Header logo is


2015


Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results
Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

Machine Learning in Planning and Control of Robot Motion Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS), pages: , , Machine Learning in Planning and Control of Robot Motion Workshop, October 2015 (conference)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree-of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Preliminary results of a low-dimensional tuning problem highlight the method’s potential for automatic controller tuning on robotic platforms.

am ei ics pn

PDF DOI Project Page [BibTex]

2015


PDF DOI Project Page [BibTex]


Direct Loss Minimization Inverse Optimal Control
Direct Loss Minimization Inverse Optimal Control

Doerr, A., Ratliff, N., Bohg, J., Toussaint, M., Schaal, S.

In Proceedings of Robotics: Science and Systems, Rome, Italy, Robotics: Science and Systems XI, July 2015 (inproceedings)

Abstract
Inverse Optimal Control (IOC) has strongly impacted the systems engineering process, enabling automated planner tuning through straightforward and intuitive demonstration. The most successful and established applications, though, have been in lower dimensional problems such as navigation planning where exact optimal planning or control is feasible. In higher dimensional systems, such as humanoid robots, research has made substantial progress toward generalizing the ideas to model free or locally optimal settings, but these systems are complicated to the point where demonstration itself can be difficult. Typically, real-world applications are restricted to at best noisy or even partial or incomplete demonstrations that prove cumbersome in existing frameworks. This work derives a very flexible method of IOC based on a form of Structured Prediction known as Direct Loss Minimization. The resulting algorithm is essentially Policy Search on a reward function that rewards similarity to demonstrated behavior (using Covariance Matrix Adaptation (CMA) in our experiments). Our framework blurs the distinction between IOC, other forms of Imitation Learning, and Reinforcement Learning, enabling us to derive simple, versatile, and practical algorithms that blend imitation and reinforcement signals into a unified framework. Our experiments analyze various aspects of its performance and demonstrate its efficacy on conveying preferences for motion shaping and combined reach and grasp quality optimization.

am ics

PDF Video Project Page [BibTex]

PDF Video Project Page [BibTex]


no image
LMI-Based Synthesis for Distributed Event-Based State Estimation

Muehlebach, M., Trimpe, S.

In Proceedings of the American Control Conference, July 2015 (inproceedings)

Abstract
This paper presents an LMI-based synthesis procedure for distributed event-based state estimation. Multiple agents observe and control a dynamic process by sporadically exchanging data over a broadcast network according to an event-based protocol. In previous work [1], the synthesis of event-based state estimators is based on a centralized design. In that case three different types of communication are required: event-based communication of measurements, periodic reset of all estimates to their joint average, and communication of inputs. The proposed synthesis problem eliminates the communication of inputs as well as the periodic resets (under favorable circumstances) by accounting explicitly for the distributed structure of the control system.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Guaranteed H2 Performance in Distributed Event-Based State Estimation

Muehlebach, M., Trimpe, S.

In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
On the Choice of the Event Trigger in Event-based Estimation

Trimpe, S., Campi, M.

In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Toward a large-scale visuo-haptic dataset for robotic learning

Burka, A., Hu, S., Krishnan, S., Kuchenbecker, K. J., Hendricks, L. A., Gao, Y., Darrell, T.

In Proc. CVPR Workshop on the Future of Datasets in Vision, 2015 (inproceedings)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Detecting Lumps in Simulated Tissue via Palpation with a BioTac

Hui, J., Block, A., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, 2015, Work-in-progress paper. Poster presentation given by Hui (inproceedings)

hi

[BibTex]

[BibTex]


no image
Analysis of the Instrument Vibrations and Contact Forces Caused by an Expert Robotic Surgeon Doing FRS Tasks

Brown, J. D., O’Brien, C., Miyasaka, K., Dumon, K. R., Kuchenbecker, K. J.

In Proc. Hamlyn Symposium on Medical Robotics, pages: 75-76, London, England, June 2015, Poster presentation given by Brown (inproceedings)

hi

[BibTex]

[BibTex]


no image
Should Haptic Texture Vibrations Respond to User Force and Speed?

Culbertson, H., Kuchenbecker, K. J.

In IEEE World Haptics Conference, pages: 106 - 112, Evanston, Illinois, USA, June 2015, Oral presentation given by Culbertson (inproceedings)

hi

[BibTex]

[BibTex]


no image
Enabling the Baxter Robot to Play Hand-Clapping Games

Fitter, N. T., Neuburger, M., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, June 2015, Work-in-progress paper. Poster presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Event-based Estimation and Control for Remote Robot Operation with Reduced Communication

Trimpe, S., Buchli, J.

In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)

Abstract
An event-based communication framework for remote operation of a robot via a bandwidth-limited network is proposed. The robot sends state and environment estimation data to the operator, and the operator transmits updated control commands or policies to the robot. Event-based communication protocols are designed to ensure that data is transmitted only when required: the robot sends new estimation data only if this yields a significant information gain at the operator, and the operator transmits an updated control policy only if this comes with a significant improvement in control performance. The developed framework is modular and can be used with any standard estimation and control algorithms. Simulation results of a robotic arm highlight its potential for an efficient use of limited communication resources, for example, in disaster response scenarios such as the DARPA Robotics Challenge.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Lernende Roboter

Trimpe, S.

In Jahrbuch der Max-Planck-Gesellschaft, Max Planck Society, May 2015, (popular science article in German) (inbook)

am ics

link (url) [BibTex]

link (url) [BibTex]


no image
Using IMU Data to Teach a Robot Hand-Clapping Games

Fitter, N. T., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 353-355, April 2015, Work-in-progress paper. Poster presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Haptic Feedback in Transoral Robotic Surgery: A Feasibility Study

Bur, A. M., Gomez, E. D., Rassekh, C. H., Newman, J. G., Weinstein, G. S., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Triological Society at COSM, April 2015, Poster presentation given by Bur (inproceedings)

hi

[BibTex]

[BibTex]


no image
Design and Validation of a Practical Simulator for Transoral Robotic Surgery

Bur, A. M., Gomez, E. D., Chalian, A. A., Newman, J. G., Weinstein, G. S., Kuchenbecker, K. J.

In Proc. Society for Robotic Surgery Annual Meeting: Transoral Program, (T8), February 2015, Oral presentation given by Bur (inproceedings)

hi

[BibTex]

[BibTex]


no image
A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Kappler, D., Schaal, S.

In Robotics: Science and Systems, 2015 (inproceedings)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. GFs represent the belief of the current state by a Gaussian with the mean being an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependencies in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end we view the GF from a variational-inference perspective, and analyze how restrictions on the form of the belief can be relaxed while maintaining simplicity and efficiency. This analysis provides a basis for generalizations of the GF. We propose one such generalization which coincides with a GF using a virtual measurement, obtained by applying a nonlinear function to the actual measurement. Numerical experiments show that the proposed Feature Gaussian Filter (FGF) can have a substantial performance advantage over the standard GF for systems with nonlinear observation models.

am ics

Web PDF Project Page [BibTex]


no image
Learning from others: Adult and child strategies in assessing conflicting ratings

Hu, J., Lieder, F., Griffiths, T. L., Xu, F.

In Biennial Meeting of the Society for Research in Child Development, Philadelphia, Pennsylvania, USA, 2015 (inproceedings)

re

[BibTex]

[BibTex]


no image
When to use which heuristic: A rational solution to the strategy selection problem

Lieder, F., Griffiths, T. L.

In Proceedings of the 37th Annual Conference of the Cognitive Science Society, 2015 (inproceedings)

re

Project Page [BibTex]

Project Page [BibTex]


no image
Children and adults differ in their strategies for social learning

Lieder, F., Sim, Z., Hu, J., Griffiths, T., Xu, F.

In Proceedings of the 37th Annual Conference of the Cognitive Science Society, 2015 (inproceedings)

re

[BibTex]

[BibTex]


no image
Utility-weighted sampling in decisions from experience

Lieder, F., Griffiths, T. L., Hsu, M.

In The 2nd Multidisciplinary Conference on Reinforcement Learning and Decision Making, 2015 (inproceedings)

re

[BibTex]

[BibTex]


no image
Nachhaltige Effekte simulatorbasierten Trainings auf eine ökologische Fahrweise [Sustainable effects of simulator-based training on ecological driving]

Lüderitz, C., Wirzberger, M., Karrer-Gauß, K.

In VerANTWORTung für die Arbeit der Zukunft, 61st Conference of the Society for Ergonomics and Work Science, GfA Press, Dortmund, 2015 (inproceedings)

re

[BibTex]

[BibTex]


no image
Cognitive modeling meets instructional design: Exploring Cognitive Load Theory with ACT-R

Wirzberger, M., Rey, G. D.

In Trends in Neuroergonomics. Proceedings of the 11th Berlin Workshop Human-Machine Systems, pages: 190-193, Universitätsverlag der TU Berlin, Berlin, 2015 (inproceedings)

re

DOI [BibTex]

DOI [BibTex]

2004


no image
Canceling Induced Master Motion in Force-Reflecting Teleoperation

Kuchenbecker, K. J., Niemeyer, G.

In Proc. ASME International Mechanical Engineering Congress and Exposition, Symposium on Advances in Robot Dynamics and Control, 2, paper number 60049, Anaheim, California, USA, November 2004, Oral presentation given by Kuchenbecker. {B}est Student Paper Award (inproceedings)

hi

[BibTex]

2004


[BibTex]


no image
Haptic Display of Contact Location

Kuchenbecker, K. J., Provancher, W. R., Niemeyer, G., Cutkosky, M. R.

In Proc. IEEE Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pages: 40-47, Chicago, Illinois, USA, March 2004, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
THUMP: An Immersive Haptic Console for Surgical Simulation and Training

Niemeyer, G., Kuchenbecker, K. J., Bonneau, R., Mitra, P., Reid, A., Fiene, J., Weldon, G.

In Proc. Medicine Meets Virtual Reality, pages: 272-274, Newport Beach, California, USA, January 2004, Poster presentation given by Niemeyer. {B}est Poster Award (inproceedings)

hi

[BibTex]

[BibTex]