Header logo is


2020


A Gamified App that Helps People Overcome Self-Limiting Beliefs by Promoting Metacognition
A Gamified App that Helps People Overcome Self-Limiting Beliefs by Promoting Metacognition

Amo, V., Lieder, F.

SIG 8 Meets SIG 16, September 2020 (conference) Accepted

Abstract
Previous research has shown that approaching learning with a growth mindset is key for maintaining motivation and overcoming setbacks. Mindsets are systems of beliefs that people hold to be true. They influence a person's attitudes, thoughts, and emotions when they learn something new or encounter challenges. In clinical psychology, metareasoning (reflecting on one's mental processes) and meta-awareness (recognizing thoughts as mental events instead of equating them to reality) have proven effective for overcoming maladaptive thinking styles. Hence, they are potentially an effective method for overcoming self-limiting beliefs in other domains as well. However, the potential of integrating assisted metacognition into mindset interventions has not been explored yet. Here, we propose that guiding and training people on how to leverage metareasoning and meta-awareness for overcoming self-limiting beliefs can significantly enhance the effectiveness of mindset interventions. To test this hypothesis, we develop a gamified mobile application that guides and trains people to use metacognitive strategies based on Cognitive Restructuring (CR) and Acceptance Commitment Therapy (ACT) techniques. The application helps users to identify and overcome self-limiting beliefs by working with aversive emotions when they are triggered by fixed mindsets in real-life situations. Our app aims to help people sustain their motivation to learn when they face inner obstacles (e.g. anxiety, frustration, and demotivation). We expect the application to be an effective tool for helping people better understand and develop the metacognitive skills of emotion regulation and self-regulation that are needed to overcome self-limiting beliefs and develop growth mindsets.

re

A gamified app that helps people overcome self-limiting beliefs by promoting metacognition [BibTex]


no image
Model-Agnostic Counterfactual Explanations for Consequential Decisions

Karimi, A., Barthe, G., Balle, B., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 895-905, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei plg

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Fair Decisions Despite Imperfect Predictions

Kilbertus, N., Gomez Rodriguez, M., Schölkopf, B., Muandet, K., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 277-287, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei plg

link (url) [BibTex]

link (url) [BibTex]


no image
How to navigate everyday distractions: Leveraging optimal feedback to train attention control

Wirzberger, M., Lado, A., Eckerstorfer, L., Oreshnikov, I., Passy, J., Stock, A., Shenhav, A., Lieder, F.

Annual Meeting of the Cognitive Science Society, July 2020 (conference)

Abstract
To stay focused on their chosen tasks, people have to inhibit distractions. The underlying attention control skills can improve through reinforcement learning, which can be accelerated by giving feedback. We applied the theory of metacognitive reinforcement learning to develop a training app that gives people optimal feedback on their attention control while they are working or studying. In an eight-day field experiment with 99 participants, we investigated the effect of this training on people's productivity, sustained attention, and self-control. Compared to a control condition without feedback, we found that participants receiving optimal feedback learned to focus increasingly better (f = .08, p < .01) and achieved higher productivity scores (f = .19, p < .01) during the training. In addition, they evaluated their productivity more accurately (r = .12, p < .01). However, due to asymmetric attrition problems, these findings need to be taken with a grain of salt.

re sf

How to navigate everyday distractions: Leveraging optimal feedback to train attention control DOI Project Page [BibTex]


no image
Leveraging Machine Learning to Automatically Derive Robust Planning Strategies from Biased Models of the Environment

Kemtur, A., Jain, Y. R., Mehta, A., Callaway, F., Consul, S., Stojcheski, J., Lieder, F.

CogSci 2020, July 2020, Anirudha Kemtur and Yash Raj Jain contributed equally to this publication. (conference)

Abstract
Teaching clever heuristics is a promising approach to improve decision-making. We can leverage machine learning to discover clever strategies automatically. Current methods require an accurate model of the decision problems people face in real life. But most models are misspecified because of limited information and cognitive biases. To address this problem we develop strategy discovery methods that are robust to model misspecification. Robustness is achieved by model-ing model-misspecification and handling uncertainty about the real-world according to Bayesian inference. We translate our methods into an intelligent tutor that automatically discovers and teaches robust planning strategies. Our robust cognitive tutor significantly improved human decision-making when the model was so biased that conventional cognitive tutors were no longer effective. These findings highlight that our robust strategy discovery methods are a significant step towards leveraging artificial intelligence to improve human decision-making in the real world.

re

Project Page [BibTex]

Project Page [BibTex]


no image
ACTrain: Ein KI-basiertes Aufmerksamkeitstraining für die Wissensarbeit [ACTrain: An AI-based attention training for knowledge work]

Wirzberger, M., Oreshnikov, I., Passy, J., Lado, A., Shenhav, A., Lieder, F.

66th Spring Conference of the German Ergonomics Society, 2020 (conference)

Abstract
Unser digitales Zeitalter lebt von Informationen und stellt unsere begrenzte Verarbeitungskapazität damit täglich auf die Probe. Gerade in der Wissensarbeit haben ständige Ablenkungen erhebliche Leistungseinbußen zur Folge. Unsere intelligente Anwendung ACTrain setzt genau an dieser Stelle an und verwandelt Computertätigkeiten in eine Trainingshalle für den Geist. Feedback auf Basis maschineller Lernverfahren zeigt anschaulich den Wert auf, sich nicht von einer selbst gewählten Aufgabe ablenken zu lassen. Diese metakognitive Einsicht soll zum Durchhalten motivieren und das zugrunde liegende Fertigkeitsniveau der Aufmerksamkeitskontrolle stärken. In laufenden Feldexperimenten untersuchen wir die Frage, ob das Training mit diesem optimalen Feedback die Aufmerksamkeits- und Selbstkontrollfertigkeiten im Vergleich zu einer Kontrollgruppe ohne Feedback verbessern kann.

re sf

link (url) Project Page [BibTex]


no image
A Real-Robot Dataset for Assessing Transferability of Learned Dynamics Models

Agudelo-España, D., Zadaianchuk, A., Wenk, P., Garg, A., Akpo, J., Grimminger, F., Viereck, J., Naveau, M., Righetti, L., Martius, G., Krause, A., Schölkopf, B., Bauer, S., Wüthrich, M.

IEEE International Conference on Robotics and Automation (ICRA), 2020 (conference) Accepted

am al ei mg

Project Page PDF [BibTex]

Project Page PDF [BibTex]

2018


no image
Discovering and Teaching Optimal Planning Strategies

Lieder, F., Callaway, F., Krueger, P. M., Das, P., Griffiths, T. L., Gul, S.

In The 14th biannual conference of the German Society for Cognitive Science, GK, September 2018, Falk Lieder and Frederick Callaway contributed equally to this publication. (inproceedings)

Abstract
How should we think and decide, and how can we learn to make better decisions? To address these questions we formalize the discovery of cognitive strategies as a metacognitive reinforcement learning problem. This formulation leads to a computational method for deriving optimal cognitive strategies and a feedback mechanism for accelerating the process by which people learn how to make better decisions. As a proof of concept, we apply our approach to develop an intelligent system that teaches people optimal planning stratgies. Our training program combines a novel process-tracing paradigm that makes peoples latent planning strategies observable with an intelligent system that gives people feedback on how their planning strategy could be improved. The pedagogy of our intelligent tutor is based on the theory that people discover their cognitive strategies through metacognitive reinforcement learning. Concretely, the tutor’s feedback is designed to maximally accelerate people’s metacognitive reinforcement learning towards the optimal cognitive strategy. A series of four experiments confirmed that training with the cognitive tutor significantly improved people’s decision-making competency: Experiment 1 demonstrated that the cognitive tutor’s feedback accelerates participants’ metacognitive learning. Experiment 2 found that this training effect transfers to more difficult planning problems in more complex environments. Experiment 3 found that these transfer effects are retained for at least 24 hours after the training. Finally, Experiment 4 found that practicing with the cognitive tutor conveys additional benefits above and beyond verbal description of the optimal planning strategy. The results suggest that promoting metacognitive reinforcement learning with optimal feedback is a promising approach to improving the human mind.

re

link (url) Project Page [BibTex]

2018


link (url) Project Page [BibTex]


no image
Discovering Rational Heuristics for Risky Choice

Gul, S., Krueger, P. M., Callaway, F., Griffiths, T. L., Lieder, F.

The 14th biannual conference of the German Society for Cognitive Science, GK, The 14th biannual conference of the German Society for Cognitive Science, GK, September 2018 (conference)

Abstract
How should we think and decide to make the best possible use of our precious time and limited cognitive resources? And how do people’s cognitive strategies compare to this ideal? We study these questions in the domain of multi-alternative risky choice using the methodology of resource-rational analysis. To answer the first question, we leverage a new meta-level reinforcement learning algorithm to derive optimal heuristics for four different risky choice environments. We find that our method rediscovers two fast-and-frugal heuristics that people are known to use, namely Take-The-Best and choosing randomly, as resource-rational strategies for specific environments. Our method also discovered a novel heuristic that combines elements of Take-The-Best and Satisficing. To answer the second question, we use the Mouselab paradigm to measure how people’s decision strategies compare to the predictions of our resource-rational analysis. We found that our resource-rational analysis correctly predicted which strategies people use and under which conditions they use them. While people generally tend to make rational use of their limited resources overall, their strategy choices do not always fully exploit the structure of each decision problem. Overall, people’s decision operations were about 88% as resource-rational as they could possibly be. A formal model comparison confirmed that our resource-rational model explained people’s decision strategies significantly better than the Directed Cognition model of Gabaix et al. (2006). Our study is a proof-of-concept that optimal cognitive strategies can be automatically derived from the principle of resource-rationality. Our results suggest that resource-rational analysis is a promising approach for uncovering people’s cognitive strategies and revisiting the debate about human rationality with a more realistic normative standard.

re

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Learning to Select Computations

Callaway, F., Gul, S., Krueger, P. M., Griffiths, T. L., Lieder, F.

In Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference, August 2018, Frederick Callaway and Sayan Gul and Falk Lieder contributed equally to this publication. (inproceedings)

Abstract
The efficient use of limited computational resources is an essential ingredient of intelligence. Selecting computations optimally according to rational metareasoning would achieve this, but this is computationally intractable. Inspired by psychology and neuroscience, we propose the first concrete and domain-general learning algorithm for approximating the optimal selection of computations: Bayesian metalevel policy search (BMPS). We derive this general, sample-efficient search algorithm for a computation-selecting metalevel policy based on the insight that the value of information lies between the myopic value of information and the value of perfect information. We evaluate BMPS on three increasingly difficult metareasoning problems: when to terminate computation, how to allocate computation between competing options, and planning. Across all three domains, BMPS achieved near-optimal performance and compared favorably to previously proposed metareasoning heuristics. Finally, we demonstrate the practical utility of BMPS in an emergency management scenario, even accounting for the overhead of metareasoning.

re

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
On Time Optimization of Centroidal Momentum Dynamics

Ponton, B., Herzog, A., Del Prete, A., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 5776-5782, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing † †Implementation details and demos can be found in the source code available at https://git-amd.tuebingen.mpg.de/bponton/timeoptimization.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Direct observations of sub-100 nm spin wave propagation in magnonic wave-guides

Träger, N., Gruszecki, P., Lisiecki, F., Förster, J., Weigand, M., Kuswik, P., Dubowik, J., Schütz, G., Krawczyk, M., Gräfe, J.

In 2018 IEEE International Magnetics Conference (INTERMAG 2018), IEEE, Singapore, 2018 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Unsupervised Contact Learning for Humanoid Estimation and Control

Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 411-417, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
This work presents a method for contact state estimation using fuzzy clustering to learn contact probability for full, six-dimensional humanoid contacts. The data required for training is solely from proprioceptive sensors - endeffector contact wrench sensors and inertial measurement units (IMUs) - and the method is completely unsupervised. The resulting cluster means are used to efficiently compute the probability of contact in each of the six endeffector degrees of freedom (DoFs) independently. This clustering-based contact probability estimator is validated in a kinematics-based base state estimator in a simulation environment with realistic added sensor noise for locomotion over rough, low-friction terrain on which the robot is subject to foot slip and rotation. The proposed base state estimator which utilizes these six DoF contact probability estimates is shown to perform considerably better than that which determines kinematic contact constraints purely based on measured normal force.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task-Specific Dynamics to Improve Whole-Body Control

Gams, A., Mason, S., Ude, A., Schaal, S., Righetti, L.

In Hua, IEEE, Beijing, China, November 2018 (inproceedings)

Abstract
In task-based inverse dynamics control, reference accelerations used to follow a desired plan can be broken down into feedforward and feedback trajectories. The feedback term accounts for tracking errors that are caused from inaccurate dynamic models or external disturbances. On underactuated, free-floating robots, such as humanoids, high feedback terms can be used to improve tracking accuracy; however, this can lead to very stiff behavior or poor tracking accuracy due to limited control bandwidth. In this paper, we show how to reduce the required contribution of the feedback controller by incorporating learned task-space reference accelerations. Thus, we i) improve the execution of the given specific task, and ii) offer the means to reduce feedback gains, providing for greater compliance of the system. With a systematic approach we also reduce heuristic tuning of the model parameters and feedback gains, often present in real-world experiments. In contrast to learning task-specific joint-torques, which might produce a similar effect but can lead to poor generalization, our approach directly learns the task-space dynamics of the center of mass of a humanoid robot. Simulated and real-world results on the lower part of the Sarcos Hermes humanoid robot demonstrate the applicability of the approach.

am mg

link (url) [BibTex]

link (url) [BibTex]


no image
Interpreting FORC diagrams beyond the Preisach model: an experimental permalloy micro array investigation

Gross, F., Ilse, S., Schütz, G., Gräfe, J., Goering, E.

In 2018 IEEE International Magnetics Conference (INTERMAG 2018), IEEE, Singapore, 2018 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
An MPC Walking Framework With External Contact Forces

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1785-1790, IEEE, Brisbane, Australia, May 2018 (inproceedings)

Abstract
In this work, we present an extension to a linear Model Predictive Control (MPC) scheme that plans external contact forces for the robot when given multiple contact locations and their corresponding friction cone. To this end, we set up a two-step optimization problem. In the first optimization, we compute the Center of Mass (CoM) trajectory, foot step locations, and introduce slack variables to account for violating the imposed constraints on the Zero Moment Point (ZMP). We then use the slack variables to trigger the second optimization, in which we calculate the optimal external force that compensates for the ZMP tracking error. This optimization considers multiple contacts positions within the environment by formulating the problem as a Mixed Integer Quadratic Program (MIQP) that can be solved at a speed between 100-300 Hz. Once contact is created, the MIQP reduces to a single Quadratic Program (QP) that can be solved in real-time ({\textless}; 1kHz). Simulations show that the presented walking control scheme can withstand disturbances 2-3× larger with the additional force provided by a hand contact.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2017


no image
Pattern Generation for Walking on Slippery Terrains

Khadiv, M., Moosavian, S. A. A., Herzog, A., Righetti, L.

In 2017 5th International Conference on Robotics and Mechatronics (ICROM), Iran, August 2017 (inproceedings)

Abstract
In this paper, we extend state of the art Model Predictive Control (MPC) approaches to generate safe bipedal walking on slippery surfaces. In this setting, we formulate walking as a trade off between realizing a desired walking velocity and preserving robust foot-ground contact. Exploiting this for- mulation inside MPC, we show that safe walking on various flat terrains can be achieved by compromising three main attributes, i. e. walking velocity tracking, the Zero Moment Point (ZMP) modulation, and the Required Coefficient of Friction (RCoF) regulation. Simulation results show that increasing the walking velocity increases the possibility of slippage, while reducing the slippage possibility conflicts with reducing the tip-over possibility of the contact and vice versa.

mg

link (url) [BibTex]

2017


link (url) [BibTex]

2005


no image
Magnetization reversal behavior of nanogranular CoCrPt alloy thin films studied with magnetic transmission X-ray microscopy

Fischer, P., Im, M., Eimüller, T., Schütz, G., Shin, S.

In 286, pages: 311-314, Boulder, CO, USA, 2005 (inproceedings)

mms

[BibTex]

2005


[BibTex]


no image
A dynamical systems approach to learning: a frequency-adaptive hopper robot

Buchli, J., Righetti, L., Ijspeert, A.

In Proceedings of the VIIIth European Conference on Artificial Life ECAL 2005, pages: 210-220, Springer Verlag, 2005 (inproceedings)

mg

[BibTex]

[BibTex]


no image
From Dynamic Hebbian Learning for Oscillators to Adaptive Central Pattern Generators

Righetti, L., Buchli, J., Ijspeert, A.

In Proceedings of 3rd International Symposium on Adaptive Motion in Animals and Machines – AMAM 2005, Verlag ISLE, Ilmenau, 2005 (inproceedings)

mg

[BibTex]

[BibTex]


no image
Defects distribution of Pr2Fe14B hard magnetic magnet from amorphous to nanostructures characterized by positron annihilation spectroscopy

Wu, Y. C., Sprengel, W., Reimann, K., Reichle, K. J., Goll, D., Würschum, R., Schaefer, H. E.

In PRICM 5. Proceedings of the Fifth Pacific RIM International Conference on Advanced Materials and Processing, 475-479, pages: 2123-2126, Materials Science Forum, Trans Tech, Beijing, China, 2005 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Implementing sub-ns time resolution into magnetic X-ray microscopies

Puzic, A., Stoll, H., Fischer, P., Van Waeyenberge, B., Raabe, J., Denbeaux, G., Haug, T., Weiss, D., Schütz, G.

In T115, pages: 1029-1031, Malmö/Lund, Sweden, 2005 (inproceedings)

mms

[BibTex]

[BibTex]

2004


no image
Operating system support for interface virtualisation of reconfigurable coprocessors

Vuletic, M., Righetti, L., Pozzi, L., Ienne, P.

In In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, pages: 748-749, IEEE, Paris, France, 2004 (inproceedings)

Abstract
Reconfigurable systems-on-chip (SoC) consist of large field programmable gate arrays (FPGAs) and standard processors. The reconfigurable logic can be used for application-specific coprocessors to speedup execution of applications. The widespread use is limited by the complexity of interfacing software applications with coprocessors. We present a virtualization layer that lowers the interfacing complexity and improves the portability. The layer shifts the burden of moving data between processor and coprocessor from the programmer to the operating system (OS). A reconfigurable SoC running Linux is used to prove the concept.

mg

link (url) DOI [BibTex]

2004


link (url) DOI [BibTex]


no image
High-speed dynamics of magnetization processes in hard magnetic particles and thin platelets

Goll, D., Kronmüller, H.

In Proceedings of the 18th International Workshop on Rare-Earth Magnets and their Applications, pages: 465-469, Laboratoire de Cristallographie/Laboratoire Louis Neel, CNRS, Grenoble, 2004 (inproceedings)

mms

[BibTex]

[BibTex]


no image
High-speed dynamics of magnetization processes in hard magnetic particles and thin platelets

Goll, D., Kronmüller, H.

In Proceedings of the 18th International Workshop on Rare-Earth Magnets and their Applications, pages: 465-469, Laboratoire de Cristallographie/Laboratoire Louis Neel, CNRS, Grenoble, 2004 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Modern nanocrystalline/nanostructured hard magnetic materials

Kronmüller, H., Goll, D.

In 272-276, pages: e319-e320, Rome [Italy], 2004 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Modern nanostructured high-temperature permanent magnets

Goll, D., Kronmüller, H., Stadelmaier, H. H.

In Proceedings of the 18th International Workshop on Rare-Earth Magnets and their Applications, pages: 578-583, Laboratoire de Cristallographie/Laboratoire Louis Néel, CNRS, Grenoble, 2004 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Imaging sub-ns spin dynamics in magnetic nanostructures with magnetic transmission X-ray microscopy

Fischer, P., Stoll, H., Puzic, A., Van Waeyenberge, B., Raabe, J., Haug, T., Denbeaux, G., Pearson, A., Höllinger, R., Back, C. H., Weiss, D., Schütz, G.

In Synchrotron Radiation Instrumentation, 705, pages: 1291-1294, AIP Conference Proceedings, American Institute of Physics, San Francisco, California (USA), 2004 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Modern nanostructured high-temperature permanent magnets

Goll, D., Kronmüller, H., Stadelmaier, H. H.

In Proceedings of the 18th International Workshop on Rare-Earth Magnets and their Applications, pages: 578-583, Laboratoire de Cristallographie/Laboratoire Louis Néel, CNRS, Grenoble, 2004 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Existence of transient temperature spike induced by SHI: evidence by ion beam analysis

Avasthi, D. K., Ghosh, S., Srivastava, S. K., Assmann, W.

In 219-220, pages: 206-214, Albuquerque, NM [USA], 2004 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Hard magnetic hollow nanospheres

Goll, D., Berkowitz, A. E., Bertram, H. N.

In Proceedings of the 18th International Workshop on Rare-Earth Magnets and their Applications, pages: 704-707, Laboratoire de Cristallographie/Laboratoire Louis Neel, CNRS, Grenoble, 2004 (inproceedings)

mms

[BibTex]

[BibTex]

2003


no image
Grain boundary phase transitions in the Al-Mg system and their influence on high-strain rate superplasticity

Straumal, B. B., Lopez, G. A., Mittemeijer, E. J., Gust, W., Zhilyaev, A. P.

In 216-217, pages: 307-312, Moscow, Russia, 2003 (inproceedings)

mms

[BibTex]

2003


[BibTex]


no image
Magnetism and the Microstructure of Ferromagnetic Solids

Kronmüller, H., Fähnle, M.

pages: 432 p., 1st ed., Cambridge University Press, Cambridge, 2003 (book)

mms

[BibTex]

[BibTex]


no image
Influence of grain boundary phase transitions on the diffusion-related properties

Straumal, B., Baretzky, B.

In Proceedings of the International Conference on Diffusion, Segregation and Stresses in Materials, pages: 53-64, Defect and Diffusion Forum, Scitec Publications Ltd., Moscow, Russia, 2003 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Are carbon nanostructures an efficient hydrogen storage medium?

Hirscher, M., Becher, M., Haluska, M., von Zeppelin, F., Chen, X., Dettlaff-Weglikowska, U., Roth, S.

In 356-357, pages: 433-437, Annecy, France, 2003 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Grain boundary faceting phase transition and thermal grooving in Cu

Straumal, B. B., Polyakov, S. A., Bischoff, E., Mittemeijer, E. J., Gust, W.

In Proceedings of the International Conference on Diffusion, Segregation and Stresses in Materials, 216/217, pages: 93-100, Diffusion and Defect Data, Pt. A, Defect and Diffusion Forum, Scitec Publ., Moscow, 2003 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Evolution of Fault-tolerant Self-replicating Structures

Righetti, L., Shokur, S., Capcarre, M.

In Advances in Artificial Life, pages: 278-288, Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2003 (inproceedings)

Abstract
Designed and evolved self-replicating structures in cellular automata have been extensively studied in the past as models of Artificial Life. However, CAs, unlike their biological counterpart, are very brittle: any faulty cell usually leads to the complete destruction of any emerging structures, let alone self-replicating structures. A way to design fault-tolerant structures based on error-correcting-code has been presented recently [1], but it required a cumbersome work to be put into practice. In this paper, we get back to the original inspiration for these works, nature, and propose a way to evolve self-replicating structures, faults here being only an idiosyncracy of the environment.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Grain boundary faceting phase transition and thermal grooving in Cu

Straumal, B. B., Polyakov, S. A., Bischoff, E., Mittemeijer, E. J., Gust, W.

In Proceedings of the International Conference on Diffusion, Segregation and Stresses in Materials, 216/217, pages: 93-100, Diffusion and Defect Data, Pt. A, Defect and Diffusion Forum, Scitec Publ., Moscow, 2003 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Coercivity mechanism in nanocrystalline and bonded magnets

Goll, D., Kronmüller, H.

In Bonded Magnets. Proceedings of the NATO Advanced Research Workshop on Science and Technology of Bonded Magnets, 118, pages: 115-127, NATO Science Series: Series 2, Mathematics, Physics and Chemistry, Kluwer Acad. Publ., Newark, USA, 2003 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Investigation of Electromigration in Copper Interconnects by Noise Measurements

Emelianov, V., Ganesan, G., Puzic, A., Schulz, S., Eizenberg, M., Habermeier, H., Stoll, H.

In Noise as a Tool for Studying Materials, pages: 271-281, Proceedings of SPIE, Santa Fe, New Mexico, 2003 (inproceedings)

mms

[BibTex]

[BibTex]

2002


no image
Pressure Isotherms of Hydrogen Adsorption in Carbon Nanostructures

Chen, X., Dettlaff-Weglikowska, U., Haluska, M., Hulman, M., Roth, S., Hirscher, M., Becher, M.

In Making Functional Materials with Nanotubes, pages: Z9.11.1-Z9.11.6, Materials Research Society Symposium Proceedings, MRS, Boston [Mass.], 2002 (inproceedings)

mms

[BibTex]

2002


[BibTex]


no image
Hydrogen Storage in Carbon SWNTs: Atomic or Molecular?

Haluska, M., Hirscher, M., Becher, M., Dettlaff-Weglikowska, U., Chen, X., Roth, S.

In Structural and Electronic Properties of Molecular Nanostructures, pages: 601-605, AIP Conference Proceedings, AIP, Kirchberg, Tirol [Austria], 2002 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Hydrogen Storage in Nanostructured Carbon Materials at Room Temperature

Chen, X., Dettlaff-Weglikowska, U., Haluska, M., Hirscher, M., Becher, M., Roth, S.

In Structural and Electronic Properties of Molecular Nanostructures, pages: 597-600, AIP Conference Proceedings, AIP, Kirchberg, Tirol [Austria], 2002 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Micromagnetism and the microstructure of the cell walls in Sm2Co17 based permanent magnets

Goll, D., Hadjipanayis, G. C., Kronmüller, H.

In Proceedings of the 17th International Workshop on Rare-Earth Magnets and their Applications, pages: 696-703, Rinton Press, Newark, Delaware, USA, 2002 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Ab-initio study of the influence of epitaxial strain on magnetoelastic properties

Komelj, M., Fähnle, M.

In Atomistic Aspects of Epitaxial Growth, pages: 439-447, NATO Science series: Series 2, Mathematics, Physics, and Chemistry, Kluwer Academic Publishers, Dassia, Corfu [Greece], 2002 (inproceedings)

mms

[BibTex]

[BibTex]

2001


no image
Computational micromagnetism of magnetic structures and magnetization processes in thin plantelets and small particles

Kronmüller, H., Hertel, R.

In Magnetic Storage Sstems Beyond 2000, 41, pages: 345-362, Nato Science Series II: Mathematics, Physics and Chemistry, Kluwer Academic Publishers, Rhodos, Greece, 2001 (inproceedings)

mms

[BibTex]

2001


[BibTex]


no image
Hydrogen storage in mechanically treated single wall carbon nanotrubes

Haluska, M., Hulman, M., Hirscher, M., Becher, M., Roth, S., Stepanek, I., Bernier, P.

In Electronic Properties of Molecular Nanostructures: XV International Winterschool/Euroconference, 591, pages: 603-608, American Institute of Physics Conference Proceedings, AIP, Kirchberg [Austria], 2001 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Isotopic mass and lattice constant of Si and Ge: X-Ray standing wave measurements

Zegenhagen, J., Kazimirov, A., Cao, L. X., Konuma, M., Sozontov, E., Plachke, D., Carstanjen, H. D., Bilger, G., Haller, E., Kohn, V., Cardona, M.

In Proceedings of the 25th Conference on the Physics of Semiconductors, 87, pages: 125-127, Springer proceedings in physics, Springer, Osaka, Japan, 2001 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Positron Annihilation Studies on Stable and Undercooled Metal Melts at the Stuttgart Pelletron

Stoll, H., Siegle, A., Major, J.

In Application of Accelerators in Research and Industry, 576, pages: 749-752, AIP Conference Proceedings, Denton, Texas, USA, 2001 (inproceedings)

mms

[BibTex]

[BibTex]