Header logo is


2019


Life Improvement Science: A Manifesto
Life Improvement Science: A Manifesto

Lieder, F.

December 2019 (article) In revision

Abstract
Rapid technological advances present unprecedented opportunities for helping people thrive. This manifesto presents a road map for establishing a solid scientific foundation upon which those opportunities can be realized. It highlights fundamental open questions about the cognitive underpinnings of effective living and how they can be improved, supported, and augmented. These questions are at the core of my proposal for a new transdisciplinary research area called life improvement science. Recent advances have made these questions amenable to scientific rigor, and emerging approaches are paving the way towards practical strategies, clever interventions, and (intelligent) apps for empowering people to reach unprecedented levels of personal effectiveness and wellbeing.

re

Life improvement science: a manifesto DOI [BibTex]


no image
Doing More with Less: Meta-Reasoning and Meta-Learning in Humans and Machines

Griffiths, T. L., Callaway, F., Chang, M. B., Grant, E., Krueger, P. M., Lieder, F.

Current Opinion in Behavioral Sciences, 29, pages: 24-30, October 2019 (article)

Abstract
Artificial intelligence systems use an increasing amount of computation and data to solve very specific problems. By contrast, human minds solve a wide range of problems using a fixed amount of computation and limited experience. We identify two abilities that we see as crucial to this kind of general intelligence: meta-reasoning (deciding how to allocate computational resources) and meta-learning (modeling the learning environment to make better use of limited data). We summarize the relevant AI literature and relate the resulting ideas to recent work in psychology.

re

DOI [BibTex]

DOI [BibTex]


Cognitive Prostheses for Goal Achievement
Cognitive Prostheses for Goal Achievement

Lieder, F., Chen, O. X., Krueger, P. M., Griffiths, T. L.

Nature Human Behavior, 3, August 2019 (article)

Abstract
Procrastination and impulsivity take a significant toll on people’s lives and the economy at large. Both can result from the misalignment of an action's proximal rewards with its long-term value. Therefore, aligning immediate reward with long-term value could be a way to help people overcome motivational barriers and make better decisions. Previous research has shown that game elements, such as points, levels, and badges, can be used to motivate people and nudge their decisions on serious matters. Here, we develop a new approach to decision support that leveragesartificial intelligence and game elements to restructure challenging sequential decision problems in such a way that it becomes easier for people to take the right course of action. A series of four increasingly more realistic experiments suggests that this approach can enable people to make better decisions faster, procrastinate less, complete their work on time, and waste less time on unimportant tasks. These findings suggest that our method is a promising step towards developing cognitive prostheses that help people achieve their goals by enhancing their motivation and decision-making in everyday life.

re

DOI [BibTex]

DOI [BibTex]


no image
Resource-rational analysis: Understanding human cognition as the optimal use of limited computational resources

Lieder, F., Griffiths, T. L.

Behavioral and Brain Sciences, 43, E1, Febuary 2019 (article)

Abstract
Modeling human cognition is challenging because there are infinitely many mechanisms that can generate any given observation. Some researchers address this by constraining the hypothesis space through assumptions about what the human mind can and cannot do, while others constrain it through principles of rationality and adaptation. Recent work in economics, psychology, neuroscience, and linguistics has begun to integrate both approaches by augmenting rational models with cognitive constraints, incorporating rational principles into cognitive architectures, and applying optimality principles to understanding neural representations. We identify the rational use of limited resources as a unifying principle underlying these diverse approaches, expressing it in a new cognitive modeling paradigm called resource-rational analysis. The integration of rational principles with realistic cognitive constraints makes resource-rational analysis a promising framework for reverse-engineering cognitive mechanisms and representations. It has already shed new light on the debate about human rationality and can be leveraged to revisit classic questions of cognitive psychology within a principled computational framework. We demonstrate that resource-rational models can reconcile the mind's most impressive cognitive skills with people's ostensive irrationality. Resource-rational analysis also provides a new way to connect psychological theory more deeply with artificial intelligence, economics, neuroscience, and linguistics.

re

DOI [BibTex]

DOI [BibTex]


no image
Co-Contraction facilitates Body Stiffness Modulation during Swimming with Sensory Feedback in a Soft Biorobotic Physical Model

Jusufi, A., Vogt, D., Wood, R. J.

Integrative and Comparative Biology, 59(Supplement 1):E116-E116, Society of Integrative and Comparative Biology, McLean, VA, 2019 (article)

bio

DOI [BibTex]

DOI [BibTex]


A Rational Reinterpretation of Dual Process Theories
A Rational Reinterpretation of Dual Process Theories

Milli, S., Lieder, F., Griffiths, T. L.

2019 (article)

Abstract
Highly influential "dual-process" accounts of human cognition postulate the coexistence of a slow accurate system with a fast error-prone system. But why would there be just two systems rather than, say, one or 93? Here, we argue that a dual-process architecture might be neither arbitrary nor irrational, but might instead reflect a rational tradeoff between the cognitive flexibility afforded by multiple systems and the time and effort required to choose between them. We investigate what the optimal set and number of cognitive systems would be depending on the structure of the environment. We find that the optimal number of systems depends on the variability of the environment and the difficulty of deciding when which system should be used. Furthermore, when having two systems is optimal, then the first system is fast but error-prone and the second system is slow but accurate. Our findings thereby provide a rational reinterpretation of dual-process theories.

re

DOI [BibTex]

DOI [BibTex]

2015


no image
Model-Based Strategy Selection Learning

Lieder, F., Griffiths, T. L.

The 2nd Multidisciplinary Conference on Reinforcement Learning and Decision Making, 2015 (article)

Abstract
Humans possess a repertoire of decision strategies. This raises the question how we decide how to decide. Behavioral experiments suggest that the answer includes metacognitive reinforcement learning: rewards reinforce not only our behavior but also the cognitive processes that lead to it. Previous theories of strategy selection, namely SSL and RELACS, assumed that model-free reinforcement learning identifies the cognitive strategy that works best on average across all problems in the environment. Here we explore the alternative: model-based reinforcement learning about how the differential effectiveness of cognitive strategies depends on the features of individual problems. Our theory posits that people learn a predictive model of each strategy’s accuracy and execution time and choose strategies according to their predicted speed-accuracy tradeoff for the problem to be solved. We evaluate our theory against previous accounts by fitting published data on multi-attribute decision making, conducting a novel experiment, and demonstrating that our theory can account for people’s adaptive flexibility in risky choice. We find that while SSL and RELACS are sufficient to explain people’s ability to adapt to a homogeneous environment in which all decision problems are of the same type, model-based strategy selection learning can also explain people’s ability to adapt to heterogeneous environments and flexibly switch to a different decision-strategy when the situation changes.

re

link (url) Project Page [BibTex]

2015


link (url) Project Page [BibTex]


no image
The optimism bias may support rational action

Lieder, F., Goel, S., Kwan, R., Griffiths, T. L.

NIPS 2015 Workshop on Bounded Optimality and Rational Metareasoning, 2015 (article)

re

[BibTex]

[BibTex]


no image
Rational use of cognitive resources: Levels of analysis between the computational and the algorithmic

Griffiths, T. L., Lieder, F., Goodman, N. D.

Topics in Cognitive Science, 7(2):217-229, Wiley, 2015 (article)

re

[BibTex]

[BibTex]

2006


no image
Die Effektivität von schriftlichen und graphischen Warnhinweisen auf Zigarettenschachteln

Petersen, L., Lieder, F.

Zeitschrift für Sozialpsychologie, 37(4):245-258, Verlag Hans Huber, 2006 (article)

Abstract
In der vorliegenden Studie wurde die Effektivität von furchterregenden Warnhinweisen bei jugendlichen Rauchern und Raucherinnen analysiert. 336 Raucher/-innen (Durchschnittsalter: 15 Jahre) wurden schriftliche oder graphische Warnhinweise auf Zigarettenpackungen präsentiert (Experimentalbedingungen; n = 96, n = 119), oder sie erhielten keine Warnhinweise (Kontrollbedingung; n = 94). Anschließend wurden die Modellfaktoren des revidierten Modells der Schutzmotivation (Arthur & Quester, 2004) erhoben. Die Ergebnisse stützen die Hypothese, dass die Faktoren «Schweregrad der Schädigung» und «Wahrscheinlichkeit der Schädigung» die Verhaltenswahrscheinlichkeit, weniger oder leichtere Zigaretten zu rauchen, vermittelt über den Mediator «Furcht» beeinflussen. Die Verhaltenswahrscheinlichkeit wurde dagegen nicht von den drei experimentellen Bedingungen beeinflusst. Auch konnten die Faktoren «Handlungswirksamkeitserwartungen» und «Selbstwirksamkeitserwartungen» nicht als Moderatoren des Zusammenhangs zwischen Furcht und Verhaltenswahrscheinlichkeit bestätigt werden.

re

DOI [BibTex]

2006


DOI [BibTex]