ei
Besserve, M.
Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism
53rd Annual Allerton Conference on Communication, Control, and Computing, September 2015 (talk)
ei
Charpiat, G., Hofmann, M., Schölkopf, B.
Kernel methods in medical imaging
In Handbook of Biomedical Imaging, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)
ei
Besserve, M.
Independence of cause and mechanism in brain networks
DALI workshop on Networks: Processes and Causality, April 2015 (talk)
ei
Chaves, R., Majenz, C., Luft, L., Maciel, T., Janzing, D., Schölkopf, B., Gross, D.
Information-Theoretic Implications of Classical and Quantum Causal Structures
18th Conference on Quantum Information Processing (QIP), 2015 (talk)
ei
Janzing, D., Steudel, B., Shajarisales, N., Schölkopf, B.
Justifying Information-Geometric Causal Inference
In Measures of Complexity: Festschrift for Alexey Chervonenkis, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)
ei
Foreman-Mackey, D., Hogg, D. W., Schölkopf, B.
The search for single exoplanet transits in the Kepler light curves
IAU General Assembly, 22, pages: 2258352, 2015 (talk)
ei
Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.
A Kernel Method for the Two-Sample-Problem
20th Annual Conference on Neural Information Processing Systems (NIPS), December 2006 (talk)
ei
Schweikert, G., Zeller, G., Zien, A., Ong, C., de Bona, F., Sonnenburg, S., Phillips, P., Rätsch, G.
Ab-initio gene finding using machine learning
NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)
ei
Saigo, H., Kadowaki, T., Kudo, T., Tsuda, K.
Graph boosting for molecular QSAR analysis
NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)
ei
Sun, X., Janzing, D., Schölkopf, B.
Inferring Causal Directions by Evaluating the Complexity of Conditional Distributions
NIPS Workshop on Causality and Feature Selection, December 2006 (talk)
ei
Farquhar, J., Hill, J., Schölkopf, B.
Learning Optimal EEG Features Across Time, Frequency and Space
NIPS Workshop on Current Trends in Brain-Computer Interfacing, December 2006 (talk)
ei
Zien, A.
Semi-Supervised Learning
Advanced Methods in Sequence Analysis Lectures, November 2006 (talk)
ei
Shin, H., Tsuda, K.
Prediction of Protein Function from Networks
In Semi-Supervised Learning, pages: 361-376, Adaptive Computation and Machine Learning, (Editors: Chapelle, O. , B. Schölkopf, A. Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)
ei
Zhou, D., Schölkopf, B.
Discrete Regularization
In Semi-supervised Learning, pages: 237-250, Adaptive computation and machine learning, (Editors: O Chapelle and B Schölkopf and A Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)
ei
Hofmann, M., Steinke, F., Judenhofer, M., Claussen, C., Schölkopf, B., Pichler, B.
A Machine Learning Approach for Determining the PET Attenuation Map from Magnetic Resonance Images
IEEE Medical Imaging Conference, November 2006 (talk)
ei
Zien, A.
Semi-Supervised Support Vector Machines and Application to Spam Filtering
ECML Discovery Challenge Workshop, September 2006 (talk)
ei
Habeck, M.
Inferential Structure Determination: Probabilistic determination and validation of NMR structures
Gordon Research Conference on Computational Aspects of Biomolecular
NMR, September 2006 (talk)
ei
Schweikert, G., Zeller, G., Clark, R., Ossowski, S., Warthmann, N., Shinn, P., Frazer, K., Ecker, J., Huson, D., Weigel, D., Schölkopf, B., Rätsch, G.
Machine Learning Algorithms for Polymorphism Detection
2nd ISCB Student Council Symposium, August 2006 (talk)
ei
Habeck, M.
Inferential structure determination: Overview and new developments
Sixth CCPN Annual Conference: Efficient and Rapid Structure Determination by NMR, July 2006 (talk)
ei
Rasmussen, C., Görür, D.
MCMC inference in (Conditionally) Conjugate Dirichlet Process Gaussian Mixture Models
ICML Workshop on Learning with Nonparametric Bayesian Methods, June 2006 (talk)
ei
Görür, D., Rasmussen, C.
Sampling for non-conjugate infinite latent feature models
(Editors: Bernardo, J. M.), 8th Valencia International Meeting on Bayesian Statistics (ISBA), June 2006 (talk)
ei
Clark, R., Ossowski, S., Schweikert, G., Rätsch, G., Shinn, P., Zeller, G., Warthmann, N., Fu, G., Hinds, D., Chen, H., Frazer, K., Huson, D., Schölkopf, B., Nordborg, M., Ecker, J., Weigel, D.
An Inventory of Sequence Polymorphisms For Arabidopsis
17th International Conference on Arabidopsis Research, April 2006 (talk)
ei
Lal, T., Chapelle, O., Schölkopf, B.
Combining a Filter Method with SVMs
In Feature Extraction: Foundations and Applications, Studies in Fuzziness and Soft Computing, Vol. 207, pages: 439-446, Studies in Fuzziness and Soft Computing ; 207, (Editors: I Guyon and M Nikravesh and S Gunn and LA Zadeh), Springer, Berlin, Germany, 2006 (inbook)
ei
Lal, T., Chapelle, O., Weston, J., Elisseeff, A.
Embedded methods
In Feature Extraction: Foundations and Applications, pages: 137-165, Studies in Fuzziness and Soft Computing ; 207, (Editors: Guyon, I. , S. Gunn, M. Nikravesh, L. A. Zadeh), Springer, Berlin, Germany, 2006 (inbook)
pf
Fischer, P., Champagne, B.
NONLINEAR OPTICAL PROPERTIES OF CHIRAL LIQUIDS Electric-dipolar pseudoscalars in nonlinear optics
In NON-LINEAR OPTICAL PROPERTIES OF MATTER: FROM MOLECULES TO CONDENSED PHASES, 1, pages: 359-381, Challenges and Advances in Computational Chemistry and Physics, 2006 (incollection)
ei
Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.
An Introduction to Kernel-Based Learning Algorithms
In Handbook of Neural Network Signal Processing, 4, (Editors: Yu Hen Hu and Jang-Neng Hwang), CRC Press, 2000 (inbook)