Header logo is


2020


no image
Sliding Mode Control with Gaussian Process Regression for Underwater Robots

Lima, G. S., Trimpe, S., Bessa, W. M.

Journal of Intelligent & Robotic Systems, January 2020 (article)

ics

DOI [BibTex]

2020


DOI [BibTex]


Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks
Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks

Beuchert, J., Solowjow, F., Raisch, J., Trimpe, S., Seel, T.

IEEE Control Systems Letters, 4(1):103-108, January 2020 (article)

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems
Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems

Baumann, D., Mager, F., Zimmerling, M., Trimpe, S.

IEEE Control Systems Letters, 4(1):127-132, January 2020 (article)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


no image
More Powerful Selective Kernel Tests for Feature Selection

Lim, J. N., Yamada, M., Jitkrittum, W., Terada, Y., Matsui, S., Shimodaira, H.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 2020 (conference) To be published

ei

arXiv [BibTex]

arXiv [BibTex]


Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage
Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage

Haksar, R. N., Trimpe, S., Schwager, M.

IEEE Robotics and Automation Letters, 2020 (article) Accepted

ics

DOI [BibTex]

DOI [BibTex]


Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control
Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control

Nubert, J., Koehler, J., Berenz, V., Allgower, F., Trimpe, S.

IEEE Robotics and Automation Letters, 2020 (article) Accepted

Abstract
Fast feedback control and safety guarantees are essential in modern robotics. We present an approach that achieves both by combining novel robust model predictive control (MPC) with function approximation via (deep) neural networks (NNs). The result is a new approach for complex tasks with nonlinear, uncertain, and constrained dynamics as are common in robotics. Specifically, we leverage recent results in MPC research to propose a new robust setpoint tracking MPC algorithm, which achieves reliable and safe tracking of a dynamic setpoint while guaranteeing stability and constraint satisfaction. The presented robust MPC scheme constitutes a one-layer approach that unifies the often separated planning and control layers, by directly computing the control command based on a reference and possibly obstacle positions. As a separate contribution, we show how the computation time of the MPC can be drastically reduced by approximating the MPC law with a NN controller. The NN is trained and validated from offline samples of the MPC, yielding statistical guarantees, and used in lieu thereof at run time. Our experiments on a state-of-the-art robot manipulator are the first to show that both the proposed robust and approximate MPC schemes scale to real-world robotic systems.

am ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]

2017


no image
Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning

Gu, S., Lillicrap, T., Turner, R. E., Ghahramani, Z., Schölkopf, B., Levine, S.

Advances in Neural Information Processing Systems 30, pages: 3849-3858, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

2017


link (url) Project Page [BibTex]


no image
Boosting Variational Inference: an Optimization Perspective

Locatello, F., Khanna, R., Ghosh, J., Rätsch, G.

Workshop: Advances in Approximate Bayesian Inference at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Independent Causal Mechanisms

Parascandolo, G., Rojas-Carulla, M., Kilbertus, N., Schölkopf, B.

Workshop: Learning Disentangled Representations: from Perception to Control at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Avoiding Discrimination through Causal Reasoning

Kilbertus, N., Rojas-Carulla, M., Parascandolo, G., Hardt, M., Janzing, D., Schölkopf, B.

Advances in Neural Information Processing Systems 30, pages: 656-666, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees

Locatello, F., Tschannen, M., Rätsch, G., Jaggi, M.

Advances in Neural Information Processing Systems 30, pages: 773-784, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
AdaGAN: Boosting Generative Models

Tolstikhin, I., Gelly, S., Bousquet, O., Simon-Gabriel, C. J., Schölkopf, B.

Advances in Neural Information Processing Systems 30, pages: 5424-5433, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

arXiv link (url) Project Page [BibTex]

arXiv link (url) Project Page [BibTex]


no image
Safe Adaptive Importance Sampling

Stich, S. U., Raj, A., Jaggi, M.

Advances in Neural Information Processing Systems 30, pages: 4384-4394, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
ConvWave: Searching for Gravitational Waves with Fully Convolutional Neural Nets

Gebhard, T., Kilbertus, N., Parascandolo, G., Harry, I., Schölkopf, B.

Workshop on Deep Learning for Physical Sciences (DLPS) at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
From Parity to Preference-based Notions of Fairness in Classification

Zafar, M. B., Valera, I., Gomez Rodriguez, M., Gummadi, K., Weller, A.

Advances in Neural Information Processing Systems 30, pages: 229-239, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


On the Design of {LQR} Kernels for Efficient Controller Learning
On the Design of LQR Kernels for Efficient Controller Learning

Marco, A., Hennig, P., Schaal, S., Trimpe, S.

Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), pages: 5193-5200, IEEE, IEEE Conference on Decision and Control, December 2017 (conference)

Abstract
Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.

am ics pn

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]


no image
Discriminative k-shot learning using probabilistic models

Bauer*, M., Rojas-Carulla*, M., Świątkowski, J. B., Schölkopf, B., Turner, R. E.

Second Workshop on Bayesian Deep Learning at the 31st Conference on Neural Information Processing Systems , December 2017, *equal contribution (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Closed-form Inference and Prediction in Gaussian Process State-Space Models

Ialongo, A. D., Van Der Wilk, M., Rasmussen, C. E.

Time Series Workshop at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning Robust Video Synchronization without Annotations

Wieschollek, P., Freeman, I., Lensch, H. P. A.

16th IEEE International Conference on Machine Learning and Applications (ICMLA), pages: 92 - 100, (Editors: X. Chen, B. Luo, F. Luo, V. Palade, and M. A. Wani), IEEE, December 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Optimizing human learning

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Workshop on Teaching Machines, Robots, and Humans at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Leveraging the Crowd to Detect and Reduce the Spread of Fake News and Misinformation

Kim, J., Tabibian, B., Oh, A., Schölkopf, B., Gomez Rodriguez, M.

Workshop on Prioritising Online Content at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Online Learning with Stochastic Recurrent Neural Networks using Intrinsic Motivation Signals

Tanneberg, D., Peters, J., Rueckert, E.

Proceedings of the 1st Annual Conference on Robot Learning (CoRL), pages: 167-174, Proceedings of Machine Learning Research, (Editors: Sergey Levine, Vincent Vanhoucke and Ken Goldberg), PMLR, November 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Behind Distribution Shift: Mining Driving Forces of Changes and Causal Arrows

Huang, B., Zhang, K., Zhang, J., Sanchez-Romero, R., Glymour, C., Schölkopf, B.

IEEE 17th International Conference on Data Mining (ICDM), pages: 913-918, (Editors: Vijay Raghavan,Srinivas Aluru, George Karypis, Lucio Miele and Xindong Wu), November 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


Optimizing Long-term Predictions for Model-based Policy Search
Optimizing Long-term Predictions for Model-based Policy Search

Doerr, A., Daniel, C., Nguyen-Tuong, D., Marco, A., Schaal, S., Toussaint, M., Trimpe, S.

Proceedings of 1st Annual Conference on Robot Learning (CoRL), 78, pages: 227-238, (Editors: Sergey Levine and Vincent Vanhoucke and Ken Goldberg), 1st Annual Conference on Robot Learning, November 2017 (conference)

Abstract
We propose a novel long-term optimization criterion to improve the robustness of model-based reinforcement learning in real-world scenarios. Learning a dynamics model to derive a solution promises much greater data-efficiency and reusability compared to model-free alternatives. In practice, however, modelbased RL suffers from various imperfections such as noisy input and output data, delays and unmeasured (latent) states. To achieve higher resilience against such effects, we propose to optimize a generative long-term prediction model directly with respect to the likelihood of observed trajectories as opposed to the common approach of optimizing a dynamics model for one-step-ahead predictions. We evaluate the proposed method on several artificial and real-world benchmark problems and compare it to PILCO, a model-based RL framework, in experiments on a manipulation robot. The results show that the proposed method is competitive compared to state-of-the-art model learning methods. In contrast to these more involved models, our model can directly be employed for policy search and outperforms a baseline method in the robot experiment.

am ics

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
Efficient Online Adaptation with Stochastic Recurrent Neural Networks

Tanneberg, D., Peters, J., Rueckert, E.

IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), pages: 198-204, IEEE, November 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Learning inverse dynamics models in O(n) time with LSTM networks

Rueckert, E., Nakatenus, M., Tosatto, S., Peters, J.

IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), pages: 811-816, IEEE, November 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A Comparison of Distance Measures for Learning Nonparametric Motor Skill Libraries

Stark, S., Peters, J., Rueckert, E.

IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), pages: 624-630, IEEE, November 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Simulation of the underactuated Sake Robotics Gripper in V-REP

Thiem, S., Stark, S., Tanneberg, D., Peters, J., Rueckert, E.

Workshop at the International Conference on Humanoid Robots (HUMANOIDS), November 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
End-to-End Learning for Image Burst Deblurring

Wieschollek, P., Schölkopf, B., Lensch, H. P. A., Hirsch, M.

Computer Vision - ACCV 2016 - 13th Asian Conference on Computer Vision, 10114, pages: 35-51, Image Processing, Computer Vision, Pattern Recognition, and Graphics, (Editors: Lai, S.-H., Lepetit, V., Nishino, K., and Sato, Y. ), Springer, November 2017 (conference)

ei

[BibTex]

[BibTex]


no image
Active Incremental Learning of Robot Movement Primitives

Maeda, G., Ewerton, M., Osa, T., Busch, B., Peters, J.

Proceedings of the 1st Annual Conference on Robot Learning (CoRL), 78, pages: 37-46, Proceedings of Machine Learning Research, (Editors: Sergey Levine, Vincent Vanhoucke and Ken Goldberg), PMLR, November 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Online Video Deblurring via Dynamic Temporal Blending Network

Kim, T. H., Lee, K. M., Schölkopf, B., Hirsch, M.

Proceedings IEEE International Conference on Computer Vision (ICCV), pages: 4038-4047, IEEE, Piscataway, NJ, USA, IEEE International Conference on Computer Vision (ICCV), October 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


{EnhanceNet}: Single Image Super-Resolution through Automated Texture Synthesis
EnhanceNet: Single Image Super-Resolution through Automated Texture Synthesis

Sajjadi, M. S. M., Schölkopf, B., Hirsch, M.

Proceedings IEEE International Conference on Computer Vision (ICCV), pages: 4501-4510, IEEE, Piscataway, NJ, USA, IEEE International Conference on Computer Vision (ICCV), October 2017 (conference)

ei

Arxiv Project link (url) DOI [BibTex]

Arxiv Project link (url) DOI [BibTex]


no image
Learning Blind Motion Deblurring

Wieschollek, P., Hirsch, M., Schölkopf, B., Lensch, H.

Proceedings IEEE International Conference on Computer Vision (ICCV), pages: 231-240, IEEE, Piscataway, NJ, USA, IEEE International Conference on Computer Vision (ICCV), October 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Personalized Brain-Computer Interface Models for Motor Rehabilitation

Mastakouri, A., Weichwald, S., Ozdenizci, O., Meyer, T., Schölkopf, B., Grosse-Wentrup, M.

Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages: 3024-3029, October 2017 (conference)

ei

ArXiv PDF DOI Project Page [BibTex]

ArXiv PDF DOI Project Page [BibTex]


no image
Improving performance of linear field generation with multi-coil setup by optimizing coils position

Aghaeifar, A., Loktyushin, A., Eschelbach, M., Scheffler, K.

Magnetic Resonance Materials in Physics, Biology and Medicine, 30(Supplement 1):S259, 34th Annual Scientific Meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB), October 2017 (poster)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Generalized exploration in policy search

van Hoof, H., Tanneberg, D., Peters, J.

Machine Learning, 106(9-10):1705-1724 , (Editors: Kurt Driessens, Dragi Kocev, Marko Robnik‐Sikonja, and Myra Spiliopoulou), October 2017, Special Issue of the ECML PKDD 2017 Journal Track (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Multi-frame blind image deconvolution through split frequency - phase recovery

Gauci, A., Abela, J., Cachia, E., Hirsch, M., ZarbAdami, K.

Proc. SPIE 10225, Eighth International Conference on Graphic and Image Processing (ICGIP 2016), pages: 1022511, (Editors: Yulin Wang, Tuan D. Pham, Vit Vozenilek, David Zhang, Yi Xie), October 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic Prioritization of Movement Primitives

Paraschos, A., Lioutikov, R., Peters, J., Neumann, G.

Proceedings of the International Conference on Intelligent Robot Systems, and IEEE Robotics and Automation Letters (RA-L), 2(4):2294-2301, October 2017 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Closing One’s Eyes Affects Amplitude Modulation but Not Frequency Modulation in a Cognitive BCI

Görner, M., Schölkopf, B., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 165-170, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
A Guided Task for Cognitive Brain-Computer Interfaces

Moser, J., Hohmann, M. R., Schölkopf, B., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 326-331, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Bayesian Regression for Artifact Correction in Electroencephalography

Fiebig, K., Jayaram, V., Hesse, T., Blank, A., Peters, J., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 131-136, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Investigating Music Imagery as a Cognitive Paradigm for Low-Cost Brain-Computer Interfaces

Grossberger, L., Hohmann, M. R., Peters, J., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 160-164, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Correlations of Motor Adaptation Learning and Modulation of Resting-State Sensorimotor EEG Activity

Ozdenizci, O., Yalcin, M., Erdogan, A., Patoglu, V., Grosse-Wentrup, M., Cetin, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 384-388, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Weakly-Supervised Localization of Diabetic Retinopathy Lesions in Retinal Fundus Images

Gondal, M. W., Köhler, J. M., Grzeszick, R., Fink, G., Hirsch, M.

IEEE International Conference on Image Processing (ICIP), pages: 2069-2073, September 2017 (conference)

ei

arXiv DOI [BibTex]

arXiv DOI [BibTex]


no image
Assisting the practice of motor skills by humans with a probability distribution over trajectories

Ewerton, M., Maeda, G., Rother, D., Weimar, J., Lotter, L., Kollegger, G., Wiemeyer, J., Peters, J.

In Workshop Human-in-the-loop robotic manipulation: on the influence of the human role at IROS, September 2017 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
BIMROB – Bidirectional Interaction Between Human and Robot for the Learning of Movements

Kollegger, G., Ewerton, M., Wiemeyer, J., Peters, J.

Proceedings of the 11th International Symposium on Computer Science in Sport (IACSS), (663):151-163, Advances in Intelligent Systems and Computing, (Editors: Lames M., Saupe D. and Wiemeyer J.), Springer International Publishing, September 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Goal-driven dimensionality reduction for reinforcement learning

Parisi, S., Ramstedt, S., Peters, J.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 4634-4639, IEEE, September 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Hybrid control trajectory optimization under uncertainty

Pajarinen, J., Kyrki, V., Koval, M., Srinivasa, S., Peters, J., Neumann, G.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 5694-5701, September 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]