ei ps pn
ei
ps
pn
Hennig, P., Kiefel, M.
Quasi-Newton Methods: A New Direction
In Proceedings of the 29th International Conference on Machine Learning, pages: 25-32, ICML ’12, (Editors: John Langford and Joelle Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)
Bócsi, B., Hennig, P., Csató, L., Peters, J.
In pages: 259 -264, IEEE International Conference on Robotics and Automation (ICRA), May 2012 (inproceedings)
ei pn
ei
pn
Bócsi, B., Hennig, P., Csató, L., Peters, J.
Learning Tracking Control with Forward Models
In pages: 259 -264, IEEE International Conference on Robotics and Automation (ICRA), May 2012 (inproceedings)
Cunningham, J., Hennig, P., Lacoste-Julien, S.
In pages: 1-11, -, January 2012 (inproceedings) Submitted
ei pn
ei
pn
Cunningham, J., Hennig, P., Lacoste-Julien, S.
Approximate Gaussian Integration using Expectation Propagation
In pages: 1-11, -, January 2012 (inproceedings) Submitted
Hennig, P., Stern, D., Herbrich, R., Graepel, T.
In Fifteenth International Conference on Artificial Intelligence and Statistics, 22, pages: 511-519, JMLR Proceedings, (Editors: Lawrence, N. D. and Girolami, M.), JMLR.org, AISTATS , 2012 (inproceedings)
ei pn
ei
pn
Hennig, P., Stern, D., Herbrich, R., Graepel, T.
Kernel Topic Models
In Fifteenth International Conference on Artificial Intelligence and Statistics, 22, pages: 511-519, JMLR Proceedings, (Editors: Lawrence, N. D. and Girolami, M.), JMLR.org, AISTATS , 2012 (inproceedings)
Our goal is to understand the principles of Perception, Action and Learning in autonomous systems that successfully interact with complex environments and to use this understanding to design future systems
For website questions and technical problems please contact:
© 2019 Max-Planck-Gesellschaft - Imprint | Privacy Policy