Header logo is


2017


Thumb xl fig toyex lqr1kernel 1
On the Design of LQR Kernels for Efficient Controller Learning

Marco, A., Hennig, P., Schaal, S., Trimpe, S.

Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), pages: 5193-5200, IEEE, IEEE Conference on Decision and Control, December 2017 (conference)

Abstract
Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.

am ics pn

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]

2017


arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]


Thumb xl teaser
Optimizing Long-term Predictions for Model-based Policy Search

Doerr, A., Daniel, C., Nguyen-Tuong, D., Marco, A., Schaal, S., Toussaint, M., Trimpe, S.

Proceedings of 1st Annual Conference on Robot Learning (CoRL), 78, pages: 227-238, (Editors: Sergey Levine and Vincent Vanhoucke and Ken Goldberg), 1st Annual Conference on Robot Learning, November 2017 (conference)

Abstract
We propose a novel long-term optimization criterion to improve the robustness of model-based reinforcement learning in real-world scenarios. Learning a dynamics model to derive a solution promises much greater data-efficiency and reusability compared to model-free alternatives. In practice, however, modelbased RL suffers from various imperfections such as noisy input and output data, delays and unmeasured (latent) states. To achieve higher resilience against such effects, we propose to optimize a generative long-term prediction model directly with respect to the likelihood of observed trajectories as opposed to the common approach of optimizing a dynamics model for one-step-ahead predictions. We evaluate the proposed method on several artificial and real-world benchmark problems and compare it to PILCO, a model-based RL framework, in experiments on a manipulation robot. The results show that the proposed method is competitive compared to state-of-the-art model learning methods. In contrast to these more involved models, our model can directly be employed for policy search and outperforms a baseline method in the robot experiment.

am ics

PDF Project Page [BibTex]

PDF Project Page [BibTex]


Thumb xl apollo system2 croped
Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers

Doerr, A., Nguyen-Tuong, D., Marco, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5295-5301, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics

PDF arXiv DOI Project Page [BibTex]

PDF arXiv DOI Project Page [BibTex]


Thumb xl this one
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 1557-1563, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics pn

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]

2003


no image
Grain boundary phase transitions in the Al-Mg system and their influence on high-strain rate superplasticity

Straumal, B. B., Lopez, G. A., Mittemeijer, E. J., Gust, W., Zhilyaev, A. P.

In 216-217, pages: 307-312, Moscow, Russia, 2003 (inproceedings)

mms

[BibTex]

2003


[BibTex]


no image
Influence of grain boundary phase transitions on the diffusion-related properties

Straumal, B., Baretzky, B.

In Proceedings of the International Conference on Diffusion, Segregation and Stresses in Materials, pages: 53-64, Defect and Diffusion Forum, Scitec Publications Ltd., Moscow, Russia, 2003 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Are carbon nanostructures an efficient hydrogen storage medium?

Hirscher, M., Becher, M., Haluska, M., von Zeppelin, F., Chen, X., Dettlaff-Weglikowska, U., Roth, S.

In 356-357, pages: 433-437, Annecy, France, 2003 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Grain boundary faceting phase transition and thermal grooving in Cu

Straumal, B. B., Polyakov, S. A., Bischoff, E., Mittemeijer, E. J., Gust, W.

In Proceedings of the International Conference on Diffusion, Segregation and Stresses in Materials, 216/217, pages: 93-100, Diffusion and Defect Data, Pt. A, Defect and Diffusion Forum, Scitec Publ., Moscow, 2003 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Grain boundary faceting phase transition and thermal grooving in Cu

Straumal, B. B., Polyakov, S. A., Bischoff, E., Mittemeijer, E. J., Gust, W.

In Proceedings of the International Conference on Diffusion, Segregation and Stresses in Materials, 216/217, pages: 93-100, Diffusion and Defect Data, Pt. A, Defect and Diffusion Forum, Scitec Publ., Moscow, 2003 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Coercivity mechanism in nanocrystalline and bonded magnets

Goll, D., Kronmüller, H.

In Bonded Magnets. Proceedings of the NATO Advanced Research Workshop on Science and Technology of Bonded Magnets, 118, pages: 115-127, NATO Science Series: Series 2, Mathematics, Physics and Chemistry, Kluwer Acad. Publ., Newark, USA, 2003 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Investigation of Electromigration in Copper Interconnects by Noise Measurements

Emelianov, V., Ganesan, G., Puzic, A., Schulz, S., Eizenberg, M., Habermeier, H., Stoll, H.

In Noise as a Tool for Studying Materials, pages: 271-281, Proceedings of SPIE, Santa Fe, New Mexico, 2003 (inproceedings)

mms

[BibTex]

[BibTex]