Header logo is


2020


no image
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach

Karimi*, A., von Kügelgen*, J., Schölkopf, B., Valera, I.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020, *equal contribution (conference) Accepted

ei

arXiv [BibTex]

2020


arXiv [BibTex]


no image
Self-Paced Deep Reinforcement Learning

Klink, P., D’Eramo, C., Peters, J., Pajarinen, J.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Probabilistic Linear Solvers for Machine Learning

Wenger, J., Hennig, P.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Barking up the right tree: an approach to search over molecule synthesis DAGs

Bradshaw, J., Paige, B., Kusner, M., Segler, M., Hernández-Lobato, J. M.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Learning Kernel Tests Without Data Splitting

Kübler, J., Jitkrittum, W., Schölkopf, B., Muandet, K.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Dual Instrumental Variable Regression

Muandet, K., Mehrjou, A., Lee, S. K., Raj, A.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings

Park, J., Muandet, K.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
MATE: Plugging in Model Awareness to Task Embedding for Meta Learning

Chen, X., Wang, Z., Tang, S., Muandet, K.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Object-Centric Learning with Slot Attention

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit, J., Dosovitskiy, A., Kipf, T.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Relative gradient optimization of the Jacobian term in unsupervised deep learning

Gresele, L., Fissore, G., Javaloy, A., Schölkopf, B., Hyvarinen, A.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Causal analysis of Covid-19 Spread in Germany

Mastakouri, A., Schölkopf, B.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Modeling Shared responses in Neuroimaging Studies through MultiView ICA

Richard, H., Gresele, L., Hyvarinen, A., Thirion, B., Gramfort, A., Ablin, P.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Stochastic Stein Discrepancies

Gorham, J., Raj, A., Mackey, L.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining

Tripp, A., Daxberger, E., Hernández-Lobato, J. M.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


Grasping Field: Learning Implicit Representations for Human Grasps
Grasping Field: Learning Implicit Representations for Human Grasps

Karunratanakul, K., Yang, J., Zhang, Y., Black, M., Muandet, K., Tang, S.

In International Conference on 3D Vision (3DV), November 2020 (inproceedings)

Abstract
Robotic grasping of house-hold objects has made remarkable progress in recent years. Yet, human grasps are still difficult to synthesize realistically. There are several key reasons: (1) the human hand has many degrees of freedom (more than robotic manipulators); (2) the synthesized hand should conform to the surface of the object; and (3) it should interact with the object in a semantically and physically plausible manner. To make progress in this direction, we draw inspiration from the recent progress on learning-based implicit representations for 3D object reconstruction. Specifically, we propose an expressive representation for human grasp modelling that is efficient and easy to integrate with deep neural networks. Our insight is that every point in a three-dimensional space can be characterized by the signed distances to the surface of the hand and the object, respectively. Consequently, the hand, the object, and the contact area can be represented by implicit surfaces in a common space, in which the proximity between the hand and the object can be modelled explicitly. We name this 3D to 2D mapping as Grasping Field, parameterize it with a deep neural network, and learn it from data. We demonstrate that the proposed grasping field is an effective and expressive representation for human grasp generation. Specifically, our generative model is able to synthesize high-quality human grasps, given only on a 3D object point cloud. The extensive experiments demonstrate that our generative model compares favorably with a strong baseline and approaches the level of natural human grasps. Furthermore, based on the grasping field representation, we propose a deep network for the challenging task of 3D hand-object interaction reconstruction from a single RGB image. Our method improves the physical plausibility of the hand-object contact reconstruction and achieves comparable performance for 3D hand reconstruction compared to state-of-the-art methods. Our model and code are available for research purpose at https://github.com/korrawe/grasping_field.

ei ps

pdf arXiv code [BibTex]


no image
MYND: Unsupervised Evaluation of Novel BCI Control Strategies on Consumer Hardware

Hohmann, M. R., Konieczny, L., Hackl, M., Wirth, B., Zaman, T., Enficiaud, R., Grosse-Wentrup, M., Schölkopf, B.

Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (UIST), October 2020 (conference) Accepted

ei

arXiv DOI [BibTex]

arXiv DOI [BibTex]


Label Efficient Visual Abstractions for Autonomous Driving
Label Efficient Visual Abstractions for Autonomous Driving

Behl, A., Chitta, K., Prakash, A., Ohn-Bar, E., Geiger, A.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, October 2020 (conference)

Abstract
It is well known that semantic segmentation can be used as an effective intermediate representation for learning driving policies. However, the task of street scene semantic segmentation requires expensive annotations. Furthermore, segmentation algorithms are often trained irrespective of the actual driving task, using auxiliary image-space loss functions which are not guaranteed to maximize driving metrics such as safety or distance traveled per intervention. In this work, we seek to quantify the impact of reducing segmentation annotation costs on learned behavior cloning agents. We analyze several segmentation-based intermediate representations. We use these visual abstractions to systematically study the trade-off between annotation efficiency and driving performance, ie, the types of classes labeled, the number of image samples used to learn the visual abstraction model, and their granularity (eg, object masks vs. 2D bounding boxes). Our analysis uncovers several practical insights into how segmentation-based visual abstractions can be exploited in a more label efficient manner. Surprisingly, we find that state-of-the-art driving performance can be achieved with orders of magnitude reduction in annotation cost. Beyond label efficiency, we find several additional training benefits when leveraging visual abstractions, such as a significant reduction in the variance of the learned policy when compared to state-of-the-art end-to-end driving models.

avg

pdf slides video Project Page [BibTex]

pdf slides video Project Page [BibTex]


A Gamified App that Helps People Overcome Self-Limiting Beliefs by Promoting Metacognition
A Gamified App that Helps People Overcome Self-Limiting Beliefs by Promoting Metacognition

Amo, V., Lieder, F.

SIG 8 Meets SIG 16, September 2020 (conference) Accepted

Abstract
Previous research has shown that approaching learning with a growth mindset is key for maintaining motivation and overcoming setbacks. Mindsets are systems of beliefs that people hold to be true. They influence a person's attitudes, thoughts, and emotions when they learn something new or encounter challenges. In clinical psychology, metareasoning (reflecting on one's mental processes) and meta-awareness (recognizing thoughts as mental events instead of equating them to reality) have proven effective for overcoming maladaptive thinking styles. Hence, they are potentially an effective method for overcoming self-limiting beliefs in other domains as well. However, the potential of integrating assisted metacognition into mindset interventions has not been explored yet. Here, we propose that guiding and training people on how to leverage metareasoning and meta-awareness for overcoming self-limiting beliefs can significantly enhance the effectiveness of mindset interventions. To test this hypothesis, we develop a gamified mobile application that guides and trains people to use metacognitive strategies based on Cognitive Restructuring (CR) and Acceptance Commitment Therapy (ACT) techniques. The application helps users to identify and overcome self-limiting beliefs by working with aversive emotions when they are triggered by fixed mindsets in real-life situations. Our app aims to help people sustain their motivation to learn when they face inner obstacles (e.g. anxiety, frustration, and demotivation). We expect the application to be an effective tool for helping people better understand and develop the metacognitive skills of emotion regulation and self-regulation that are needed to overcome self-limiting beliefs and develop growth mindsets.

re

A gamified app that helps people overcome self-limiting beliefs by promoting metacognition [BibTex]


Convolutional Occupancy Networks
Convolutional Occupancy Networks

Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.

In European Conference on Computer Vision (ECCV), Springer International Publishing, Cham, August 2020 (inproceedings)

Abstract
Recently, implicit neural representations have gained popularity for learning-based 3D reconstruction. While demonstrating promising results, most implicit approaches are limited to comparably simple geometry of single objects and do not scale to more complicated or large-scale scenes. The key limiting factor of implicit methods is their simple fully-connected network architecture which does not allow for integrating local information in the observations or incorporating inductive biases such as translational equivariance. In this paper, we propose Convolutional Occupancy Networks, a more flexible implicit representation for detailed reconstruction of objects and 3D scenes. By combining convolutional encoders with implicit occupancy decoders, our model incorporates inductive biases, enabling structured reasoning in 3D space. We investigate the effectiveness of the proposed representation by reconstructing complex geometry from noisy point clouds and low-resolution voxel representations. We empirically find that our method enables the fine-grained implicit 3D reconstruction of single objects, scales to large indoor scenes, and generalizes well from synthetic to real data.

avg

pdf suppmat video Project Page [BibTex]

pdf suppmat video Project Page [BibTex]


no image
Model-Agnostic Counterfactual Explanations for Consequential Decisions

Karimi, A., Barthe, G., Balle, B., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 895-905, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei plg

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
More Powerful Selective Kernel Tests for Feature Selection

Lim, J. N., Yamada, M., Jitkrittum, W., Terada, Y., Matsui, S., Shimodaira, H.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 820-830, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Bayesian Online Prediction of Change Points

Agudelo-España, D., Gomez-Gonzalez, S., Bauer, S., Schölkopf, B., Peters, J.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 320-329, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Semi-supervised learning, causality, and the conditional cluster assumption

von Kügelgen, J., Mey, A., Loog, M., Schölkopf, B.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI) , 124, pages: 1-10, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Kernel Conditional Moment Test via Maximum Moment Restriction

Muandet, K., Jitkrittum, W., Kübler, J. M.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 41-50, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
On the design of consequential ranking algorithms

Tabibian, B., Gómez, V., De, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 171-180, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Importance Sampling via Local Sensitivity

Raj, A., Musco, C., Mackey, L.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 3099-3109, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
A Continuous-time Perspective for Modeling Acceleration in Riemannian Optimization

F Alimisis, F., Orvieto, A., Becigneul, G., Lucchi, A.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 1297-1307, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Fair Decisions Despite Imperfect Predictions

Kilbertus, N., Gomez Rodriguez, M., Schölkopf, B., Muandet, K., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 277-287, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei plg

link (url) [BibTex]

link (url) [BibTex]


no image
Integrals over Gaussians under Linear Domain Constraints

Gessner, A., Kanjilal, O., Hennig, P.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 2764-2774, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Modular Block-diagonal Curvature Approximations for Feedforward Architectures

Dangel, F., Harmeling, S., Hennig, P.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 799-808, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Category Level Object Pose Estimation via Neural Analysis-by-Synthesis
Category Level Object Pose Estimation via Neural Analysis-by-Synthesis

Chen, X., Dong, Z., Song, J., Geiger, A., Hilliges, O.

In European Conference on Computer Vision (ECCV), Springer International Publishing, Cham, August 2020 (inproceedings)

Abstract
Many object pose estimation algorithms rely on the analysis-by-synthesis framework which requires explicit representations of individual object instances. In this paper we combine a gradient-based fitting procedure with a parametric neural image synthesis module that is capable of implicitly representing the appearance, shape and pose of entire object categories, thus rendering the need for explicit CAD models per object instance unnecessary. The image synthesis network is designed to efficiently span the pose configuration space so that model capacity can be used to capture the shape and local appearance (i.e., texture) variations jointly. At inference time the synthesized images are compared to the target via an appearance based loss and the error signal is backpropagated through the network to the input parameters. Keeping the network parameters fixed, this allows for iterative optimization of the object pose, shape and appearance in a joint manner and we experimentally show that the method can recover orientation of objects with high accuracy from 2D images alone. When provided with depth measurements, to overcome scale ambiguities, the method can accurately recover the full 6DOF pose successfully.

avg

Project Page pdf suppmat [BibTex]

Project Page pdf suppmat [BibTex]


no image
Testing Goodness of Fit of Conditional Density Models with Kernels

Jitkrittum, W., Kanagawa, H., Schölkopf, B.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 221-230, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
How to navigate everyday distractions: Leveraging optimal feedback to train attention control

Wirzberger, M., Lado, A., Eckerstorfer, L., Oreshnikov, I., Passy, J., Stock, A., Shenhav, A., Lieder, F.

Annual Meeting of the Cognitive Science Society, July 2020 (conference)

Abstract
To stay focused on their chosen tasks, people have to inhibit distractions. The underlying attention control skills can improve through reinforcement learning, which can be accelerated by giving feedback. We applied the theory of metacognitive reinforcement learning to develop a training app that gives people optimal feedback on their attention control while they are working or studying. In an eight-day field experiment with 99 participants, we investigated the effect of this training on people's productivity, sustained attention, and self-control. Compared to a control condition without feedback, we found that participants receiving optimal feedback learned to focus increasingly better (f = .08, p < .01) and achieved higher productivity scores (f = .19, p < .01) during the training. In addition, they evaluated their productivity more accurately (r = .12, p < .01). However, due to asymmetric attrition problems, these findings need to be taken with a grain of salt.

re sf

How to navigate everyday distractions: Leveraging optimal feedback to train attention control DOI Project Page [BibTex]


no image
Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization

Negiar, G., Dresdner, G., Tsai, A. Y., El Ghaoui, L., Locatello, F., Freund, R. M., Pedregosa, F.

37th International Conference on Machine Learning (ICML), pages: 296-305, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Variational Autoencoders with Riemannian Brownian Motion Priors

Kalatzis, D., Eklund, D., Arvanitidis, G., Hauberg, S.

37th International Conference on Machine Learning (ICML), pages: 6789-6799, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Variational Bayes in Private Settings (VIPS) (Extended Abstract)

Foulds, J. R., Park, M., Chaudhuri, K., Welling, M.

Proceedings of the 29th International Joint Conference on Artificial Intelligence, (IJCAI-PRICAI), pages: 5050-5054, (Editors: Christian Bessiere), International Joint Conferences on Artificial Intelligence Organization, July 2020, Journal track (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Weakly-Supervised Disentanglement Without Compromises

Locatello, F., Poole, B., Rätsch, G., Schölkopf, B., Bachem, O., Tschannen, M.

37th International Conference on Machine Learning (ICML), pages: 7753-7764, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

Kristiadi, A., Hein, M., Hennig, P.

37th International Conference on Machine Learning (ICML), pages: 1226-1236, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Constant Curvature Graph Convolutional Networks

Bachmann*, G., Becigneul*, G., Ganea, O.

37th International Conference on Machine Learning (ICML), pages: 9118-9128, July 2020, *equal contribution (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Leveraging Machine Learning to Automatically Derive Robust Planning Strategies from Biased Models of the Environment

Kemtur, A., Jain, Y. R., Mehta, A., Callaway, F., Consul, S., Stojcheski, J., Lieder, F.

CogSci 2020, July 2020, Anirudha Kemtur and Yash Raj Jain contributed equally to this publication. (conference)

Abstract
Teaching clever heuristics is a promising approach to improve decision-making. We can leverage machine learning to discover clever strategies automatically. Current methods require an accurate model of the decision problems people face in real life. But most models are misspecified because of limited information and cognitive biases. To address this problem we develop strategy discovery methods that are robust to model misspecification. Robustness is achieved by model-ing model-misspecification and handling uncertainty about the real-world according to Bayesian inference. We translate our methods into an intelligent tutor that automatically discovers and teaches robust planning strategies. Our robust cognitive tutor significantly improved human decision-making when the model was so biased that conventional cognitive tutors were no longer effective. These findings highlight that our robust strategy discovery methods are a significant step towards leveraging artificial intelligence to improve human decision-making in the real world.

re

Project Page [BibTex]

Project Page [BibTex]


no image
Differentiable Likelihoods for Fast Inversion of ‘Likelihood-Free’ Dynamical Systems

Kersting, H., Krämer, N., Schiegg, M., Daniel, C., Tiemann, M., Hennig, P.

37th International Conference on Machine Learning (ICML), pages: 2655-2665, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Kernel Conditional Density Operators

Schuster, I., Mollenhauer, M., Klus, S., Muandet, K.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 993-1004, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, June 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
A Kernel Mean Embedding Approach to Reducing Conservativeness in Stochastic Programming and Control

Zhu, J., Diehl, M., Schölkopf, B.

2nd Annual Conference on Learning for Dynamics and Control (L4DC), 120, pages: 915-923, Proceedings of Machine Learning Research, (Editors: Alexandre M. Bayen and Ali Jadbabaie and George Pappas and Pablo A. Parrilo and Benjamin Recht and Claire Tomlin and Melanie Zeilinger), PMLR, June 2020 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Disentangling Factors of Variations Using Few Labels

Locatello, F., Tschannen, M., Bauer, S., Rätsch, G., Schölkopf, B., Bachem, O.

8th International Conference on Learning Representations (ICLR), April 2020 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Mixed-curvature Variational Autoencoders

Skopek, O., Ganea, O., Becigneul, G.

8th International Conference on Learning Representations (ICLR), April 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Non-linear interlinkages and key objectives amongst the Paris Agreement and the Sustainable Development Goals
Non-linear interlinkages and key objectives amongst the Paris Agreement and the Sustainable Development Goals

Laumann, F., von Kügelgen, J., Barahona, M.

ICLR 2020 Workshop "Tackling Climate Change with Machine Learning", April 2020 (conference)

ei

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
Counterfactuals uncover the modular structure of deep generative models

Besserve, M., Mehrjou, A., Sun, R., Schölkopf, B.

8th International Conference on Learning Representations (ICLR), April 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]