Header logo is


2018


Gait learning for soft microrobots controlled by light fields
Gait learning for soft microrobots controlled by light fields

Rohr, A. V., Trimpe, S., Marco, A., Fischer, P., Palagi, S.

In International Conference on Intelligent Robots and Systems (IROS) 2018, pages: 6199-6206, International Conference on Intelligent Robots and Systems 2018, October 2018 (inproceedings)

Abstract
Soft microrobots based on photoresponsive materials and controlled by light fields can generate a variety of different gaits. This inherent flexibility can be exploited to maximize their locomotion performance in a given environment and used to adapt them to changing environments. However, because of the lack of accurate locomotion models, and given the intrinsic variability among microrobots, analytical control design is not possible. Common data-driven approaches, on the other hand, require running prohibitive numbers of experiments and lead to very sample-specific results. Here we propose a probabilistic learning approach for light-controlled soft microrobots based on Bayesian Optimization (BO) and Gaussian Processes (GPs). The proposed approach results in a learning scheme that is highly data-efficient, enabling gait optimization with a limited experimental budget, and robust against differences among microrobot samples. These features are obtained by designing the learning scheme through the comparison of different GP priors and BO settings on a semisynthetic data set. The developed learning scheme is validated in microrobot experiments, resulting in a 115% improvement in a microrobot’s locomotion performance with an experimental budget of only 20 tests. These encouraging results lead the way toward self-adaptive microrobotic systems based on lightcontrolled soft microrobots and probabilistic learning control.

ics pf

arXiv IEEE Xplore DOI Project Page [BibTex]

2018


arXiv IEEE Xplore DOI Project Page [BibTex]


no image
Direct Sparse Odometry With Rolling Shutter

Schubert, D., Usenko, V., Demmel, N., Stueckler, J., Cremers, D.

European Conference on Computer Vision (ECCV), September 2018, accepted as oral presentation (conference)

ev

[BibTex]

[BibTex]


no image
Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry

Yang, N., Wang, R., Stueckler, J., Cremers, D.

European Conference on Computer Vision (ECCV), September 2018, accepted as oral presentation, arXiv 1807.02570 (conference)

ev

link (url) [BibTex]

link (url) [BibTex]


A machine from machines
A machine from machines

Fischer, P.

Nature Physics, 14, pages: 1072–1073, July 2018 (misc)

Abstract
Building spinning microrotors that self-assemble and synchronize to form a gear sounds like an impossible feat. However, it has now been achieved using only a single type of building block -- a colloid that self-propels.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Soft Miniaturized Linear Actuators Wirelessly Powered by Rotating Permanent Magnets
Soft Miniaturized Linear Actuators Wirelessly Powered by Rotating Permanent Magnets

Qiu, T., Palagi, S., Sachs, J., Fischer, P.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 3595-3600, May 2018 (inproceedings)

Abstract
Wireless actuation by magnetic fields allows for the operation of untethered miniaturized devices, e.g. in biomedical applications. Nevertheless, generating large controlled forces over relatively large distances is challenging. Magnetic torques are easier to generate and control, but they are not always suitable for the tasks at hand. Moreover, strong magnetic fields are required to generate a sufficient torque, which are difficult to achieve with electromagnets. Here, we demonstrate a soft miniaturized actuator that transforms an externally applied magnetic torque into a controlled linear force. We report the design, fabrication and characterization of both the actuator and the magnetic field generator. We show that the magnet assembly, which is based on a set of rotating permanent magnets, can generate strong controlled oscillating fields over a relatively large workspace. The actuator, which is 3D-printed, can lift a load of more than 40 times its weight. Finally, we show that the actuator can be further miniaturized, paving the way towards strong, wirelessly powered microactuators.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
The TUM VI Benchmark for Evaluating Visual-Inertial Odometry

Schubert, D., Goll, T., Demmel, N., Usenko, V., Stueckler, J., Cremers, D.

In IEEE International Conference on Intelligent Robots and Systems (IROS), 2018, arXiv:1804.06120 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Variational Network Quantization

Achterhold, J., Koehler, J. M., Schmeink, A., Genewein, T.

In International Conference on Learning Representations , 2018 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Light field intrinsics with a deep encoder-decoder network

Alperovich, A., Johannsen, O., Strecke, M., Goldluecke, B.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Sublabel-accurate convex relaxation with total generalized variation regularization

(DAGM Best Master's Thesis Award)

Strecke, M., Goldluecke, B.

In German Conference on Pattern Recognition (Proc. GCPR), 2018 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]

2013


no image
Efficient Dense 3D Rigid-Body Motion Segmentation in RGB-D Video

Stueckler, J., Behnke, S.

In Proc. of the British Machine Vision Conference (BMVC), 2013 (inproceedings)

ev

link (url) [BibTex]

2013


link (url) [BibTex]


no image
Mobile bin picking with an anthropomorphic service robot

Nieuwenhuisen, M., Droeschel, D., Holz, D., Stueckler, J., Berner, A., Li, J., Klein, R., Behnke, S.

In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), pages: 2327-2334, May 2013 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Multi-resolution surfel mapping and real-time pose tracking using a continuously rotating 2D laser scanner

Schadler, M., Stueckler, J., Behnke, S.

In Proc. of the IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages: 1-6, October 2013 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Joint detection and pose tracking of multi-resolution surfel models in RGB-D

McElhone, M., Stueckler, J., Behnke, S.

In Proc. of the European Conference on Mobile Robots (ECMR), pages: 131-137, IEEE, 2013 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Distinctive 3D surface entropy features for place recognition.

Fiolka, T., Stueckler, J., Klein, D. A., Schulz, D., Behnke, S.

In Proc. of the European Conference on Mobile Robots (ECMR), pages: 204-209, IEEE, 2013 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Combining contour and shape primitives for object detection and pose estimation of prefabricated parts

Berner, A., Li, J., Holz, D., Stueckler, J., Behnke, S., Klein, R.

In Proc. of the 20th IEEE International Conference on Image Processing (ICIP), pages: 3326-3330, sep 2013 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Hierarchical Object Discovery and Dense Modelling From Motion Cues in RGB-D Video

Stueckler, J., Behnke, S.

In Proc. of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), IJCAI/AAAI, 2013 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]

2008


no image
In-lane Localization in Road Networks using Curbs Detected in Omnidirectional Height Images

Stueckler, J., Schulz, H., Behnke, S.

In Proceedings of Robotik 2008, 2008 (inproceedings)

ev

link (url) [BibTex]

2008


link (url) [BibTex]


no image
Orthogonal wall correction for visual motion estimation

Stueckler, J., Behnke, S.

In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 1-6, May 2008 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2006


no image
See, walk, and kick: Humanoid robots start to play soccer

Behnke, S., Schreiber, M., Stueckler, J., Renner, R., Strasdat, H.

In Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), pages: 497-503, December 2006 (inproceedings)

ev

link (url) DOI [BibTex]

2006


link (url) DOI [BibTex]