexible tail. The planar and helical flagellar propulsion are achieved using in-plane and out-of-plane uniform fields with sinusoidally varying components, respectively. We experimentally show that the swimming speed of the robotic sperm increases by a factor of 1.4 (fluid viscosity 5 Pa.s) when it undergoes a controlled transition between planar to helical flagellar propulsion, at relatively low actuation frequencies.

pi

DOI [BibTex]

DOI [BibTex]


no image
Stiffness Perception during Pinching and Dissection with Teleoperated Haptic Forceps

Ng, C., Zareinia, K., Sun, Q., Kuchenbecker, K. J.

In Proceedings of the International Symposium on Robot and Human Interactive Communication (RO-MAN), pages: 456-463, Lisbon, Portugal, August 2017 (inproceedings)

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


An XY ϴz flexure mechanism with optimal stiffness properties
An XY ϴz flexure mechanism with optimal stiffness properties

Lum, G. Z., Pham, M. T., Teo, T. J., Yang, G., Yeo, S. H., Sitti, M.

In 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pages: 1103-1110, July 2017 (inproceedings)

Abstract
The development of optimal XY θz flexure mechanisms, which can deliver high precision motion about the z-axis, and along the x- and y-axes is highly desirable for a wide range of micro/nano-positioning tasks pertaining to biomedical research, microscopy technologies and various industrial applications. Although maximizing the stiffness ratios is a very critical design requirement, the achievable translational and rotational stiffness ratios of existing XY θz flexure mechanisms are still restricted between 0.5 and 130. As a result, these XY θz flexure mechanisms are unable to fully optimize their workspace and capabilities to reject disturbances. Here, we present an optimal XY θz flexure mechanism, which is designed to have maximum stiffness ratios. Based on finite element analysis (FEA), it has translational stiffness ratio of 248, rotational stiffness ratio of 238 and a large workspace of 2.50 mm × 2.50 mm × 10°. Despite having such a large workspace, FEA also predicts that the proposed mechanism can still achieve a high bandwidth of 70 Hz. In comparison, the bandwidth of similar existing flexure mechanisms that can deflect more than 0.5 mm or 0.5° is typically less than 45 Hz. Hence, the high stiffness ratios of the proposed mechanism are achieved without compromising its dynamic performance. Preliminary experimental results pertaining to the mechanism's translational actuating stiffness and bandwidth were in agreement with the FEA predictions as the deviation was within 10%. In conclusion, the proposed flexure mechanism exhibits superior performance and can be used across a wide range of applications.

pi

DOI [BibTex]

DOI [BibTex]


Positioning of drug carriers using permanent magnet-based robotic system in three-dimensional space
Positioning of drug carriers using permanent magnet-based robotic system in three-dimensional space

Khalil, I. S. M., Alfar, A., Tabak, A. F., Klingner, A., Stramigioli, S., Sitti, M.

In 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pages: 1117-1122, July 2017 (inproceedings)

Abstract
Magnetic control of drug carriers using systems with open-configurations is essential to enable scaling to the size of in vivo applications. In this study, we demonstrate motion control of paramagnetic microparticles in a low Reynolds number fluid, using a permanent magnet-based robotic system with an open-configuration. The microparticles are controlled in three-dimensional (3D) space using a cylindrical NdFeB magnet that is fixed to the end-effector of a robotic arm. We develop a kinematic map between the position of the microparticles and the configuration of the robotic arm, and use this map as a basis of a closed-loop control system based on the position of the microparticles. Our experimental results show the ability of the robot configuration to control the exerted field gradient on the dipole of the microparticles, and achieve positioning in 3D space with maximum error of 300 µm and 600 µm in the steady-state during setpoint and trajectory tracking, respectively.

pi

DOI [BibTex]

DOI [BibTex]


no image
Self-assembly of micro/nanosystems across scales and interfaces

Mastrangeli, M.

In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pages: 676 - 681, IEEE, July 2017 (inproceedings)

Abstract
Steady progress in understanding and implementation are establishing self-assembly as a versatile, parallel and scalable approach to the fabrication of transducers. In this contribution, I illustrate the principles and reach of self-assembly with three applications at different scales - namely, the capillary self-alignment of millimetric components, the sealing of liquid-filled polymeric microcapsules, and the accurate capillary assembly of single nanoparticles - and propose foreseeable directions for further developments.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Design of a Parallel Continuum Manipulator for 6-DOF Fingertip Haptic Display

Young, E. M., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 599-604, Munich, Germany, June 2017, Finalist for best poster paper (inproceedings)

Abstract
Despite rapid advancements in the field of fingertip haptics, rendering tactile cues with six degrees of freedom (6 DOF) remains an elusive challenge. In this paper, we investigate the potential of displaying fingertip haptic sensations with a 6-DOF parallel continuum manipulator (PCM) that mounts to the user's index finger and moves a contact platform around the fingertip. Compared to traditional mechanisms composed of rigid links and discrete joints, PCMs have the potential to be strong, dexterous, and compact, but they are also more complicated to design. We define the design space of 6-DOF parallel continuum manipulators and outline a process for refining such a device for fingertip haptic applications. Following extensive simulation, we obtain 12 designs that meet our specifications, construct a manually actuated prototype of one such design, and evaluate the simulation's ability to accurately predict the prototype's motion. Finally, we demonstrate the range of deliverable fingertip tactile cues, including a normal force into the finger and shear forces tangent to the finger at three extreme points on the boundary of the fingertip.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
High Magnitude Unidirectional Haptic Force Display Using a Motor/Brake Pair and a Cable

Hu, S., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 394-399, Munich, Germany, June 2017 (inproceedings)

Abstract
Clever electromechanical design is required to make the force feedback delivered by a kinesthetic haptic interface both strong and safe. This paper explores a onedimensional haptic force display that combines a DC motor and a magnetic particle brake on the same shaft. Rather than a rigid linkage, a spooled cable connects the user to the actuators to enable a large workspace, reduce the moving mass, and eliminate the sticky residual force from the brake. This design combines the high torque/power ratio of the brake and the active output capabilities of the motor to provide a wider range of forces than can be achieved with either actuator alone. A prototype of this device was built, its performance was characterized, and it was used to simulate constant force sources and virtual springs and dampers. Compared to the conventional design of using only a motor, the hybrid device can output higher unidirectional forces at the expense of free space feeling less free.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Dynamic analysis on hexapedal water-running robot with compliant joints
Dynamic analysis on hexapedal water-running robot with compliant joints

Kim, H., Liu, Y., Jeong, K., Sitti, M., Seo, T.

In 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pages: 250-251, June 2017 (inproceedings)

Abstract
The dynamic analysis has been considered as one of the important design methods to design robots. In this research, we derive dynamic equation of hexapedal water-running robot to design compliant joints. The compliant joints that connect three bodies will be used to improve mobility and stability of water-running motion's pitch behavior. We considered all of parts as rigid body including links of six Klann mechanisms and three main frames. And then, we derived dynamic equation by using the Lagrangian method with external force of the water. We are expecting that the dynamic analysis is going to be used to design parts of the water running robot.

pi

DOI [BibTex]

DOI [BibTex]


no image
A Wrist-Squeezing Force-Feedback System for Robotic Surgery Training

Brown, J. D., Fernandez, J. N., Cohen, S. P., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 107-112, Munich, Germany, June 2017 (inproceedings)

Abstract
Over time, surgical trainees learn to compensate for the lack of haptic feedback in commercial robotic minimally invasive surgical systems. Incorporating touch cues into robotic surgery training could potentially shorten this learning process if the benefits of haptic feedback were sustained after it is removed. In this paper, we develop a wrist-squeezing haptic feedback system and evaluate whether it holds the potential to train novice da Vinci users to reduce the force they exert on a bimanual inanimate training task. Subjects were randomly divided into two groups according to a multiple baseline experimental design. Each of the ten participants moved a ring along a curved wire nine times while the haptic feedback was conditionally withheld, provided, and withheld again. The realtime tactile feedback of applied force magnitude significantly reduced the integral of the force produced by the da Vinci tools on the task materials, and this result remained even when the haptic feedback was removed. Overall, our findings suggest that wrist-squeezing force feedback can play an essential role in helping novice trainees learn to minimize the force they exert with a surgical robot.

hi

DOI [BibTex]

DOI [BibTex]


no image
Handling Scan-Time Parameters in Haptic Surface Classification

Burka, A., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 424-429, Munich, Germany, June 2017 (inproceedings)

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Scalable Pneumatic and Tendon Driven Robotic Joint Inspired by Jumping Spiders
Scalable Pneumatic and Tendon Driven Robotic Joint Inspired by Jumping Spiders

Sproewitz, A., Göttler, C., Sinha, A., Caer, C., Öztekin, M. U., Petersen, K., Sitti, M.

In Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), pages: 64-70, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

dlg

Video link (url) DOI Project Page [BibTex]

Video link (url) DOI Project Page [BibTex]


Design and actuation of a magnetic millirobot under a constant unidirectional magnetic field
Design and actuation of a magnetic millirobot under a constant unidirectional magnetic field

Erin, O., Giltinan, J., Tsai, L., Sitti, M.

In Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), pages: 3404-3410, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

Abstract
Magnetic untethered millirobots, which are actuated and controlled by remote magnetic fields, have been proposed for medical applications due to their ability to safely pass through tissues at long ranges. For example, magnetic resonance imaging (MRI) systems with a 3-7 T constant unidirectional magnetic field and 3D gradient coils have been used to actuate magnetic robots. Such magnetically constrained systems place limits on the degrees of freedom that can be actuated for untethered devices. This paper presents a design and actuation methodology for a magnetic millirobot that exhibits both position and orientation control in 2D under a magnetic field, dominated by a constant unidirectional magnetic field as found in MRI systems. Placing a spherical permanent magnet, which is free to rotate inside the millirobot and located away from the center of mass, allows the generation of net forces and torques with applied 3D magnetic field gradients. We model this system in a 3D planar case and experimentally demonstrate open-loop control of both position and orientation by the applied 2D field gradients. The actuation performance is characterized across the most important design variables, and we experimentally demonstrate that the proposed approach is feasible.

pi

DOI [BibTex]

DOI [BibTex]


Magnetically actuated soft capsule endoscope for fine-needle aspiration biopsy
Magnetically actuated soft capsule endoscope for fine-needle aspiration biopsy

Son, D., Dogan, M. D., Sitti, M.

In Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), pages: 1132-1139, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

Abstract
This paper presents a magnetically actuated soft capsule endoscope for fine-needle aspiration biopsy (B-MASCE) in the upper gastrointestinal tract. A thin and hollow needle is attached to the capsule, which can penetrate deeply into tissues to obtain subsurface biopsy sample. The design utilizes a soft elastomer body as a compliant mechanism to guide the needle. An internal permanent magnet provides a means for both actuation and tracking. The capsule is designed to roll towards its target and then deploy the biopsy needle in a precise location selected as the target area. B-MASCE is controlled by multiple custom-designed electromagnets while its position and orientation are tracked by a magnetic sensor array. In in vitro trials, B-MASCE demonstrated rolling locomotion and biopsy of a swine tissue model positioned inside an anatomical human stomach model. It was confirmed after the experiment that a tissue sample was retained inside the needle.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Proton 2: Increasing the Sensitivity and Portability of a Visuo-haptic Surface Interaction Recorder

Burka, A., Rajvanshi, A., Allen, S., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 439-445, Singapore, May 2017 (inproceedings)

Abstract
The Portable Robotic Optical/Tactile ObservatioN PACKage (PROTONPACK, or Proton for short) is a new handheld visuo-haptic sensing system that records surface interactions. We previously demonstrated system calibration and a classification task using external motion tracking. This paper details improvements in surface classification performance and removal of the dependence on external motion tracking, necessary before embarking on our goal of gathering a vast surface interaction dataset. Two experiments were performed to refine data collection parameters. After adjusting the placement and filtering of the Proton's high-bandwidth accelerometers, we recorded interactions between two differently-sized steel tooling ball end-effectors (diameter 6.35 and 9.525 mm) and five surfaces. Using features based on normal force, tangential force, end-effector speed, and contact vibration, we trained multi-class SVMs to classify the surfaces using 50 ms chunks of data from each end-effector. Classification accuracies of 84.5% and 91.5% respectively were achieved on unseen test data, an improvement over prior results. In parallel, we pursued on-board motion tracking, using the Proton's camera and fiducial markers. Motion tracks from the external and onboard trackers agree within 2 mm and 0.01 rad RMS, and the accuracy decreases only slightly to 87.7% when using onboard tracking for the 9.525 mm end-effector. These experiments indicate that the Proton 2 is ready for portable data collection.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


The use of clamping grips and friction pads by tree frogs for climbing curved surfaces
The use of clamping grips and friction pads by tree frogs for climbing curved surfaces

Endlein, T., Ji, A., Yuan, S., Hill, I., Wang, H., Barnes, W. J. P., Dai, Z., Sitti, M.

In Proc. R. Soc. B, 284(1849):20162867, Febuary 2017 (inproceedings)

Abstract
Most studies on the adhesive mechanisms of climbing animals have addressed attachment against flat surfaces, yet many animals can climb highly curved surfaces, like twigs and small branches. Here we investigated whether tree frogs use a clamping grip by recording the ground reaction forces on a cylindrical object with either a smooth or anti-adhesive, rough surface. Furthermore, we measured the contact area of fore and hindlimbs against differently sized transparent cylinders and the forces of individual pads and subarticular tubercles in restrained animals. Our study revealed that frogs use friction and normal forces of roughly a similar magnitude for holding on to cylindrical objects. When challenged with climbing a non-adhesive surface, the compressive forces between opposite legs nearly doubled, indicating a stronger clamping grip. In contrast to climbing flat surfaces, frogs increased the contact area on all limbs by engaging not just adhesive pads but also subarticular tubercles on curved surfaces. Our force measurements showed that tubercles can withstand larger shear stresses than pads. SEM images of tubercles revealed a similar structure to that of toe pads including the presence of nanopillars, though channels surrounding epithelial cells were less pronounced. The tubercles' smaller size, proximal location on the toes and shallow cells make them probably less prone to buckling and thus ideal for gripping curved surfaces.

pi

DOI [BibTex]

DOI [BibTex]


Linking {Mechanics} and {Learning}
Linking Mechanics and Learning

Heim, S., Grimminger, F., Özge, D., Spröwitz, A.

In Proceedings of Dynamic Walking 2017, 2017 (inproceedings)

dlg

[BibTex]

[BibTex]


Planning spin-walking locomotion for automatic grasping of microobjects by an untethered magnetic microgripper
Planning spin-walking locomotion for automatic grasping of microobjects by an untethered magnetic microgripper

Dong, X., Sitti, M.

In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages: 6612-6618, 2017 (inproceedings)

Abstract
Most demonstrated mobile microrobot tasks so far have been achieved via pick-and-placing and dynamic trapping with teleoperation or simple path following algorithms. In our previous work, an untethered magnetic microgripper has been developed which has advanced functions, such as gripping objects. Both teleoperated manipulation in 2D and 3D have been demonstrated. However, it is challenging to control the magnetic microgripper to carry out manipulation tasks, because the grasping of objects so far in the literature relies heavily on teleoperation, which takes several minutes with even a skilled human expert. Here, we propose a new spin-walking locomotion and an automated 2D grasping motion planner for the microgripper, which enables time-efficient automatic grasping of microobjects that has not been achieved yet for untethered microrobots. In its locomotion, the microgripper repeatedly rotates about two principal axes to regulate its pose and move precisely on a surface. The motion planner could plan different motion primitives for grasping and compensate the uncertainties in the motion by learning the uncertainties and planning accordingly. We experimentally demonstrated that, using the proposed method, the microgripper could align to the target pose with error less than 0.1 body length and grip the objects within 40 seconds. Our method could significantly improve the time efficiency of micro-scale manipulation and have potential applications in microassembly and biomedical engineering.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Is Growing Good for Learning?
Is Growing Good for Learning?

Heim, S., Spröwitz, A.

Proceedings of the 8th International Symposium on Adaptive Motion of Animals and Machines AMAM2017, 2017 (conference)

dlg

[BibTex]

[BibTex]

2007


no image
A strategy for vision-based controlled pushing of microparticles

Lynch, N. A., Onal, C., Schuster, E., Sitti, M.

In Robotics and Automation, 2007 IEEE International Conference on, pages: 1413-1418, 2007 (inproceedings)

pi

[BibTex]

2007


[BibTex]


no image
Autonomous 2D microparticle manipulation based on visual feedback

Onal, C. D., Sitti, M.

In Advanced intelligent mechatronics, 2007 IEEE/ASME international conference on, pages: 1-6, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
STRIDE: A highly maneuverable and non-tethered water strider robot

Song, Y. S., Sitti, M.

In Robotics and Automation, 2007 IEEE International Conference on, pages: 980-984, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Dry spinning polymeric nano/microfiber arrays using glass micropipettes with controlled porosities and fiber diameters

Nain, A. S., Gupta, A., Amon, C., Sitti, M.

In Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference on, pages: 728-732, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Microrobotically fabricated biological scaffolds for tissue engineering

Nain, A. S., Chung, F., Rule, M., Jadlowiec, J. A., Campbell, P. G., Amon, C., Sitti, M.

In Robotics and Automation, 2007 IEEE International Conference on, pages: 1918-1923, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Bacterial flagella assisted propulsion of patterned latex particles: Effect of particle size

Behkam, B., Sitti, M.

In Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference on, pages: 723-727, 2007 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
A scaled bilateral control system for experimental 1-D teleoperated nanomanipulation applications

Onal, C. D., Pawashe, C., Sitti, M.

In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pages: 483-488, 2007 (inproceedings)

pi

[BibTex]

[BibTex]

2006


no image
Ab-initio calculations: I. Basic principles of the density functional electron theory and combination with phenomenological theories

Fähnle, M.

In Structural defects in ordered alloys and intermetallics. Characterization and modelling, pages: IX-1-IX-10, COST and CNRS, Bonascre [Ariege, France], 2006 (inproceedings)

mms

[BibTex]

2006


[BibTex]


no image
Hard magnetic FePt thin films and nanostructures in L1(0) phases

Goll, D., Breitling, A., Goo, N. H., Sigle, W., Hirscher, M., Schütz, G.

In 13, pages: 97-101, Beijing, PR China, 2006 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Miniature endoscopic capsule robot using biomimetic micro-patterned adhesives

Karagozler, M. E., Cheung, E., Kwon, J., Sitti, M.

In Biomedical Robotics and Biomechatronics, 2006. BioRob 2006. The First IEEE/RAS-EMBS International Conference on, pages: 105-111, 2006 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Ab-initio calculations: II. Application to atomic defects, phase diagrams, dislocations

Fähnle, M.

In Structural defects in ordered alloys and intermetallics. Characterization and modelling, pages: XIV-1-XIV-11, COST and CNRS, Bonascre [Ariege, France], 2006 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Toward micro wall-climbing robots using biomimetic fibrillar adhesives

Greuter, M., Shah, G., Caprari, G., Tâche, F., Siegwart, R., Sitti, M.

In Proceedings of the 3rd International Symposium on Autonomous Minirobots for Research and Edutainment (AMiRE 2005), pages: 39-46, 2006 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Geckobot: A gecko inspired climbing robot using elastomer adhesives

Unver, O., Uneri, A., Aydemir, A., Sitti, M.

In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pages: 2329-2335, 2006 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Towards hybrid swimming microrobots: bacteria assisted propulsion of polystyrene beads

Behkam, B., Sitti, M.

In Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE, pages: 2421-2424, 2006 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Soft microcontact printing with force control using microrobotic assembly based templates

Tafazzoli, A., Sitti, M.

In Advanced Motion Control, 2006. 9th IEEE International Workshop on, pages: 500-505, 2006 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Modeling of the supporting legs for designing biomimetic water strider robots

Song, Y. S., Suhr, S. H., Sitti, M.

In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pages: 2303-2310, 2006 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A novel water running robot inspired by basilisk lizards

Floyd, S., Keegan, T., Palmisano, J., Sitti, M.

In Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pages: 5430-5436, 2006 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Residual stress analysis in reed pipe brass tongues of historic organs

Manescu, A., Giuliani, A., Fiori, F., Baretzky, B.

In Residual Stresses VII. 7th Europen Conference on Residual Stresses (ECRS7), pages: 969-974, Trans Tech, Berlin [Germany], 2006 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Force-controlled microcontact printing using microassembled particle templates

Tafazzoli, A., Pawashe, C., Sitti, M.

In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pages: 263-268, 2006 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Waalbot: An agile small-scale wall climbing robot utilizing pressure sensitive adhesives

Murphy, M. P., Tso, W., Tanzini, M., Sitti, M.

In Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pages: 3411-3416, 2006 (inproceedings)

pi

[BibTex]

[BibTex]


no image
High-pressure influence on the kinetics of grain boundary segregation in the Cu-Bi system

Chang, L.-S., Straumal, B., Rabkin, E., Lojkowski, W., Gust, W.

In 258-260, pages: 390-396, Aveiro (Portugal), 2006 (inproceedings)

mms

[BibTex]

[BibTex]