Header logo is



no image
Composite adaptive control with locally weighted statistical learning

Nakanishi, J., Farrell, J. A., Schaal, S.

Neural Networks, 18(1):71-90, January 2005, clmc (article)

Abstract
This paper introduces a provably stable learning adaptive control framework with statistical learning. The proposed algorithm employs nonlinear function approximation with automatic growth of the learning network according to the nonlinearities and the working domain of the control system. The unknown function in the dynamical system is approximated by piecewise linear models using a nonparametric regression technique. Local models are allocated as necessary and their parameters are optimized on-line. Inspired by composite adaptive control methods, the proposed learning adaptive control algorithm uses both the tracking error and the estimation error to update the parameters. We first discuss statistical learning of nonlinear functions, and motivate our choice of the locally weighted learning framework. Second, we begin with a class of first order SISO systems for theoretical development of our learning adaptive control framework, and present a stability proof including a parameter projection method that is needed to avoid potential singularities during adaptation. Then, we generalize our adaptive controller to higher order SISO systems, and discuss further extension to MIMO problems. Finally, we evaluate our theoretical control framework in numerical simulations to illustrate the effectiveness of the proposed learning adaptive controller for rapid convergence and high accuracy of control.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl toc image
Nonlinear optical spectroscopy of chiral molecules

Fischer, P., Hache, F.

CHIRALITY, 17(8):421-437, 2005 (article)

Abstract
We review nonlinear optical processes that are specific to chiral molecules in solution and on surfaces. In contrast to conventional natural optical activity phenomena, which depend linearly on the electric field strength of the optical field, we discuss how optical processes that are nonlinear (quadratic, cubic, and quartic) functions of the electromagnetic field strength may probe optically active centers and chiral vibrations. We show that nonlinear techniques open entirely new ways of exploring chirality in chemical and biological systems: The cubic processes give rise to nonlinear circular dichroism and nonlinear optical rotation and make it possible to observe dynamic chiral processes at ultrafast time scales. The quadratic second-harmonic and sum-frequency-generation phenomena and the quartic processes may arise entirely in the electric-dipole approximation and do not require the use of circularly polarized light to detect chirality: They provide surface selectivity and their observables can be relatively much larger than in linear optical activity. These processes also give rise to the generation of light at a new color, and in liquids this frequency conversion only occurs if the solution is optically active. We survey recent chiral nonlinear optical experiments and give examples of their application to problems of biophysical interest. (C) 2005 Wiley-Liss, Inc.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Negative refraction at optical frequencies in nonmagnetic two-component molecular media

Chen, Y., Fischer, P., Wise, F.

PHYSICAL REVIEW LETTERS, 95(6), 2005 (article)

Abstract
There is significant motivation to develop media with negative refractive indices at optical frequencies, but efforts in this direction are hampered by the weakness of the magnetic response at such frequencies. We show theoretically that a nonmagnetic medium with two atomic or molecular constituents can exhibit a negative refractive index. A negative index is possible even when the real parts of both the permittivity and permeability are positive. This surprising result provides a route to isotropic negative-index media at optical frequencies.

pf

DOI [BibTex]

DOI [BibTex]


no image
Natural Actor-Critic

Peters, J., Vijayakumar, S., Schaal, S.

In Proceedings of the 16th European Conference on Machine Learning, 3720, pages: 280-291, (Editors: Gama, J.;Camacho, R.;Brazdil, P.;Jorge, A.;Torgo, L.), Springer, ECML, 2005, clmc (inproceedings)

Abstract
This paper investigates a novel model-free reinforcement learning architecture, the Natural Actor-Critic. The actor updates are based on stochastic policy gradients employing AmariÕs natural gradient approach, while the critic obtains both the natural policy gradient and additional parameters of a value function simultaneously by linear regres- sion. We show that actor improvements with natural policy gradients are particularly appealing as these are independent of coordinate frame of the chosen policy representation, and can be estimated more efficiently than regular policy gradients. The critic makes use of a special basis function parameterization motivated by the policy-gradient compatible function approximation. We show that several well-known reinforcement learning methods such as the original Actor-Critic and BradtkeÕs Linear Quadratic Q-Learning are in fact Natural Actor-Critic algorithms. Em- pirical evaluations illustrate the effectiveness of our techniques in com- parison to previous methods, and also demonstrate their applicability for learning control on an anthropomorphic robot arm.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Comparative experiments on task space control with redundancy resolution

Nakanishi, J., Cory, R., Mistry, M., Peters, J., Schaal, S.

In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3901-3908, Edmonton, Alberta, Canada, Aug. 2-6, IROS, 2005, clmc (inproceedings)

Abstract
Understanding the principles of motor coordination with redundant degrees of freedom still remains a challenging problem, particularly for new research in highly redundant robots like humanoids. Even after more than a decade of research, task space control with redundacy resolution still remains an incompletely understood theoretical topic, and also lacks a larger body of thorough experimental investigation on complex robotic systems. This paper presents our first steps towards the development of a working redundancy resolution algorithm which is robust against modeling errors and unforeseen disturbances arising from contact forces. To gain a better understanding of the pros and cons of different approaches to redundancy resolution, we focus on a comparative empirical evaluation. First, we review several redundancy resolution schemes at the velocity, acceleration and torque levels presented in the literature in a common notational framework and also introduce some new variants of these previous approaches. Second, we present experimental comparisons of these approaches on a seven-degree-of-freedom anthropomorphic robot arm. Surprisingly, one of our simplest algorithms empirically demonstrates the best performance, despite, from a theoretical point, the algorithm does not share the same beauty as some of the other methods. Finally, we discuss practical properties of these control algorithms, particularly in light of inevitable modeling errors of the robot dynamics.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A model of smooth pursuit based on learning of the target dynamics using only retinal signals

Shibata, T., Tabata, H., Schaal, S., Kawato, M.

Neural Networks, 18, pages: 213-225, 2005, clmc (article)

Abstract
While the predictive nature of the primate smooth pursuit system has been evident through several behavioural and neurophysiological experiments, few models have attempted to explain these results comprehensively. The model we propose in this paper in line with previous models employing optimal control theory; however, we hypothesize two new issues: (1) the medical superior temporal (MST) area in the cerebral cortex implements a recurrent neural network (RNN) in order to predict the current or future target velocity, and (2) a forward model of the target motion is acquired by on-line learning. We use stimulation studies to demonstrate how our new model supports these hypotheses.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Linear and Nonlinear Estimation models applied to Hemodynamic Model

Theodorou, E.

Technical Report-2005-1, Computational Action and Vision Lab University of Minnesota, 2005, clmc (techreport)

Abstract
The relation between BOLD signal and neural activity is still poorly understood. The Gaussian Linear Model known as GLM is broadly used in many fMRI data analysis for recovering the underlying neural activity. Although GLM has been proved to be a really useful tool for analyzing fMRI data it can not be used for describing the complex biophysical process of neural metabolism. In this technical report we make use of a system of Stochastic Differential Equations that is based on Buxton model [1] for describing the underlying computational principles of hemodynamic process. Based on this SDE we built a Kalman Filter estimator so as to estimate the induced neural signal as well as the blood inflow under physiologic and sensor noise. The performance of Kalman Filter estimator is investigated under different physiologic noise characteristics and measurement frequencies.

am

PDF [BibTex]

PDF [BibTex]


no image
Predicting EMG Data from M1 Neurons with Variational Bayesian Least Squares

Ting, J., D’Souza, A., Yamamoto, K., Yoshioka, T., Hoffman, D., Kakei, S., Sergio, L., Kalaska, J., Kawato, M., Strick, P., Schaal, S.

In Advances in Neural Information Processing Systems 18 (NIPS 2005), (Editors: Weiss, Y.;Schölkopf, B.;Platt, J.), Cambridge, MA: MIT Press, Vancouver, BC, Dec. 6-11, 2005, clmc (inproceedings)

Abstract
An increasing number of projects in neuroscience requires the statistical analysis of high dimensional data sets, as, for instance, in predicting behavior from neural firing, or in operating artificial devices from brain recordings in brain-machine interfaces. Linear analysis techniques remain prevalent in such cases, but classi-cal linear regression approaches are often numercially too fragile in high dimen-sions. In this paper, we address the question of whether EMG data collected from arm movements of monkeys can be faithfully reconstructed with linear ap-proaches from neural activity in primary motor cortex (M1). To achieve robust data analysis, we develop a full Bayesian approach to linear regression that automatically detects and excludes irrelevant features in the data, and regular-izes against overfitting. In comparison with ordinary least squares, stepwise re-gression, partial least squares, and a brute force combinatorial search for the most predictive input features in the data, we demonstrate that the new Bayesian method offers a superior mixture of characteristics in terms of regularization against overfitting, computational efficiency, and ease of use, demonstrating its potential as a drop-in replacement for other linear regression techniques. As neuroscientific results, our analyses demonstrate that EMG data can be well pre-dicted from M1 neurons, further opening the path for possible real-time inter-faces between brains and machines.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Rapbid synchronization and accurate phase-locking of rhythmic motor primitives

Pongas, D., Billard, A., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2005), pages: 2911-2916, Edmonton, Alberta, Canada, Aug. 2-6, 2005, clmc (inproceedings)

Abstract
Rhythmic movement is ubiquitous in human and animal behavior, e.g., as in locomotion, dancing, swimming, chewing, scratching, music playing, etc. A particular feature of rhythmic movement in biology is the rapid synchronization and phase locking with other rhythmic events in the environment, for instance music or visual stimuli as in ball juggling. In traditional oscillator theories to rhythmic movement generation, synchronization with another signal is relatively slow, and it is not easy to achieve accurate phase locking with a particular feature of the driving stimulus. Using a recently developed framework of dynamic motor primitives, we demonstrate a novel algorithm for very rapid synchronizaton of a rhythmic movement pattern, which can phase lock any feature of the movement to any particulur event in the driving stimulus. As an example application, we demonstrate how an anthropomorphic robot can use imitation learning to acquire a complex rumming pattern and keep it synchronized with an external rhythm generator that changes its frequency over time.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Parametric and Non-Parametric approaches for nonlinear tracking of moving objects

Hidaka, Y, Theodorou, E.

Technical Report-2005-1, 2005, clmc (article)

am

PDF [BibTex]

PDF [BibTex]


no image
A dynamical systems approach to learning: a frequency-adaptive hopper robot

Buchli, J., Righetti, L., Ijspeert, A.

In Proceedings of the VIIIth European Conference on Artificial Life ECAL 2005, pages: 210-220, Springer Verlag, 2005 (inproceedings)

mg

[BibTex]

[BibTex]


no image
From Dynamic Hebbian Learning for Oscillators to Adaptive Central Pattern Generators

Righetti, L., Buchli, J., Ijspeert, A.

In Proceedings of 3rd International Symposium on Adaptive Motion in Animals and Machines – AMAM 2005, Verlag ISLE, Ilmenau, 2005 (inproceedings)

mg

[BibTex]

[BibTex]


no image
A new methodology for robot control design

Peters, J., Mistry, M., Udwadia, F. E., Schaal, S.

In The 5th ASME International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC 2005), Long Beach, CA, Sept. 24-28, 2005, clmc (inproceedings)

Abstract
Gauss principle of least constraint and its generalizations have provided a useful insights for the development of tracking controllers for mechanical systems (Udwadia,2003). Using this concept, we present a novel methodology for the design of a specific class of robot controllers. With our new framework, we demonstrate that well-known and also several novel nonlinear robot control laws can be derived from this generic framework, and show experimental verifications on a Sarcos Master Arm robot for some of these controllers. We believe that the suggested approach unifies and simplifies the design of optimal nonlinear control laws for robots obeying rigid body dynamics equations, both with or without external constraints, holonomic or nonholonomic constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Arm movement experiments with joint space force fields using an exoskeleton robot

Mistry, M., Mohajerian, P., Schaal, S.

In IEEE Ninth International Conference on Rehabilitation Robotics, pages: 408-413, Chicago, Illinois, June 28-July 1, 2005, clmc (inproceedings)

Abstract
A new experimental platform permits us to study a novel variety of issues of human motor control, particularly full 3-D movements involving the major seven degrees-of-freedom (DOF) of the human arm. We incorporate a seven DOF robot exoskeleton, and can minimize weight and inertia through gravity, Coriolis, and inertia compensation, such that subjects' arm movements are largely unaffected by the manipulandum. Torque perturbations can be individually applied to any or all seven joints of the human arm, thus creating novel dynamic environments, or force fields, for subjects to respond and adapt to. Our first study investigates a joint space force field where the shoulder velocity drives a disturbing force in the elbow joint. Results demonstrate that subjects learn to compensate for the force field within about 100 trials, and from the strong presence of aftereffects when removing the field in some randomized catch trials, that an inverse dynamics, or internal model, of the force field is formed by the nervous system. Interestingly, while post-learning hand trajectories return to baseline, joint space trajectories remained changed in response to the field, indicating that besides learning a model of the force field, the nervous system also chose to exploit the space to minimize the effects of the force field on the realization of the endpoint trajectory plan. Further applications for our apparatus include studies in motor system redundancy resolution and inverse kinematics, as well as rehabilitation.

am

link (url) [BibTex]

link (url) [BibTex]


no image
A unifying framework for the control of robotics systems

Peters, J., Mistry, M., Udwadia, F. E., Cory, R., Nakanishi, J., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2005), pages: 1824-1831, Edmonton, Alberta, Canada, Aug. 2-6, 2005, clmc (inproceedings)

Abstract
Recently, [1] suggested to derive tracking controllers for mechanical systems using a generalization of GaussÕ principle of least constraint. This method al-lows us to reformulate control problems as a special class of optimal control. We take this line of reasoning one step further and demonstrate that well-known and also several novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sar-cos Master Arm robot for some of the the derived controllers.We believe that the suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equa-tions, both with or without external constraints, with over-actuation or under-actuation, as well as open-chain and closed-chain kinematics.

am

link (url) [BibTex]

link (url) [BibTex]

2000


no image
Reciprocal excitation between biological and robotic research

Schaal, S., Sternad, D., Dean, W., Kotoska, S., Osu, R., Kawato, M.

In Sensor Fusion and Decentralized Control in Robotic Systems III, Proceedings of SPIE, 4196, pages: 30-40, Boston, MA, Nov.5-8, 2000, November 2000, clmc (inproceedings)

Abstract
While biological principles have inspired researchers in computational and engineering research for a long time, there is still rather limited knowledge flow back from computational to biological domains. This paper presents examples of our work where research on anthropomorphic robots lead us to new insights into explaining biological movement phenomena, starting from behavioral studies up to brain imaging studies. Our research over the past years has focused on principles of trajectory formation with nonlinear dynamical systems, on learning internal models for nonlinear control, and on advanced topics like imitation learning. The formal and empirical analyses of the kinematics and dynamics of movements systems and the tasks that they need to perform lead us to suggest principles of motor control that later on we found surprisingly related to human behavior and even brain activity.

am

link (url) [BibTex]

2000


link (url) [BibTex]


no image
Nonlinear dynamical systems as movement primitives

Schaal, S., Kotosaka, S., Sternad, D.

In Humanoids2000, First IEEE-RAS International Conference on Humanoid Robots, CD-Proceedings, Cambridge, MA, September 2000, clmc (inproceedings)

Abstract
This paper explores the idea to create complex human-like movements from movement primitives based on nonlinear attractor dynamics. Each degree-of-freedom of a limb is assumed to have two independent abilities to create movement, one through a discrete dynamic system, and one through a rhythmic system. The discrete system creates point-to-point movements based on internal or external target specifications. The rhythmic system can add an additional oscillatory movement relative to the current position of the discrete system. In the present study, we develop appropriate dynamic systems that can realize the above model, motivate the particular choice of the systems from a biological and engineering point of view, and present simulation results of the performance of such movement primitives. The model was implemented for a drumming task on a humanoid robot

am

link (url) [BibTex]

link (url) [BibTex]


no image
Real Time Learning in Humanoids: A challenge for scalability of Online Algorithms

Vijayakumar, S., Schaal, S.

In Humanoids2000, First IEEE-RAS International Conference on Humanoid Robots, CD-Proceedings, Cambridge, MA, September 2000, clmc (inproceedings)

Abstract
While recent research in neural networks and statistical learning has focused mostly on learning from finite data sets without stringent constraints on computational efficiency, there is an increasing number of learning problems that require real-time performance from an essentially infinite stream of incrementally arriving data. This paper demonstrates how even high-dimensional learning problems of this kind can successfully be dealt with by techniques from nonparametric regression and locally weighted learning. As an example, we describe the application of one of the most advanced of such algorithms, Locally Weighted Projection Regression (LWPR), to the on-line learning of the inverse dynamics model of an actual seven degree-of-freedom anthropomorphic robot arm. LWPR's linear computational complexity in the number of input dimensions, its inherent mechanisms of local dimensionality reduction, and its sound learning rule based on incremental stochastic leave-one-out cross validation allows -- to our knowledge for the first time -- implementing inverse dynamics learning for such a complex robot with real-time performance. In our sample task, the robot acquires the local inverse dynamics model needed to trace a figure-8 in only 60 seconds of training.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Synchronized robot drumming by neural oscillator

Kotosaka, S., Schaal, S.

In The International Symposium on Adaptive Motion of Animals and Machines, Montreal, Canada, August 2000, clmc (inproceedings)

Abstract
Sensory-motor integration is one of the key issues in robotics. In this paper, we propose an approach to rhythmic arm movement control that is synchronized with an external signal based on exploiting a simple neural oscillator network. Trajectory generation by the neural oscillator is a biologically inspired method that can allow us to generate a smooth and continuous trajectory. The parameter tuning of the oscillators is used to generate a synchronized movement with wide intervals. We adopted the method for the drumming task as an example task. By using this method, the robot can realize synchronized drumming with wide drumming intervals in real time. The paper also shows the experimental results of drumming by a humanoid robot.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl toc image
Phenomenological damping in optical response tensors

Buckingham, A., Fischer, P.

PHYSICAL REVIEW A, 61(3), 2000 (article)

Abstract
Although perturbation theory applied to the optical response of a molecule or material system is only strictly valid far from resonances, it is often applied to ``near-resonance{''} conditions by means of complex energies incorporating damping. Inconsistent signs of the damping in optical response tensors have appeared in the recent literature, as have errors in the treatment of the perturbation by a static held. The ``equal-sign{''} convention used in a recent publication yields an unphysical material response, and Koroteev's intimation that linear electro-optical circular dichroism may exist in an optically active liquid under resonance conditions is also flawed. We show that the isotropic part of the Pockels tensor vanishes.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Ab initio investigation of the sum-frequency hyperpolarizability of small chiral molecules

Champagne, B., Fischer, P., Buckingham, A.

CHEMICAL PHYSICS LETTERS, 331(1):83-88, 2000 (article)

Abstract
Using a sum-over-states procedure based on configuration interaction singles /6-311++G{*}{*}, we have computed the sum-frequency hyperpolarizability beta (ijk)(-3 omega; 2 omega, omega) Of two small chiral molecules, R-monofluoro-oxirane and R-(+)-propylene oxide. Excitation energies were scaled to fit experimental UV-absorption data and checked with ab initio values from time-dependent density functional theory. The isotropic part of the computed hyperpolarizabilities, beta(-3 omega; 2 omega, omega), is much smaller than that reported previously from sum-frequency generation experiments on aqueous solutions of arabinose. Comparison is made with a single-centre chiral model. (C) 2000 Elsevier Science B.V. All rights reserved.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Three-wave mixing in chiral liquids

Fischer, P., Wiersma, D., Righini, R., Champagne, B., Buckingham, A.

PHYSICAL REVIEW LETTERS, 85(20):4253-4256, 2000 (article)

Abstract
Second-order nonlinear optical frequency conversion in isotropic systems is only dipole allowed for sum- and difference-frequency generation in chiral media. We develop a single-center chiral model of the three-wave mixing (sum:frequency generation) nonlinearity and estimate its magnitude. We also report results from ab initio calculations and from three- and four-wave mixing experiments in support of the theoretical estimates. We show that the second-order susceptibility in chiral liquids is much smaller than previously thought.

pf

DOI [BibTex]

DOI [BibTex]


no image
A brachiating robot controller

Nakanishi, J., Fukuda, T., Koditschek, D. E.

IEEE Transactions on Robotics and Automation, 16(2):109-123, 2000, clmc (article)

Abstract
We report on our empirical studies of a new controller for a two-link brachiating robot. Motivated by the pendulum-like motion of an apeâ??s brachiation, we encode this task as the output of a â??target dynamical system.â? Numerical simulations indicate that the resulting controller solves a number of brachiation problems that we term the â??ladder,â? â??swing-up,â? and â??ropeâ? problems. Preliminary analysis provides some explanation for this success. The proposed controller is implemented on a physical system in our laboratory. The robot achieves behaviors including â??swing locomotionâ? and â??swing upâ? and is capable of continuous locomotion over several rungs of a ladder. We discuss a number of formal questions whose answers will be required to gain a full understanding of the strengths and weaknesses of this approach.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Real-time robot learning with locally weighted statistical learning

Schaal, S., Atkeson, C. G., Vijayakumar, S.

In International Conference on Robotics and Automation (ICRA2000), San Francisco, April 2000, 2000, clmc (inproceedings)

Abstract
Locally weighted learning (LWL) is a class of statistical learning techniques that provides useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of robotic systems. This paper introduces several LWL algorithms that have been tested successfully in real-time learning of complex robot tasks. We discuss two major classes of LWL, memory-based LWL and purely incremental LWL that does not need to remember any data explicitly. In contrast to the traditional beliefs that LWL methods cannot work well in high-dimensional spaces, we provide new algorithms that have been tested in up to 50 dimensional learning problems. The applicability of our LWL algorithms is demonstrated in various robot learning examples, including the learning of devil-sticking, pole-balancing of a humanoid robot arm, and inverse-dynamics learning for a seven degree-of-freedom robot.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Biomimetic gaze stabilization

Shibata, T., Schaal, S.

In Robot learning: an Interdisciplinary approach, pages: 31-52, (Editors: Demiris, J.;Birk, A.), World Scientific, 2000, clmc (inbook)

Abstract
Accurate oculomotor control is one of the essential pre-requisites for successful visuomotor coordination. In this paper, we suggest a biologically inspired control system for learning gaze stabilization with a biomimetic robotic oculomotor system. In a stepwise fashion, we develop a control circuit for the vestibulo-ocular reflex (VOR) and the opto-kinetic response (OKR), and add a nonlinear learning network to allow adaptivity. We discuss the parallels and differences of our system with biological oculomotor control and suggest solutions how to deal with nonlinearities and time delays in the control system. In simulation and actual robot studies, we demonstrate that our system can learn gaze stabilization in real time in only a few seconds with high final accuracy.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Fast learning of biomimetic oculomotor control with nonparametric regression networks

Shibata, T., Schaal, S.

In International Conference on Robotics and Automation (ICRA2000), pages: 3847-3854, San Francisco, April 2000, 2000, clmc (inproceedings)

Abstract
Accurate oculomotor control is one of the essential pre-requisites of successful visuomotor coordination. Given the variable nonlinearities of the geometry of binocular vision as well as the possible nonlinearities of the oculomotor plant, it is desirable to accomplish accurate oculomotor control through learning approaches. In this paper, we investigate learning control for a biomimetic active vision system mounted on a humanoid robot. By combining a biologically inspired cerebellar learning scheme with a state-of-the-art statistical learning network, our robot system is able to acquire high performance visual stabilization reflexes after about 40 seconds of learning despite significant nonlinearities and processing delays in the system.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Interaction of rhythmic and discrete pattern generators in single joint movements

Sternad, D., Dean, W. J., Schaal, S.

Human Movement Science, 19(4):627-665, 2000, clmc (article)

Abstract
The study investigates a single-joint movement task that combines a translatory and cyclic component with the objective to investigate the interaction of discrete and rhythmic movement elements. Participants performed an elbow movement in the horizontal plane, oscillating at a prescribed frequency around one target and shifting to a second target upon a trigger signal, without stopping the oscillation. Analyses focused on extracting the mutual influences of the rhythmic and the discrete component of the task. Major findings are: (1) The onset of the discrete movement was confined to a limited phase window in the rhythmic cycle. (2) Its duration was influenced by the period of oscillation. (3) The rhythmic oscillation was "perturbed" by the discrete movement as indicated by phase resetting. On the basis of these results we propose a model for the coordination of discrete and rhythmic actions (K. Matsuoka, Sustained oscillations generated by mutually inhibiting neurons with adaptations, Biological Cybernetics 52 (1985) 367-376; Mechanisms of frequency and pattern control in the neural rhythm generators, Biological Cybernetics 56 (1987) 345-353). For rhythmic movements an oscillatory pattern generator is developed following models of half-center oscillations (D. Bullock, S. Grossberg, The VITE model: a neural command circuit for generating arm and articulated trajectories, in: J.A.S. Kelso, A.J. Mandel, M. F. Shlesinger (Eds.), Dynamic Patterns in Complex Systems. World Scientific. Singapore. 1988. pp. 305-326). For discrete movements a point attractor dynamics is developed close to the VITE model For each joint degree of freedom both pattern generators co-exist but exert mutual inhibition onto each other. The suggested modeling framework provides a unified account for both discrete and rhythmic movements on the basis of neuronal circuitry. Simulation results demonstrated that the effects observed in human performance can be replicated using the two pattern generators with a mutually inhibiting coupling.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Locally weighted projection regression: An O(n) algorithm for incremental real time learning in high dimensional spaces

Vijayakumar, S., Schaal, S.

In Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), 1, pages: 288-293, Stanford, CA, 2000, clmc (inproceedings)

Abstract
Locally weighted projection regression is a new algorithm that achieves nonlinear function approximation in high dimensional spaces with redundant and irrelevant input dimensions. At its core, it uses locally linear models, spanned by a small number of univariate regressions in selected directions in input space. This paper evaluates different methods of projection regression and derives a nonlinear function approximator based on them. This nonparametric local learning system i) learns rapidly with second order learning methods based on incremental training, ii) uses statistically sound stochastic cross validation to learn iii) adjusts its weighting kernels based on local information only, iv) has a computational complexity that is linear in the number of inputs, and v) can deal with a large number of - possibly redundant - inputs, as shown in evaluations with up to 50 dimensional data sets. To our knowledge, this is the first truly incremental spatially localized learning method to combine all these properties.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Dynamics of a bouncing ball in human performance

Sternad, D., Duarte, M., Katsumata, H., Schaal, S.

Physical Review E, 63(011902):1-8, 2000, clmc (article)

Abstract
On the basis of a modified bouncing-ball model, we investigated whether human movements utilize principles of dynamic stability in their performance of a similar movement task. Stability analyses of the model provided predictions about conditions indicative of a dynamically stable period-one regime. In a series of experiments, human subjects bounced a ball rhythmically on a racket and displayed these conditions supporting that they attuned to and exploited the dynamic stability properties of the task.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Inverse kinematics for humanoid robots

Tevatia, G., Schaal, S.

In International Conference on Robotics and Automation (ICRA2000), pages: 294-299, San Fransisco, April 24-28, 2000, 2000, clmc (inproceedings)

Abstract
Real-time control of the endeffector of a humanoid robot in external coordinates requires computationally efficient solutions of the inverse kinematics problem. In this context, this paper investigates methods of resolved motion rate control (RMRC) that employ optimization criteria to resolve kinematic redundancies. In particular we focus on two established techniques, the pseudo inverse with explicit optimization and the extended Jacobian method. We prove that the extended Jacobian method includes pseudo-inverse methods as a special solution. In terms of computational complexity, however, pseudo-inverse and extended Jacobian differ significantly in favor of pseudo-inverse methods. Employing numerical estimation techniques, we introduce a computationally efficient version of the extended Jacobian with performance comparable to the original version . Our results are illustrated in simulation studies with a multiple degree-of-freedom robot, and were tested on a 30 degree-of-freedom robot. 

am

link (url) [BibTex]

link (url) [BibTex]


no image
Fast and efficient incremental learning for high-dimensional movement systems

Vijayakumar, S., Schaal, S.

In International Conference on Robotics and Automation (ICRA2000), San Francisco, April 2000, 2000, clmc (inproceedings)

Abstract
We introduce a new algorithm, Locally Weighted Projection Regression (LWPR), for incremental real-time learning of nonlinear functions, as particularly useful for problems of autonomous real-time robot control that re-quires internal models of dynamics, kinematics, or other functions. At its core, LWPR uses locally linear models, spanned by a small number of univariate regressions in selected directions in input space, to achieve piecewise linear function approximation. The most outstanding properties of LWPR are that it i) learns rapidly with second order learning methods based on incremental training, ii) uses statistically sound stochastic cross validation to learn iii) adjusts its local weighting kernels based on only local information to avoid interference problems, iv) has a computational complexity that is linear in the number of inputs, and v) can deal with a large number ofâ??possibly redundant and/or irrelevantâ??inputs, as shown in evaluations with up to 50 dimensional data sets for learning the inverse dynamics of an anthropomorphic robot arm. To our knowledge, this is the first incremental neural network learning method to combine all these properties and that is well suited for complex on-line learning problems in robotics.

am

link (url) [BibTex]

link (url) [BibTex]


no image
On-line learning for humanoid robot systems

Conradt, J., Tevatia, G., Vijayakumar, S., Schaal, S.

In Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), 1, pages: 191-198, Stanford, CA, 2000, clmc (inproceedings)

Abstract
Humanoid robots are high-dimensional movement systems for which analytical system identification and control methods are insufficient due to unknown nonlinearities in the system structure. As a way out, supervised learning methods can be employed to create model-based nonlinear controllers which use functions in the control loop that are estimated by learning algorithms. However, internal models for humanoid systems are rather high-dimensional such that conventional learning algorithms would suffer from slow learning speed, catastrophic interference, and the curse of dimensionality. In this paper we explore a new statistical learning algorithm, locally weighted projection regression (LWPR), for learning internal models in real-time. LWPR is a nonparametric spatially localized learning system that employs the less familiar technique of partial least squares regression to represent functional relationships in a piecewise linear fashion. The algorithm can work successfully in very high dimensional spaces and detect irrelevant and redundant inputs while only requiring a computational complexity that is linear in the number of input dimensions. We demonstrate the application of the algorithm in learning two classical internal models of robot control, the inverse kinematics and the inverse dynamics of an actual seven degree-of-freedom anthropomorphic robot arm. For both examples, LWPR can achieve excellent real-time learning results from less than one hour of actual training data.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Humanoid Robot DB

Kotosaka, S., Shibata, T., Schaal, S.

In Proceedings of the International Conference on Machine Automation (ICMA2000), pages: 21-26, 2000, clmc (inproceedings)

am

[BibTex]

[BibTex]

1997


no image
Locally weighted learning

Atkeson, C. G., Moore, A. W., Schaal, S.

Artificial Intelligence Review, 11(1-5):11-73, 1997, clmc (article)

Abstract
This paper surveys locally weighted learning, a form of lazy learning and memory-based learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, assessing predictions, handling noisy data and outliers, improving the quality of predictions by tuning fit parameters, interference between old and new data, implementing locally weighted learning efficiently, and applications of locally weighted learning. A companion paper surveys how locally weighted learning can be used in robot learning and control. Keywords: locally weighted regression, LOESS, LWR, lazy learning, memory-based learning, least commitment learning, distance functions, smoothing parameters, weighting functions, global tuning, local tuning, interference.

am

link (url) [BibTex]

1997


link (url) [BibTex]


no image
Locally weighted learning for control

Atkeson, C. G., Moore, A. W., Schaal, S.

Artificial Intelligence Review, 11(1-5):75-113, 1997, clmc (article)

Abstract
Lazy learning methods provide useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of complex systems. This paper surveys ways in which locally weighted learning, a type of lazy learning, has been applied by us to control tasks. We explain various forms that control tasks can take, and how this affects the choice of learning paradigm. The discussion section explores the interesting impact that explicitly remembering all previous experiences has on the problem of learning to control. Keywords: locally weighted regression, LOESS, LWR, lazy learning, memory-based learning, least commitment learning, forward models, inverse models, linear quadratic regulation (LQR), shifting setpoint algorithm, dynamic programming.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning from demonstration

Schaal, S.

In Advances in Neural Information Processing Systems 9, pages: 1040-1046, (Editors: Mozer, M. C.;Jordan, M.;Petsche, T.), MIT Press, Cambridge, MA, 1997, clmc (inproceedings)

Abstract
By now it is widely accepted that learning a task from scratch, i.e., without any prior knowledge, is a daunting undertaking. Humans, however, rarely attempt to learn from scratch. They extract initial biases as well as strategies how to approach a learning problem from instructions and/or demonstrations of other humans. For learning control, this paper investigates how learning from demonstration can be applied in the context of reinforcement learning. We consider priming the Q-function, the value function, the policy, and the model of the task dynamics as possible areas where demonstrations can speed up learning. In general nonlinear learning problems, only model-based reinforcement learning shows significant speed-up after a demonstration, while in the special case of linear quadratic regulator (LQR) problems, all methods profit from the demonstration. In an implementation of pole balancing on a complex anthropomorphic robot arm, we demonstrate that, when facing the complexities of real signal processing, model-based reinforcement learning offers the most robustness for LQR problems. Using the suggested methods, the robot learns pole balancing in just a single trial after a 30 second long demonstration of the human instructor. 

am

link (url) [BibTex]

link (url) [BibTex]


no image
Robot learning from demonstration

Atkeson, C. G., Schaal, S.

In Machine Learning: Proceedings of the Fourteenth International Conference (ICML ’97), pages: 12-20, (Editors: Fisher Jr., D. H.), Morgan Kaufmann, Nashville, TN, July 8-12, 1997, 1997, clmc (inproceedings)

Abstract
The goal of robot learning from demonstration is to have a robot learn from watching a demonstration of the task to be performed. In our approach to learning from demonstration the robot learns a reward function from the demonstration and a task model from repeated attempts to perform the task. A policy is computed based on the learned reward function and task model. Lessons learned from an implementation on an anthropomorphic robot arm using a pendulum swing up task include 1) simply mimicking demonstrated motions is not adequate to perform this task, 2) a task planner can use a learned model and reward function to compute an appropriate policy, 3) this model-based planning process supports rapid learning, 4) both parametric and nonparametric models can be learned and used, and 5) incorporating a task level direct learning component, which is non-model-based, in addition to the model-based planner, is useful in compensating for structural modeling errors and slow model learning. 

am

link (url) [BibTex]

link (url) [BibTex]


no image
Local dimensionality reduction for locally weighted learning

Vijayakumar, S., Schaal, S.

In International Conference on Computational Intelligence in Robotics and Automation, pages: 220-225, Monteray, CA, July10-11, 1997, 1997, clmc (inproceedings)

Abstract
Incremental learning of sensorimotor transformations in high dimensional spaces is one of the basic prerequisites for the success of autonomous robot devices as well as biological movement systems. So far, due to sparsity of data in high dimensional spaces, learning in such settings requires a significant amount of prior knowledge about the learning task, usually provided by a human expert. In this paper we suggest a partial revision of the view. Based on empirical studies, it can been observed that, despite being globally high dimensional and sparse, data distributions from physical movement systems are locally low dimensional and dense. Under this assumption, we derive a learning algorithm, Locally Adaptive Subspace Regression, that exploits this property by combining a local dimensionality reduction as a preprocessing step with a nonparametric learning technique, locally weighted regression. The usefulness of the algorithm and the validity of its assumptions are illustrated for a synthetic data set and data of the inverse dynamics of an actual 7 degree-of-freedom anthropomorphic robot arm.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning tasks from a single demonstration

Atkeson, C. G., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA97), 2, pages: 1706-1712, Piscataway, NJ: IEEE, Albuquerque, NM, 20-25 April, 1997, clmc (inproceedings)

Abstract
Learning a complex dynamic robot manoeuvre from a single human demonstration is difficult. This paper explores an approach to learning from demonstration based on learning an optimization criterion from the demonstration and a task model from repeated attempts to perform the task, and using the learned criterion and model to compute an appropriate robot movement. A preliminary version of the approach has been implemented on an anthropomorphic robot arm using a pendulum swing up task as an example

am

link (url) [BibTex]

link (url) [BibTex]