46 results
(View BibTeX file of all listed publications)

**Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism**
*53rd Annual Allerton Conference on Communication, Control, and Computing*, September 2015 (talk)

**Kernel methods in medical imaging**
In *Handbook of Biomedical Imaging*, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)

**Independence of cause and mechanism in brain networks**
*DALI workshop on Networks: Processes and Causality*, April 2015 (talk)

**Information-Theoretic Implications of Classical and Quantum Causal Structures **
18th Conference on Quantum Information Processing (QIP), 2015 (talk)

**Justifying Information-Geometric Causal Inference**
In *Measures of Complexity: Festschrift for Alexey Chervonenkis*, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)

**The search for single exoplanet transits in the Kepler light curves**
*IAU General Assembly*, 22, pages: 2258352, 2015 (talk)

**Markerless tracking of Dynamic 3D Scans of Faces**
In *Dynamic Faces: Insights from Experiments and Computation*, pages: 255-276, (Editors: Curio, C., Bülthoff, H. H. and Giese, M. A.), MIT Press, Cambridge, MA, USA, December 2010 (inbook)

**Policy Gradient Methods**
In *Encyclopedia of Machine Learning*, pages: 774-776, (Editors: Sammut, C. and Webb, G. I.), Springer, Berlin, Germany, December 2010 (inbook)

**Comparative Quantitative Evaluation of MR-Based Attenuation Correction Methods in Combined Brain PET/MR**
2010(M08-4), 2010 Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC), November 2010 (talk)

**Statistical image analysis and percolation theory**
73rd Annual Meeting of the Institute of Mathematical Statistics (IMS), August 2010 (talk)

**Statistical image analysis and percolation theory**
28th European Meeting of Statisticians (EMS), August 2010 (talk)

**Cooperative Cuts: Graph Cuts with Submodular Edge Weights**
24th European Conference on Operational Research (EURO XXIV), July 2010 (talk)

**BCI and robotics framework for stroke rehabilitation**
4th International BCI Meeting, June 2010 (talk)

**Solving Large-Scale Nonnegative Least Squares**
16th Conference of the International Linear Algebra Society (ILAS), June 2010 (talk)

**Matrix Approximation Problems**
EU Regional School: Rheinisch-Westf{\"a}lische Technische Hochschule Aachen, May 2010 (talk)

**BCI2000 and Python**
Invited lecture at the 7th International BCI2000 Workshop, Pacific Grove, CA, USA, May 2010 (talk)

**Extending BCI2000 Functionality with Your Own C++ Code**
Invited lecture at the 7th International BCI2000 Workshop, Pacific Grove, CA, USA, May 2010 (talk)

**Machine-Learning Methods for Decoding Intentional Brain States**
Symposium "Non-Invasive Brain Computer Interfaces: Current Developments and Applications" (BIOMAG), March 2010 (talk)

**PAC-Bayesian Analysis in Unsupervised Learning**
Foundations and New Trends of PAC Bayesian Learning Workshop, March 2010 (talk)

**Learning Motor Primitives for Robotics**
EVENT Lab: Reinforcement Learning in Robotics and Virtual Reality, January 2010 (talk)

**Learning Continuous Grasp Affordances by Sensorimotor Exploration**
In *From Motor Learning to Interaction Learning in Robots*, pages: 451-465, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

**Imitation and Reinforcement Learning for Motor Primitives with Perceptual Coupling**
In *From Motor Learning to Interaction Learning in Robots*, pages: 209-225, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

**From Motor Learning to Interaction Learning in Robots**
In *From Motor Learning to Interaction Learning in Robots*, pages: 1-12, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

**Real-Time Local GP Model Learning**
In *From Motor Learning to Interaction Learning in Robots*, 264, pages: 193-207, Studies in Computational Intelligence, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

**Machine Learning Methods for Automatic Image Colorization**
In *Computational Photography: Methods and Applications*, pages: 395-418, Digital Imaging and Computer Vision, (Editors: Lukac, R.), CRC Press, Boca Raton, FL, USA, 2010 (inbook)

**Approaches Based on Support Vector Machine to Classification of Remote Sensing Data**
In *Handbook of Pattern Recognition and Computer Vision*, pages: 329-352, (Editors: Chen, C.H.), ICP, London, UK, 2010 (inbook)

**A Kernel Method for the Two-Sample-Problem**
20th Annual Conference on Neural Information Processing Systems (NIPS), December 2006 (talk)

**Ab-initio gene finding using machine learning**
NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

**Graph boosting for molecular QSAR analysis**
NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

**Inferring Causal Directions by Evaluating the Complexity of Conditional Distributions**
NIPS Workshop on Causality and Feature Selection, December 2006 (talk)

**Learning Optimal EEG Features Across Time, Frequency and Space**
NIPS Workshop on Current Trends in Brain-Computer Interfacing, December 2006 (talk)

**Semi-Supervised Learning**
Advanced Methods in Sequence Analysis Lectures, November 2006 (talk)

**Prediction of Protein Function from Networks**
In *Semi-Supervised Learning*, pages: 361-376, Adaptive Computation and Machine Learning, (Editors: Chapelle, O. , B. Schölkopf, A. Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

**Discrete Regularization**
In *Semi-supervised Learning*, pages: 237-250, Adaptive computation and machine learning, (Editors: O Chapelle and B Schölkopf and A Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

**A Machine Learning Approach for Determining the PET Attenuation Map from Magnetic Resonance Images**
IEEE Medical Imaging Conference, November 2006 (talk)

**Semi-Supervised Support Vector Machines and Application to Spam Filtering**
ECML Discovery Challenge Workshop, September 2006 (talk)

**Inferential Structure Determination: Probabilistic determination and validation of NMR structures**
Gordon Research Conference on Computational Aspects of Biomolecular
NMR, September 2006 (talk)

**Machine Learning Algorithms for Polymorphism Detection**
2nd ISCB Student Council Symposium, August 2006 (talk)

**Inferential structure determination: Overview and new developments**
Sixth CCPN Annual Conference: Efficient and Rapid Structure Determination by NMR, July 2006 (talk)

**MCMC inference in (Conditionally) Conjugate Dirichlet Process Gaussian Mixture Models**
ICML Workshop on Learning with Nonparametric Bayesian Methods, June 2006 (talk)

**Sampling for non-conjugate infinite latent feature models**
(Editors: Bernardo, J. M.), 8th Valencia International Meeting on Bayesian Statistics (ISBA), June 2006 (talk)

**An Inventory of Sequence Polymorphisms For Arabidopsis**
17th International Conference on Arabidopsis Research, April 2006 (talk)

**Combining a Filter Method with SVMs**
In *Feature Extraction: Foundations and Applications, Studies in Fuzziness and Soft Computing, Vol. 207*, pages: 439-446, Studies in Fuzziness and Soft Computing ; 207, (Editors: I Guyon and M Nikravesh and S Gunn and LA Zadeh), Springer, Berlin, Germany, 2006 (inbook)

**Embedded methods**
In *Feature Extraction: Foundations and Applications*, pages: 137-165, Studies in Fuzziness and Soft Computing ; 207, (Editors: Guyon, I. , S. Gunn, M. Nikravesh, L. A. Zadeh), Springer, Berlin, Germany, 2006 (inbook)

**NONLINEAR OPTICAL PROPERTIES OF CHIRAL LIQUIDS Electric-dipolar pseudoscalars in nonlinear optics**
In *NON-LINEAR OPTICAL PROPERTIES OF MATTER: FROM MOLECULES TO CONDENSED PHASES*, 1, pages: 359-381, Challenges and Advances in Computational Chemistry and Physics, 2006 (incollection)

**An Introduction to Kernel-Based Learning Algorithms**
In *Handbook of Neural Network Signal Processing*, 4, (Editors: Yu Hen Hu and Jang-Neng Hwang), CRC Press, 2000 (inbook)