Header logo is


2017


Locomotion of light-driven soft microrobots through a hydrogel via local melting
Locomotion of light-driven soft microrobots through a hydrogel via local melting

Palagi, S., Mark, A. G., Melde, K., Qiu, T., Zeng, H., Parmeggiani, C., Martella, D., Wiersma, D. S., Fischer, P.

In 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2017 (inproceedings)

Abstract
Soft mobile microrobots whose deformation can be directly controlled by an external field can adapt to move in different environments. This is the case for the light-driven microrobots based on liquid-crystal elastomers (LCEs). Here we show that the soft microrobots can move through an agarose hydrogel by means of light-controlled travelling-wave motions. This is achieved by exploiting the inherent rise of the LCE temperature above the melting temperature of the agarose gel, which facilitates penetration of the microrobot through the hydrogel. The locomotion performance is investigated as a function of the travelling-wave parameters, showing that effective propulsion can be obtained by adapting the generated motion to the specific environmental conditions.

pf

DOI [BibTex]

2017


DOI [BibTex]


Wireless micro-robots for endoscopic applications in urology
Wireless micro-robots for endoscopic applications in urology

Adams, F., Qiu, T., Mark, A. G., Melde, K., Palagi, S., Miernik, A., Fischer, P.

In Eur Urol Suppl, 16(3):e1914, March 2017 (inproceedings)

Abstract
Endoscopy is an essential and common method for both diagnostics and therapy in Urology. Current flexible endoscope is normally cable-driven, thus it is hard to be miniaturized and its reachability is restricted as only one bending section near the tip with one degree of freedom (DoF) is allowed. Recent progresses in micro-robotics offer a unique opportunity for medical inspections in minimally invasive surgery. Micro-robots are active devices that has a feature size smaller than one millimeter and can normally be actuated and controlled wirelessly. Magnetically actuated micro-robots have been demonstrated to propel through biological fluids.Here, we report a novel micro robotic arm, which is actuated wirelessly by ultrasound. It works as a miniaturized endoscope with a side length of ~1 mm, which fits through the 3 Fr. tool channel of a cystoscope, and successfully performs an active cystoscopy in a rabbit bladder.

pf

link (url) DOI [BibTex]


no image
Stationary and time-dependent heat transfer in paradigmatic many-body geometries

Asheichyk, Kiryl

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Non-equilibrium forces after temperature quenches in ideal fluids with conserved density

Hölzl, Christian

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Numerical studies of active colloids at fluid interfaces

Peter, Toni

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Collective dynamics of laterally confined active particles near fluid-fluid interfaces

Kistner, Irina

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Self-diffusion of DNA grafted functional colloids in a crowded environment

Werner, M.

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Electrostatic interaction between non-identical charged particles at an electrolyte interface

Schmetzer, Timo

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Microscopic investigation of the Marangoni effect

Pöhnl, Matthias

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Interfacial structure of a catalytic surface

Lipp, Melanie

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

icm

[BibTex]

[BibTex]

2009


no image
From colloids to biophysics: applications of classical density functional theory

Roth, R.

Universität Stuttgart, Stuttgart, 2009 (phdthesis)

icm

[BibTex]

2009


[BibTex]


no image
Stäbchensuspensionen in Kontakt mit geometrisch strukturierten Substraten

Günther, F.

Universität Stuttgart, Stuttgart, 2009 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Critical and multicritical behavior of the +/-J Ising model in two and three dimensions

Hasenbusch, M., Parisen Toldin, F., Pelissetto, A., Vicari, E.

In Journal of Physics: Conference Series, 145, Braunschweig, 2009 (inproceedings)

icm

DOI [BibTex]

DOI [BibTex]

2001


no image
Diffusion of implanted 195Au radiotracer atoms in amorphous silicon under irradiation with 1 MeV-N+ ions

Voss, T., Scharwaechter, P., Frank, W.

In Proceedings of DIMAT 2000, the Fifth International Conference on Diffusion in Materials, 194/199, pages: 659-665, Defect and Diffusion Forum, Scitec Publications Ltd., Paris, France, 2001 (inproceedings)

icm

[BibTex]

2001


[BibTex]


no image
Diffusion of gold in the amorphous ceramic Si28C36N36

Matics, S., Frank, W.

In Proceedings of DIMAT 2000, the Fifth International Conference on Diffusion in Materials, 194/199, pages: 947-952, Diffusion and Defect Forum, Scitec Publications Ltd., Paris, France, 2001 (inproceedings)

icm

[BibTex]

[BibTex]


no image
Diffusion of gold in germanium

Strohm, A., Matics, S., Frank, W.

In Proceedings of DIMAT 2000, the Fifth International Conference on Diffusion in Materials, 194/199, pages: 629-634, Defect and Diffusion Forum, Scitech Publ. Ltd., Paris, France, 2001 (inproceedings)

icm

[BibTex]

[BibTex]


no image
Einflußvon Teilchenbestrahlung auf die Selbst- und Interdiffusion in amorphen Fe-Zr-Legierungen

Schuler, T.

Universität Stuttgart, Stuttgart, 2001 (phdthesis)

icm

[BibTex]

[BibTex]


no image
Diffusion im unterkühlten flüssigen und amorphen Zustand von Zr65Cu175,Ni10Al17,5

Schaaff, P.

Universität Stuttgart, Stuttgart, 2001 (phdthesis)

icm

[BibTex]

[BibTex]

2000


no image
Selbst- und Fremddiffusion in amorphem Si28C36N36 und Si3N4

Matics, S.

Universität Stuttgart, Stuttgart, 2000 (phdthesis)

icm

link (url) [BibTex]

2000


link (url) [BibTex]