Header logo is


2018


Gait learning for soft microrobots controlled by light fields
Gait learning for soft microrobots controlled by light fields

Rohr, A. V., Trimpe, S., Marco, A., Fischer, P., Palagi, S.

In International Conference on Intelligent Robots and Systems (IROS) 2018, pages: 6199-6206, International Conference on Intelligent Robots and Systems 2018, October 2018 (inproceedings)

Abstract
Soft microrobots based on photoresponsive materials and controlled by light fields can generate a variety of different gaits. This inherent flexibility can be exploited to maximize their locomotion performance in a given environment and used to adapt them to changing environments. However, because of the lack of accurate locomotion models, and given the intrinsic variability among microrobots, analytical control design is not possible. Common data-driven approaches, on the other hand, require running prohibitive numbers of experiments and lead to very sample-specific results. Here we propose a probabilistic learning approach for light-controlled soft microrobots based on Bayesian Optimization (BO) and Gaussian Processes (GPs). The proposed approach results in a learning scheme that is highly data-efficient, enabling gait optimization with a limited experimental budget, and robust against differences among microrobot samples. These features are obtained by designing the learning scheme through the comparison of different GP priors and BO settings on a semisynthetic data set. The developed learning scheme is validated in microrobot experiments, resulting in a 115% improvement in a microrobot’s locomotion performance with an experimental budget of only 20 tests. These encouraging results lead the way toward self-adaptive microrobotic systems based on lightcontrolled soft microrobots and probabilistic learning control.

ics pf

arXiv IEEE Xplore DOI Project Page [BibTex]

2018


arXiv IEEE Xplore DOI Project Page [BibTex]


no image
Kernel Recursive ABC: Point Estimation with Intractable Likelihood

Kajihara, T., Kanagawa, M., Yamazaki, K., Fukumizu, K.

Proceedings of the 35th International Conference on Machine Learning, pages: 2405-2414, PMLR, July 2018 (conference)

Abstract
We propose a novel approach to parameter estimation for simulator-based statistical models with intractable likelihood. Our proposed method involves recursive application of kernel ABC and kernel herding to the same observed data. We provide a theoretical explanation regarding why the approach works, showing (for the population setting) that, under a certain assumption, point estimates obtained with this method converge to the true parameter, as recursion proceeds. We have conducted a variety of numerical experiments, including parameter estimation for a real-world pedestrian flow simulator, and show that in most cases our method outperforms existing approaches.

pn

Paper [BibTex]

Paper [BibTex]


no image
Assessment Of Atypical Motor Development In Infants Through Toy-Stimulated Play And Center Of Pressure Analysis

Zhao, S., Mohan, M., Torres, W. O., Bogen, D. K., Shofer, F. S., Prosser, L., Loeb, H., Johnson, M. J.

In Proceedings of the Annual Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) Conference, Arlington, USA, July 2018 (inproceedings)

Abstract
There is a need to identify measures and create systems to assess motor development at an early stage. Center of Pressure (CoP) is a quantifiable metric that has been used to investigate postural control in healthy young children [6], children with CP [7], and infants just beginning to sit [8]. It was found that infants born prematurely exhibit different patterns of CoP movement than infants born full-term when assessing development impairments relating to postural control [9]. Preterm infants exhibited greater CoP excursions but had greater variability in their movements than fullterm infants. Our solution, the Play And Neuro-Development Assessment (PANDA) Gym, is a sensorized environment that aims to provide early diagnosis of neuromotor disorder in infants and improve current screening processes by providing quantitative measures rather than subjective ones, and promoting natural play with the stimulus of toys. Previous studies have documented stages in motor development in infants [10, 11], and developmental delays could become more apparent through toy interactions. This study examines the sensitivity of the pressure-sensitive mat subsystem to detect differences in CoP movement patterns for preterm and fullterm infants less than 6 months of age, with varying risk levels. This study aims to distinguish between typical and atypical motor development through assessment of the CoP data of infants in a natural play environment, in conditions where movement may be further stimulated with the presence of a toy.

hi

link (url) [BibTex]

link (url) [BibTex]


no image
Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S.

Workshop on Machine Learning for Causal Inference, Counterfactual Prediction, and Autonomous Action (CausalML) at ICML, July 2018 (conference)

ei pn

[BibTex]

[BibTex]


Soft Miniaturized Linear Actuators Wirelessly Powered by Rotating Permanent Magnets
Soft Miniaturized Linear Actuators Wirelessly Powered by Rotating Permanent Magnets

Qiu, T., Palagi, S., Sachs, J., Fischer, P.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 3595-3600, May 2018 (inproceedings)

Abstract
Wireless actuation by magnetic fields allows for the operation of untethered miniaturized devices, e.g. in biomedical applications. Nevertheless, generating large controlled forces over relatively large distances is challenging. Magnetic torques are easier to generate and control, but they are not always suitable for the tasks at hand. Moreover, strong magnetic fields are required to generate a sufficient torque, which are difficult to achieve with electromagnets. Here, we demonstrate a soft miniaturized actuator that transforms an externally applied magnetic torque into a controlled linear force. We report the design, fabrication and characterization of both the actuator and the magnetic field generator. We show that the magnet assembly, which is based on a set of rotating permanent magnets, can generate strong controlled oscillating fields over a relatively large workspace. The actuator, which is 3D-printed, can lift a load of more than 40 times its weight. Finally, we show that the actuator can be further miniaturized, paving the way towards strong, wirelessly powered microactuators.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Travelling Ultrasonic Wave Enhances Keyclick Sensation

Gueorguiev, D., Kaci, A., Amberg, M., Giraud, F., Lemaire-Semail, B.

In Haptics: Science, Technology, and Applications, pages: 302-312, Springer International Publishing, Cham, 2018 (inproceedings)

Abstract
A realistic keyclick sensation is a serious challenge for haptic feedback since vibrotactile rendering faces the limitation of the absence of contact force as experienced on physical buttons. It has been shown that creating a keyclick sensation is possible with stepwise ultrasonic friction modulation. However, the intensity of the sensation is limited by the impedance of the fingertip and by the absence of a lateral force component external to the finger. In our study, we compare this technique to rendering with an ultrasonic travelling wave, which exerts a lateral force on the fingertip. For both techniques, participants were asked to report the detection (or not) of a keyclick during a forced choice one interval procedure. In experiment 1, participants could press the surface as many time as they wanted for a given trial. In experiment 2, they were constrained to press only once. The results show a lower perceptual threshold for travelling waves. Moreover, participants pressed less times per trial and exerted smaller normal force on the surface. The subjective quality of the sensation was found similar for both techniques. In general, haptic feedback based on travelling ultrasonic waves is promising for applications without lateral motion of the finger.

hi

[BibTex]

[BibTex]


Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients

Balles, L., Hennig, P.

In Proceedings of the 35th International Conference on Machine Learning (ICML), 2018 (inproceedings) Accepted

Abstract
The ADAM optimizer is exceedingly popular in the deep learning community. Often it works very well, sometimes it doesn't. Why? We interpret ADAM as a combination of two aspects: for each weight, the update direction is determined by the sign of stochastic gradients, whereas the update magnitude is determined by an estimate of their relative variance. We disentangle these two aspects and analyze them in isolation, gaining insight into the mechanisms underlying ADAM. This analysis also extends recent results on adverse effects of ADAM on generalization, isolating the sign aspect as the problematic one. Transferring the variance adaptation to SGD gives rise to a novel method, completing the practitioner's toolbox for problems where ADAM fails.

pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Exploring Fingers’ Limitation of Texture Density Perception on Ultrasonic Haptic Displays

Kalantari, F., Gueorguiev, D., Lank, E., Bremard, N., Grisoni, L.

In Haptics: Science, Technology, and Applications, pages: 354-365, Springer International Publishing, Cham, 2018 (inproceedings)

Abstract
Recent research in haptic feedback is motivated by the crucial role that tactile perception plays in everyday touch interactions. In this paper, we describe psychophysical experiments to investigate the perceptual threshold of individual fingers on both the right and left hand of right-handed participants using active dynamic touch for spatial period discrimination of both sinusoidal and square-wave gratings on ultrasonic haptic touchscreens. Both one-finger and multi-finger touch were studied and compared. Our results indicate that users' finger identity (index finger, middle finger, etc.) significantly affect the perception of both gratings in the case of one-finger exploration. We show that index finger and thumb are the most sensitive in all conditions whereas little finger followed by ring are the least sensitive for haptic perception. For multi-finger exploration, the right hand was found to be more sensitive than the left hand for both gratings. Our findings also demonstrate similar perception sensitivity between multi-finger exploration and the index finger of users' right hands (i.e. dominant hand in our study), while significant difference was found between single and multi-finger perception sensitivity for the left hand.

hi

[BibTex]

[BibTex]


no image
Nanorobots propel through the eye

Zhiguang Wu, J. T. H. J. Q. W. M. S. F. Z. Z. W. M. D. S. S. T. Q. P. F.

Max Planck Society, 2018 (mpi_year_book)

Abstract
Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart developed specially coated nanometer-sized robots that could be moved actively through dense tissue like the vitreous of the eye. So far, the transport of such nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. Our work constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

pf

link (url) [BibTex]


no image
Direct observations of sub-100 nm spin wave propagation in magnonic wave-guides

Träger, N., Gruszecki, P., Lisiecki, F., Förster, J., Weigand, M., Kuswik, P., Dubowik, J., Schütz, G., Krawczyk, M., Gräfe, J.

In 2018 IEEE International Magnetics Conference (INTERMAG 2018), IEEE, Singapore, 2018 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Interpreting FORC diagrams beyond the Preisach model: an experimental permalloy micro array investigation

Gross, F., Ilse, S., Schütz, G., Gräfe, J., Goering, E.

In 2018 IEEE International Magnetics Conference (INTERMAG 2018), IEEE, Singapore, 2018 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]

2017


On the Design of {LQR} Kernels for Efficient Controller Learning
On the Design of LQR Kernels for Efficient Controller Learning

Marco, A., Hennig, P., Schaal, S., Trimpe, S.

Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), pages: 5193-5200, IEEE, IEEE Conference on Decision and Control, December 2017 (conference)

Abstract
Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.

am ics pn

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]

2017


arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]


no image
Synchronicity Trumps Mischief in Rhythmic Human-Robot Social-Physical Interaction

Fitter, N. T., Kuchenbecker, K. J.

In Proceedings of the International Symposium on Robotics Research (ISRR), Puerto Varas, Chile, December 2017 (inproceedings) In press

Abstract
Hand-clapping games and other forms of rhythmic social-physical interaction might help foster human-robot teamwork, but the design of such interactions has scarcely been explored. We leveraged our prior work to enable the Rethink Robotics Baxter Research Robot to competently play one-handed tempo-matching hand-clapping games with a human user. To understand how such a robot’s capabilities and behaviors affect user perception, we created four versions of this interaction: the hand clapping could be initiated by either the robot or the human, and the non-initiating partner could be either cooperative, yielding synchronous motion, or mischievously uncooperative. Twenty adults tested two clapping tempos in each of these four interaction modes in a random order, rating every trial on standardized scales. The study results showed that having the robot initiate the interaction gave it a more dominant perceived personality. Despite previous results on the intrigue of misbehaving robots, we found that moving synchronously with the robot almost always made the interaction more enjoyable, less mentally taxing, less physically demanding, and lower effort for users than asynchronous interactions caused by robot or human mischief. Taken together, our results indicate that cooperative rhythmic social-physical interaction has the potential to strengthen human-robot partnerships.

hi

[BibTex]

[BibTex]


A Robotic Framework to Overcome Sensory Overload in Children on the Autism Spectrum: A Pilot Study
A Robotic Framework to Overcome Sensory Overload in Children on the Autism Spectrum: A Pilot Study

Javed, H., Burns, R., Jeon, M., Howard, A., Park, C. H.

In International Conference on Intelligent Robots and Systems (IROS) 2017, International Conference on Intelligent Robots and Systems, September 2017 (inproceedings)

Abstract
This paper discusses a novel framework designed to provide sensory stimulation to children with Autism Spectrum Disorder (ASD). The set up consists of multi-sensory stations to stimulate visual/auditory/olfactory/gustatory/tactile/vestibular senses, together with a robotic agent that navigates through each station responding to the different stimuli. We hypothesize that the robot’s responses will help children learn acceptable ways to respond to stimuli that might otherwise trigger sensory overload. Preliminary results from a pilot study conducted to examine the effectiveness of such a setup were encouraging and are described briefly in this text.

hi

[BibTex]

[BibTex]


An Interactive Robotic System for Promoting Social Engagement
An Interactive Robotic System for Promoting Social Engagement

Burns, R., Javed, H., Jeon, M., Howard, A., Park, C. H.

In International Conference on Intelligent Robots and Systems (IROS) 2017, International Conference on Intelligent Robots and Systems, September 2017 (inproceedings)

Abstract
This abstract (and poster) is a condensed version of Burns' Master's thesis and related journal article. It discusses the use of imitation via robotic motion learning to improve human-robot interaction. It focuses on the preliminary results from a pilot study of 12 subjects. We hypothesized that the robot's use of imitation will increase the user's openness towards engaging with the robot. Post-imitation, experimental subjects displayed a more positive emotional state, had higher instances of mood contagion towards the robot, and interpreted the robot to have a higher level of autonomy than their control group counterparts. These results point to an increased user interest in engagement fueled by personalized imitation during interaction.

hi

[BibTex]

[BibTex]


no image
Stiffness Perception during Pinching and Dissection with Teleoperated Haptic Forceps

Ng, C., Zareinia, K., Sun, Q., Kuchenbecker, K. J.

In Proceedings of the International Symposium on Robot and Human Interactive Communication (RO-MAN), pages: 456-463, Lisbon, Portugal, August 2017 (inproceedings)

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Coupling Adaptive Batch Sizes with Learning Rates
Coupling Adaptive Batch Sizes with Learning Rates

Balles, L., Romero, J., Hennig, P.

In Proceedings Conference on Uncertainty in Artificial Intelligence (UAI) 2017, pages: 410-419, (Editors: Gal Elidan and Kristian Kersting), Association for Uncertainty in Artificial Intelligence (AUAI), Conference on Uncertainty in Artificial Intelligence (UAI), August 2017 (inproceedings)

Abstract
Mini-batch stochastic gradient descent and variants thereof have become standard for large-scale empirical risk minimization like the training of neural networks. These methods are usually used with a constant batch size chosen by simple empirical inspection. The batch size significantly influences the behavior of the stochastic optimization algorithm, though, since it determines the variance of the gradient estimates. This variance also changes over the optimization process; when using a constant batch size, stability and convergence is thus often enforced by means of a (manually tuned) decreasing learning rate schedule. We propose a practical method for dynamic batch size adaptation. It estimates the variance of the stochastic gradients and adapts the batch size to decrease the variance proportionally to the value of the objective function, removing the need for the aforementioned learning rate decrease. In contrast to recent related work, our algorithm couples the batch size to the learning rate, directly reflecting the known relationship between the two. On three image classification benchmarks, our batch size adaptation yields faster optimization convergence, while simultaneously simplifying learning rate tuning. A TensorFlow implementation is available.

ps pn

Code link (url) Project Page [BibTex]

Code link (url) Project Page [BibTex]


no image
Dynamic Time-of-Flight

Schober, M., Adam, A., Yair, O., Mazor, S., Nowozin, S.

Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 170-179, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (conference)

ei pn

DOI [BibTex]

DOI [BibTex]


Locomotion of light-driven soft microrobots through a hydrogel via local melting
Locomotion of light-driven soft microrobots through a hydrogel via local melting

Palagi, S., Mark, A. G., Melde, K., Qiu, T., Zeng, H., Parmeggiani, C., Martella, D., Wiersma, D. S., Fischer, P.

In 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2017 (inproceedings)

Abstract
Soft mobile microrobots whose deformation can be directly controlled by an external field can adapt to move in different environments. This is the case for the light-driven microrobots based on liquid-crystal elastomers (LCEs). Here we show that the soft microrobots can move through an agarose hydrogel by means of light-controlled travelling-wave motions. This is achieved by exploiting the inherent rise of the LCE temperature above the melting temperature of the agarose gel, which facilitates penetration of the microrobot through the hydrogel. The locomotion performance is investigated as a function of the travelling-wave parameters, showing that effective propulsion can be obtained by adapting the generated motion to the specific environmental conditions.

pf

DOI [BibTex]

DOI [BibTex]


no image
Towards quantifying dynamic human-human physical interactions for robot assisted stroke therapy

Mohan, M., Mendonca, R., Johnson, M. J.

In Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), London, UK, July 2017 (inproceedings)

Abstract
Human-Robot Interaction is a prominent field of robotics today. Knowledge of human-human physical interaction can prove vital in creating dynamic physical interactions between human and robots. Most of the current work in studying this interaction has been from a haptic perspective. Through this paper, we present metrics that can be used to identify if a physical interaction occurred between two people using kinematics. We present a simple Activity of Daily Living (ADL) task which involves a simple interaction. We show that we can use these metrics to successfully identify interactions.

hi

DOI [BibTex]

DOI [BibTex]


no image
Design of a Parallel Continuum Manipulator for 6-DOF Fingertip Haptic Display

Young, E. M., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 599-604, Munich, Germany, June 2017, Finalist for best poster paper (inproceedings)

Abstract
Despite rapid advancements in the field of fingertip haptics, rendering tactile cues with six degrees of freedom (6 DOF) remains an elusive challenge. In this paper, we investigate the potential of displaying fingertip haptic sensations with a 6-DOF parallel continuum manipulator (PCM) that mounts to the user's index finger and moves a contact platform around the fingertip. Compared to traditional mechanisms composed of rigid links and discrete joints, PCMs have the potential to be strong, dexterous, and compact, but they are also more complicated to design. We define the design space of 6-DOF parallel continuum manipulators and outline a process for refining such a device for fingertip haptic applications. Following extensive simulation, we obtain 12 designs that meet our specifications, construct a manually actuated prototype of one such design, and evaluate the simulation's ability to accurately predict the prototype's motion. Finally, we demonstrate the range of deliverable fingertip tactile cues, including a normal force into the finger and shear forces tangent to the finger at three extreme points on the boundary of the fingertip.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
High Magnitude Unidirectional Haptic Force Display Using a Motor/Brake Pair and a Cable

Hu, S., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 394-399, Munich, Germany, June 2017 (inproceedings)

Abstract
Clever electromechanical design is required to make the force feedback delivered by a kinesthetic haptic interface both strong and safe. This paper explores a onedimensional haptic force display that combines a DC motor and a magnetic particle brake on the same shaft. Rather than a rigid linkage, a spooled cable connects the user to the actuators to enable a large workspace, reduce the moving mass, and eliminate the sticky residual force from the brake. This design combines the high torque/power ratio of the brake and the active output capabilities of the motor to provide a wider range of forces than can be achieved with either actuator alone. A prototype of this device was built, its performance was characterized, and it was used to simulate constant force sources and virtual springs and dampers. Compared to the conventional design of using only a motor, the hybrid device can output higher unidirectional forces at the expense of free space feeling less free.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A Stimulus-Response Model Of Therapist-Patient Interactions In Task-Oriented Stroke Therapy Can Guide Robot-Patient Interactions

Johnson, M., Mohan, M., Mendonca, R.

In Proceedings of the Annual Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) Conference, New Orleans, USA, June 2017 (inproceedings)

Abstract
Current robot-patient interactions do not accurately model therapist-patient interactions in task-oriented stroke therapy. We analyzed patient-therapist interactions in task-oriented stroke therapy captured in 8 videos. We developed a model of the interaction between a patient and a therapist that can be overlaid on a stimulus-response paradigm where the therapist and the patient take on a set of acting states or roles and are motivated to move from one role to another when certain physical or verbal stimuli or cues are sensed and received. We examined how the model varies across 8 activities of daily living tasks and map this to a possible model for robot-patient interaction.

hi

link (url) [BibTex]

link (url) [BibTex]


no image
A Wrist-Squeezing Force-Feedback System for Robotic Surgery Training

Brown, J. D., Fernandez, J. N., Cohen, S. P., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 107-112, Munich, Germany, June 2017 (inproceedings)

Abstract
Over time, surgical trainees learn to compensate for the lack of haptic feedback in commercial robotic minimally invasive surgical systems. Incorporating touch cues into robotic surgery training could potentially shorten this learning process if the benefits of haptic feedback were sustained after it is removed. In this paper, we develop a wrist-squeezing haptic feedback system and evaluate whether it holds the potential to train novice da Vinci users to reduce the force they exert on a bimanual inanimate training task. Subjects were randomly divided into two groups according to a multiple baseline experimental design. Each of the ten participants moved a ring along a curved wire nine times while the haptic feedback was conditionally withheld, provided, and withheld again. The realtime tactile feedback of applied force magnitude significantly reduced the integral of the force produced by the da Vinci tools on the task materials, and this result remained even when the haptic feedback was removed. Overall, our findings suggest that wrist-squeezing force feedback can play an essential role in helping novice trainees learn to minimize the force they exert with a surgical robot.

hi

DOI [BibTex]

DOI [BibTex]


no image
Handling Scan-Time Parameters in Haptic Surface Classification

Burka, A., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 424-429, Munich, Germany, June 2017 (inproceedings)

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Virtual vs. {R}eal: Trading Off Simulations and Physical Experiments in Reinforcement Learning with {B}ayesian Optimization
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 1557-1563, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics pn

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]


no image
Proton 2: Increasing the Sensitivity and Portability of a Visuo-haptic Surface Interaction Recorder

Burka, A., Rajvanshi, A., Allen, S., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 439-445, Singapore, May 2017 (inproceedings)

Abstract
The Portable Robotic Optical/Tactile ObservatioN PACKage (PROTONPACK, or Proton for short) is a new handheld visuo-haptic sensing system that records surface interactions. We previously demonstrated system calibration and a classification task using external motion tracking. This paper details improvements in surface classification performance and removal of the dependence on external motion tracking, necessary before embarking on our goal of gathering a vast surface interaction dataset. Two experiments were performed to refine data collection parameters. After adjusting the placement and filtering of the Proton's high-bandwidth accelerometers, we recorded interactions between two differently-sized steel tooling ball end-effectors (diameter 6.35 and 9.525 mm) and five surfaces. Using features based on normal force, tangential force, end-effector speed, and contact vibration, we trained multi-class SVMs to classify the surfaces using 50 ms chunks of data from each end-effector. Classification accuracies of 84.5% and 91.5% respectively were achieved on unseen test data, an improvement over prior results. In parallel, we pursued on-board motion tracking, using the Proton's camera and fiducial markers. Motion tracks from the external and onboard trackers agree within 2 mm and 0.01 rad RMS, and the accuracy decreases only slightly to 87.7% when using onboard tracking for the 9.525 mm end-effector. These experiments indicate that the Proton 2 is ready for portable data collection.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Robot Therapist for Assisting in At-Home Rehabilitation of Shoulder Surgery Patients
Robot Therapist for Assisting in At-Home Rehabilitation of Shoulder Surgery Patients

(Recipient of Innovation & Entrepreneurship Prize)

Burns, R., Alborz, M., Chalup, Z., Downen, S., Genuino, K., Nayback, C., Nesbitt, N., Park, C. H.

In 2017 GW Research Days, Department of Biomedical Engineering Posters and Presentations, April 2017 (inproceedings)

Abstract
The number of middle-aged to elderly patients receiving shoulder surgery is increasing. However, statistically, very few of these patients perform the necessary at-home physical therapy regimen they are prescribed post-surgery. This results in longer recovery times and/or incomplete healing. We propose the use of a robotic therapist, with customized training and encouragement regimens, to increase physical therapy adherence and improve the patient’s recovery experience.

hi

link (url) [BibTex]

link (url) [BibTex]


Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets

Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.

Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS 2017), 54, pages: 528-536, Proceedings of Machine Learning Research, (Editors: Sign, Aarti and Zhu, Jerry), PMLR, April 2017 (conference)

pn

pdf link (url) Project Page [BibTex]

pdf link (url) Project Page [BibTex]


Motion Learning for Emotional Interaction and Imitation of Children with Autism Spectrum Disorder
Motion Learning for Emotional Interaction and Imitation of Children with Autism Spectrum Disorder

(First place tie in category, "Biomedical Engineering, Graduate Research")

Burns, R., Cowin, S.

In 2017 GW Research Days, Department of Biomedical Engineering Posters and Presentations, April 2017 (inproceedings)

Abstract
We aim to use motion learning to teach a robot to imitate people's unique gestures. Our robot, ROBOTIS-OP2, can ultimately use imitation to practice social skills with children with autism. In this abstract, two methods of motion learning were compared: Dynamic motion primitives with least squares (DMP with WLS), and Dynamic motion primitives with a Gaussian Mixture Regression (DMP with GMR). Movements with sharp turns were most accurately reproduced using DMP with GMR. Additionally, more states are required to accurately recreate more complex gestures.

hi

link (url) [BibTex]

link (url) [BibTex]


Wireless micro-robots for endoscopic applications in urology
Wireless micro-robots for endoscopic applications in urology

Adams, F., Qiu, T., Mark, A. G., Melde, K., Palagi, S., Miernik, A., Fischer, P.

In Eur Urol Suppl, 16(3):e1914, March 2017 (inproceedings)

Abstract
Endoscopy is an essential and common method for both diagnostics and therapy in Urology. Current flexible endoscope is normally cable-driven, thus it is hard to be miniaturized and its reachability is restricted as only one bending section near the tip with one degree of freedom (DoF) is allowed. Recent progresses in micro-robotics offer a unique opportunity for medical inspections in minimally invasive surgery. Micro-robots are active devices that has a feature size smaller than one millimeter and can normally be actuated and controlled wirelessly. Magnetically actuated micro-robots have been demonstrated to propel through biological fluids.Here, we report a novel micro robotic arm, which is actuated wirelessly by ultrasound. It works as a miniaturized endoscope with a side length of ~1 mm, which fits through the 3 Fr. tool channel of a cystoscope, and successfully performs an active cystoscopy in a rabbit bladder.

pf

link (url) DOI [BibTex]


Roughness perception of virtual textures displayed by electrovibration on touch screens
Roughness perception of virtual textures displayed by electrovibration on touch screens

Vardar, Y., Isleyen, A., Saleem, M. K., Basdogan, C.

In 2017 IEEE World Haptics Conference (WHC), pages: 263-268, 2017 (inproceedings)

Abstract
In this study, we have investigated the human roughness perception of periodical textures on an electrostatic display by conducting psychophysical experiments with 10 subjects. To generate virtual textures, we used low frequency unipolar pulse waves in different waveform (sinusoidal, square, saw-tooth, triangle), and spacing. We modulated these waves with a 3kHz high frequency sinusoidal carrier signal to minimize perceptional differences due to the electrical filtering of human finger and eliminate low-frequency distortions. The subjects were asked to rate 40 different macro textures on a Likert scale of 1-7. We also collected the normal and tangential forces acting on the fingers of subjects during the experiment. The results of our user study showed that subjects perceived the square wave as the roughest while they perceived the other waveforms equally rough. The perceived roughness followed an inverted U-shaped curve as a function of groove width, but the peak point shifted to the left compared to the results of the earlier studies. Moreover, we found that the roughness perception of subjects is best correlated with the rate of change of the contact forces rather than themselves.

hi

vardar_whc2017 DOI [BibTex]

vardar_whc2017 DOI [BibTex]


no image
Feeling multiple edges: The tactile perception of short ultrasonic square reductions of the finger-surface friction

Gueorguiev, D., Vezzoli, E., Sednaoui, T., Grisoni, L., Lemaire-Semail, B.

In 2017 IEEE World Haptics Conference (WHC), pages: 125-129, 2017 (inproceedings)

hi

DOI [BibTex]

DOI [BibTex]

2005


no image
Perception of Curvature and Object Motion Via Contact Location Feedback

Provancher, W. R., Kuchenbecker, K. J., Niemeyer, G., Cutkosky, M. R.

In Proceedings of the International Symposium on Robotics Research (ISRR), 15, pages: 456-465, Springer Tracts in Advanced Robotics, Springer, Siena, Italy, 2005, Oral presentation given by Provancher in October of 2003 (inproceedings)

hi

[BibTex]

2005


[BibTex]


no image
Modeling Induced Master Motion in Force-Reflecting Teleoperation

Kuchenbecker, K. J., Niemeyer, G.

In Proc. IEEE International Conference on Robotics and Automation, pages: 348-353, Barcelona, Spain, April 2005, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Event-Based Haptics and Acceleration Matching: Portraying and Assessing the Realism of Contact

Kuchenbecker, K. J., Fiene, J. P., Niemeyer, G.

In Proc. IEEE World Haptics Conference, pages: 381-387, Pisa, Italy, March 2005, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Magnetization reversal behavior of nanogranular CoCrPt alloy thin films studied with magnetic transmission X-ray microscopy

Fischer, P., Im, M., Eimüller, T., Schütz, G., Shin, S.

In 286, pages: 311-314, Boulder, CO, USA, 2005 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Defects distribution of Pr2Fe14B hard magnetic magnet from amorphous to nanostructures characterized by positron annihilation spectroscopy

Wu, Y. C., Sprengel, W., Reimann, K., Reichle, K. J., Goll, D., Würschum, R., Schaefer, H. E.

In PRICM 5. Proceedings of the Fifth Pacific RIM International Conference on Advanced Materials and Processing, 475-479, pages: 2123-2126, Materials Science Forum, Trans Tech, Beijing, China, 2005 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Implementing sub-ns time resolution into magnetic X-ray microscopies

Puzic, A., Stoll, H., Fischer, P., Van Waeyenberge, B., Raabe, J., Denbeaux, G., Haug, T., Weiss, D., Schütz, G.

In T115, pages: 1029-1031, Malmö/Lund, Sweden, 2005 (inproceedings)

mms

[BibTex]

[BibTex]

2000


no image
High-performance nanocrystalline PrFeB-based bonded permanent magnets

Goll, D., Kleinschroth, I., Kronmüller, H.

In Proceedings of the 16th International Workshop on Rare-Earth Magnets and Their Applications, pages: 641-650, Japan Institute of Metals, 2000 (inproceedings)

mms

[BibTex]

2000


[BibTex]


no image
Experimental and theoretical study of the Verwey transition in magnetite

Brabers, V. A. M., Brabers, J. H. V. J., Walz, F., Kronmüller, H.

In Proceedings 8th International Conference on Ferrites, pages: 123-125, Japan Society of Powder and Powder Metallurgy, 2000 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Evolution of microstructure and microchemistry in the high-temperature Sm(Co, Fe, Cu, Zr)z magnets

Zhang, Y. W., Hadjipanayis, G. C., Goll, D., Kronmüller, H., Chen, C., Nelson, C., Krishnan, K.

In Proceedings of the 16th International Workshop on Rare-Earth Magnets and Their Applications, pages: 169-178, Sendai, Japan, 2000 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Fundamental investigations and industrial applications of magnetostriction

Hirscher, M., Fischer, S. F., Reininger, T.

In Modern Trends in Magnetostriction Study and Application. Proceedings of the NATO Advanced Study Institute on Modern Trends in Magnetostriction, 5, pages: 307-329, NATO Science Series: II: Mathematics, Physics and Chemistry, Kluwer Academic Publishers, Kyiv, Ukraine, 2000 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Micromagnetic and microstructural analysis of the temperature dependence of the coercive field of Sm2(Co, Cu, Fe, Zr)17 permanent magnets

Goll, D., Sigle, W., Hadjipanayis, G. C., Kronmüller, H.

In Proceedings of the 16th International Workshop on Rare-Earth Magnets and Their Applications, pages: 61-70, Kaneko, H.; Homma, M.; Okada, M., 2000 (inproceedings)

mms

[BibTex]

[BibTex]