Header logo is


2020


A gamified app that helps people overcome self-limiting beliefs by promoting metacognition
A gamified app that helps people overcome self-limiting beliefs by promoting metacognition

Amo, V., Lieder, F.

pages: 6, SIG 8 Meets SIG 16, September 2020 (conference)

Abstract
Previous research has shown that approaching learning with a growth mindset is key for maintaining motivation and overcoming setbacks. Mindsets are systems of beliefs that people hold to be true. They influence a person's attitudes, thoughts, and emotions when they learn something new or encounter challenges. In clinical psychology, metareasoning (reflecting on one's mental processes) and meta-awareness (recognizing thoughts as mental events instead of equating them to reality) have proven effective for overcoming maladaptive thinking styles. Hence, they are potentially an effective method for overcoming self-limiting beliefs in other domains as well. However, the potential of integrating assisted metacognition into mindset interventions has not been explored yet. Here, we propose that guiding and training people on how to leverage metareasoning and meta-awareness for overcoming self-limiting beliefs can significantly enhance the effectiveness of mindset interventions. To test this hypothesis, we develop a gamified mobile application that guides and trains people to use metacognitive strategies based on Cognitive Restructuring (CR) and Acceptance Commitment Therapy (ACT) techniques. The application helps users to identify and overcome self-limiting beliefs by working with aversive emotions when they are triggered by fixed mindsets in real-life situations. Our app aims to help people sustain their motivation to learn when they face inner obstacles (e.g. anxiety, frustration, and demotivation). We expect the application to be an effective tool for helping people better understand and develop the metacognitive skills of emotion regulation and self-regulation that are needed to overcome self-limiting beliefs and develop growth mindsets.

re

A gamified app that helps people overcome self-limiting beliefs by promoting metacognition [BibTex]


no image
Algorithmic Recourse: from Counterfactual Explanations to Interventions

Karimi, A., Schölkopf, B., Valera, I.

37th International Conference on Machine Learning (ICML), July 2020 (conference) Submitted

ei plg

[BibTex]

[BibTex]


no image
Model-Agnostic Counterfactual Explanations for Consequential Decisions

Karimi, A., Barthe, G., Balle, B., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), June 2020 (conference) Accepted

ei plg

arXiv [BibTex]

arXiv [BibTex]


no image
A Continuous-time Perspective for Modeling Acceleration in Riemannian Optimization

F Alimisis, F., Orvieto, A., Becigneul, G., Lucchi, A.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), June 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
A Kernel Mean Embedding Approach to Reducing Conservativeness in Stochastic Programming and Control

Zhu, J., Diehl, M., Schölkopf, B.

2nd Annual Conference on Learning for Dynamics and Control (L4DC), June 2020 (conference) Accepted

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Mixed-curvature Variational Autoencoders

Skopek, O., Ganea, O., Becigneul, G.

8th International Conference on Learning Representations (ICLR), April 2020 (conference) Accepted

ei

link (url) [BibTex]

link (url) [BibTex]


From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

8th International Conference on Learning Representations (ICLR) , April 2020, *equal contribution (conference) Accepted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

ei ps

arXiv [BibTex]

arXiv [BibTex]


no image
More Powerful Selective Kernel Tests for Feature Selection

Lim, J. N., Yamada, M., Jitkrittum, W., Terada, Y., Matsui, S., Shimodaira, H.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 2020 (conference) To be published

ei

arXiv [BibTex]

arXiv [BibTex]


no image
ACTrain: Ein KI-basiertes Aufmerksamkeitstraining für die Wissensarbeit [ACTrain: An AI-based attention training for knowledge work]

Wirzberger, M., Oreshnikov, I., Passy, J., Lado, A., Shenhav, A., Lieder, F.

66th Spring Conference of the German Ergonomics Society, 2020 (conference)

Abstract
Unser digitales Zeitalter lebt von Informationen und stellt unsere begrenzte Verarbeitungskapazität damit täglich auf die Probe. Gerade in der Wissensarbeit haben ständige Ablenkungen erhebliche Leistungseinbußen zur Folge. Unsere intelligente Anwendung ACTrain setzt genau an dieser Stelle an und verwandelt Computertätigkeiten in eine Trainingshalle für den Geist. Feedback auf Basis maschineller Lernverfahren zeigt anschaulich den Wert auf, sich nicht von einer selbst gewählten Aufgabe ablenken zu lassen. Diese metakognitive Einsicht soll zum Durchhalten motivieren und das zugrunde liegende Fertigkeitsniveau der Aufmerksamkeitskontrolle stärken. In laufenden Feldexperimenten untersuchen wir die Frage, ob das Training mit diesem optimalen Feedback die Aufmerksamkeits- und Selbstkontrollfertigkeiten im Vergleich zu einer Kontrollgruppe ohne Feedback verbessern kann.

re sf

link (url) [BibTex]


no image
Computationally Tractable Riemannian Manifolds for Graph Embeddings

Cruceru, C., Becigneul, G., Ganea, O.

37th International Conference on Machine Learning (ICML), 2020 (conference) Submitted

ei

[BibTex]

[BibTex]


no image
Practical Accelerated Optimization on Riemannian Manifolds

F Alimisis, F., Orvieto, A., Becigneul, G., Lucchi, A.

37th International Conference on Machine Learning (ICML), 2020 (conference) Submitted

ei

[BibTex]

[BibTex]


Differentiation of blackbox combinatorial solvers
Differentiation of blackbox combinatorial solvers

Vlastelica, M., Paulus, A., Musil, V., Martius, G., Rolı́nek, M.

In International Conference on Learning Representations, ICLR’20, 2020 (incollection)

al

link (url) [BibTex]

link (url) [BibTex]


no image
Constant Curvature Graph Convolutional Networks

Bachmann*, G., Becigneul*, G., Ganea, O.

37th International Conference on Machine Learning (ICML), 2020, *equal contribution (conference) Submitted

ei

[BibTex]

[BibTex]

2017


no image
Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning

Gu, S., Lillicrap, T., Turner, R. E., Ghahramani, Z., Schölkopf, B., Levine, S.

Advances in Neural Information Processing Systems 30, pages: 3849-3858, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

2017


link (url) Project Page [BibTex]


no image
Boosting Variational Inference: an Optimization Perspective

Locatello, F., Khanna, R., Ghosh, J., Rätsch, G.

Workshop: Advances in Approximate Bayesian Inference at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Independent Causal Mechanisms

Parascandolo, G., Rojas-Carulla, M., Kilbertus, N., Schölkopf, B.

Workshop: Learning Disentangled Representations: from Perception to Control at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Avoiding Discrimination through Causal Reasoning

Kilbertus, N., Rojas-Carulla, M., Parascandolo, G., Hardt, M., Janzing, D., Schölkopf, B.

Advances in Neural Information Processing Systems 30, pages: 656-666, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees

Locatello, F., Tschannen, M., Rätsch, G., Jaggi, M.

Advances in Neural Information Processing Systems 30, pages: 773-784, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
AdaGAN: Boosting Generative Models

Tolstikhin, I., Gelly, S., Bousquet, O., Simon-Gabriel, C. J., Schölkopf, B.

Advances in Neural Information Processing Systems 30, pages: 5424-5433, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

arXiv link (url) Project Page [BibTex]

arXiv link (url) Project Page [BibTex]


no image
Safe Adaptive Importance Sampling

Stich, S. U., Raj, A., Jaggi, M.

Advances in Neural Information Processing Systems 30, pages: 4384-4394, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
ConvWave: Searching for Gravitational Waves with Fully Convolutional Neural Nets

Gebhard, T., Kilbertus, N., Parascandolo, G., Harry, I., Schölkopf, B.

Workshop on Deep Learning for Physical Sciences (DLPS) at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
From Parity to Preference-based Notions of Fairness in Classification

Zafar, M. B., Valera, I., Gomez Rodriguez, M., Gummadi, K., Weller, A.

Advances in Neural Information Processing Systems 30, pages: 229-239, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


On the Design of {LQR} Kernels for Efficient Controller Learning
On the Design of LQR Kernels for Efficient Controller Learning

Marco, A., Hennig, P., Schaal, S., Trimpe, S.

Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), pages: 5193-5200, IEEE, IEEE Conference on Decision and Control, December 2017 (conference)

Abstract
Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.

am ics pn

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]


no image
Discriminative k-shot learning using probabilistic models

Bauer*, M., Rojas-Carulla*, M., Świątkowski, J. B., Schölkopf, B., Turner, R. E.

Second Workshop on Bayesian Deep Learning at the 31st Conference on Neural Information Processing Systems , December 2017, *equal contribution (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Closed-form Inference and Prediction in Gaussian Process State-Space Models

Ialongo, A. D., Van Der Wilk, M., Rasmussen, C. E.

Time Series Workshop at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning Robust Video Synchronization without Annotations

Wieschollek, P., Freeman, I., Lensch, H. P. A.

16th IEEE International Conference on Machine Learning and Applications (ICMLA), pages: 92 - 100, (Editors: X. Chen, B. Luo, F. Luo, V. Palade, and M. A. Wani), IEEE, December 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Optimizing human learning

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Workshop on Teaching Machines, Robots, and Humans at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Leveraging the Crowd to Detect and Reduce the Spread of Fake News and Misinformation

Kim, J., Tabibian, B., Oh, A., Schölkopf, B., Gomez Rodriguez, M.

Workshop on Prioritising Online Content at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Online Learning with Stochastic Recurrent Neural Networks using Intrinsic Motivation Signals

Tanneberg, D., Peters, J., Rueckert, E.

Proceedings of the 1st Annual Conference on Robot Learning (CoRL), pages: 167-174, Proceedings of Machine Learning Research, (Editors: Sergey Levine, Vincent Vanhoucke and Ken Goldberg), PMLR, November 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Behind Distribution Shift: Mining Driving Forces of Changes and Causal Arrows

Huang, B., Zhang, K., Zhang, J., Sanchez-Romero, R., Glymour, C., Schölkopf, B.

IEEE 17th International Conference on Data Mining (ICDM), pages: 913-918, (Editors: Vijay Raghavan,Srinivas Aluru, George Karypis, Lucio Miele and Xindong Wu), November 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


Optimizing Long-term Predictions for Model-based Policy Search
Optimizing Long-term Predictions for Model-based Policy Search

Doerr, A., Daniel, C., Nguyen-Tuong, D., Marco, A., Schaal, S., Toussaint, M., Trimpe, S.

Proceedings of 1st Annual Conference on Robot Learning (CoRL), 78, pages: 227-238, (Editors: Sergey Levine and Vincent Vanhoucke and Ken Goldberg), 1st Annual Conference on Robot Learning, November 2017 (conference)

Abstract
We propose a novel long-term optimization criterion to improve the robustness of model-based reinforcement learning in real-world scenarios. Learning a dynamics model to derive a solution promises much greater data-efficiency and reusability compared to model-free alternatives. In practice, however, modelbased RL suffers from various imperfections such as noisy input and output data, delays and unmeasured (latent) states. To achieve higher resilience against such effects, we propose to optimize a generative long-term prediction model directly with respect to the likelihood of observed trajectories as opposed to the common approach of optimizing a dynamics model for one-step-ahead predictions. We evaluate the proposed method on several artificial and real-world benchmark problems and compare it to PILCO, a model-based RL framework, in experiments on a manipulation robot. The results show that the proposed method is competitive compared to state-of-the-art model learning methods. In contrast to these more involved models, our model can directly be employed for policy search and outperforms a baseline method in the robot experiment.

am ics

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
Efficient Online Adaptation with Stochastic Recurrent Neural Networks

Tanneberg, D., Peters, J., Rueckert, E.

IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), pages: 198-204, IEEE, November 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Learning inverse dynamics models in O(n) time with LSTM networks

Rueckert, E., Nakatenus, M., Tosatto, S., Peters, J.

IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), pages: 811-816, IEEE, November 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A Comparison of Distance Measures for Learning Nonparametric Motor Skill Libraries

Stark, S., Peters, J., Rueckert, E.

IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), pages: 624-630, IEEE, November 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Simulation of the underactuated Sake Robotics Gripper in V-REP

Thiem, S., Stark, S., Tanneberg, D., Peters, J., Rueckert, E.

Workshop at the International Conference on Humanoid Robots (HUMANOIDS), November 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
End-to-End Learning for Image Burst Deblurring

Wieschollek, P., Schölkopf, B., Lensch, H. P. A., Hirsch, M.

Computer Vision - ACCV 2016 - 13th Asian Conference on Computer Vision, 10114, pages: 35-51, Image Processing, Computer Vision, Pattern Recognition, and Graphics, (Editors: Lai, S.-H., Lepetit, V., Nishino, K., and Sato, Y. ), Springer, November 2017 (conference)

ei

[BibTex]

[BibTex]


no image
Active Incremental Learning of Robot Movement Primitives

Maeda, G., Ewerton, M., Osa, T., Busch, B., Peters, J.

Proceedings of the 1st Annual Conference on Robot Learning (CoRL), 78, pages: 37-46, Proceedings of Machine Learning Research, (Editors: Sergey Levine, Vincent Vanhoucke and Ken Goldberg), PMLR, November 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Online Video Deblurring via Dynamic Temporal Blending Network

Kim, T. H., Lee, K. M., Schölkopf, B., Hirsch, M.

Proceedings IEEE International Conference on Computer Vision (ICCV), pages: 4038-4047, IEEE, Piscataway, NJ, USA, IEEE International Conference on Computer Vision (ICCV), October 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


{EnhanceNet}: Single Image Super-Resolution through Automated Texture Synthesis
EnhanceNet: Single Image Super-Resolution through Automated Texture Synthesis

Sajjadi, M. S. M., Schölkopf, B., Hirsch, M.

Proceedings IEEE International Conference on Computer Vision (ICCV), pages: 4501-4510, IEEE, Piscataway, NJ, USA, IEEE International Conference on Computer Vision (ICCV), October 2017 (conference)

ei

Arxiv Project link (url) DOI [BibTex]

Arxiv Project link (url) DOI [BibTex]


no image
Learning Blind Motion Deblurring

Wieschollek, P., Hirsch, M., Schölkopf, B., Lensch, H.

Proceedings IEEE International Conference on Computer Vision (ICCV), pages: 231-240, IEEE, Piscataway, NJ, USA, IEEE International Conference on Computer Vision (ICCV), October 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Personalized Brain-Computer Interface Models for Motor Rehabilitation

Mastakouri, A., Weichwald, S., Ozdenizci, O., Meyer, T., Schölkopf, B., Grosse-Wentrup, M.

Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages: 3024-3029, October 2017 (conference)

ei

ArXiv PDF DOI Project Page [BibTex]

ArXiv PDF DOI Project Page [BibTex]


no image
Multi-frame blind image deconvolution through split frequency - phase recovery

Gauci, A., Abela, J., Cachia, E., Hirsch, M., ZarbAdami, K.

Proc. SPIE 10225, Eighth International Conference on Graphic and Image Processing (ICGIP 2016), pages: 1022511, (Editors: Yulin Wang, Tuan D. Pham, Vit Vozenilek, David Zhang, Yi Xie), October 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Closing One’s Eyes Affects Amplitude Modulation but Not Frequency Modulation in a Cognitive BCI

Görner, M., Schölkopf, B., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 165-170, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
A Guided Task for Cognitive Brain-Computer Interfaces

Moser, J., Hohmann, M. R., Schölkopf, B., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 326-331, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Bayesian Regression for Artifact Correction in Electroencephalography

Fiebig, K., Jayaram, V., Hesse, T., Blank, A., Peters, J., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 131-136, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Investigating Music Imagery as a Cognitive Paradigm for Low-Cost Brain-Computer Interfaces

Grossberger, L., Hohmann, M. R., Peters, J., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 160-164, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Correlations of Motor Adaptation Learning and Modulation of Resting-State Sensorimotor EEG Activity

Ozdenizci, O., Yalcin, M., Erdogan, A., Patoglu, V., Grosse-Wentrup, M., Cetin, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 384-388, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Weakly-Supervised Localization of Diabetic Retinopathy Lesions in Retinal Fundus Images

Gondal, M. W., Köhler, J. M., Grzeszick, R., Fink, G., Hirsch, M.

IEEE International Conference on Image Processing (ICIP), pages: 2069-2073, September 2017 (conference)

ei

arXiv DOI [BibTex]

arXiv DOI [BibTex]