Header logo is


2019


Soft-magnetic coatings as possible sensors for magnetic imaging of superconductors
Soft-magnetic coatings as possible sensors for magnetic imaging of superconductors

Ionescu, A., Simmendinger, J., Bihler, M., Miksch, C., Fischer, P., Soltan, S., Schütz, G., Albrecht, J.

Supercond. Sci. and Tech., 33, pages: 015002, IOP, December 2019 (article)

Abstract
Magnetic imaging of superconductors typically requires a soft-magnetic material placed on top of the superconductor to probe local magnetic fields. For reasonable results the influence of the magnet onto the superconductor has to be small. Thin YBCO films with soft-magnetic coatings are investigated using SQUID magnetometry. Detailed measurements of the magnetic moment as a function of temperature, magnetic field and time have been performed for different heterostructures. It is found that the modification of the superconducting transport in these heterostructures strongly depends on the magnetic and structural properties of the soft-magnetic material. This effect is especially pronounced for an inhomogeneous coating consisting of ferromagnetic nanoparticles.

pf mms

link (url) DOI [BibTex]

2019


link (url) DOI [BibTex]


HPLC of monolayer-protected Gold clusters with baseline separation
HPLC of monolayer-protected Gold clusters with baseline separation

Knoppe, S., Vogt, P.

Analytical Chemistry, 91, pages: 1603, December 2019 (article)

Abstract
The properties of ultrasmall metal nanoparticles (ca. 10–200 metal atoms), or monolayer-protected metal clusters (MPCs), drastically depend on their atomic structure. For systematic characterization and application, assessment of their purity is of high importance. Currently, the gold standard for purity control of MPCs is mass spectrometry (MS). Mass spectrometry, however, cannot always detect small impurities; MS of certain clusters, for example, ESI-TOF of Au40(SR)24, is not successful at all. We here present a simple reversed-phase HPLC method for purity control of a series of small alkanethiolate-protected gold clusters. The method allows the detection of small impurities with high sensitivity. Linear correlation between alkyl chain length of Au25(SC_n H_(2n+1))18 clusters (n = 6, 8, 10, 12) and their retention time was noticed.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Life Improvement Science: A Manifesto
Life Improvement Science: A Manifesto

Lieder, F.

December 2019 (article) In revision

Abstract
Rapid technological advances present unprecedented opportunities for helping people thrive. This manifesto presents a road map for establishing a solid scientific foundation upon which those opportunities can be realized. It highlights fundamental open questions about the cognitive underpinnings of effective living and how they can be improved, supported, and augmented. These questions are at the core of my proposal for a new transdisciplinary research area called life improvement science. Recent advances have made these questions amenable to scientific rigor, and emerging approaches are paving the way towards practical strategies, clever interventions, and (intelligent) apps for empowering people to reach unprecedented levels of personal effectiveness and wellbeing.

re

Life improvement science: a manifesto DOI [BibTex]


Acoustic hologram enhanced phased arrays for ultrasonic particle manipulation
Acoustic hologram enhanced phased arrays for ultrasonic particle manipulation

Cox, L., Melde, K., Croxford, A., Fischer, P., Drinkwater, B.

Phys. Rev. Applied, 12, pages: 064055, November 2019 (article)

Abstract
The ability to shape ultrasound fields is important for particle manipulation, medical therapeutics and imaging applications. If the amplitude and/or phase is spatially varied across the wavefront then it is possible to project ‘acoustic images’. When attempting to form an arbitrary desired static sound field, acoustic holograms are superior to phased arrays due to their significantly higher phase fidelity. However, they lack the dynamic flexibility of phased arrays. Here, we demonstrate how to combine the high-fidelity advantages of acoustic holograms with the dynamic control of phased arrays in the ultrasonic frequency range. Holograms are used with a 64-element phased array, driven with continuous excitation. Moving the position of the projected hologram via phase delays which steer the output beam is demonstrated experimentally. This allows the creation of a much more tightly focused point than with the phased array alone, whilst still being reconfigurable. It also allows the complex movement at a water-air interface of a “phase surfer” along a phase track or the manipulation of a more arbitrarily shaped particle via amplitude traps. Furthermore, a particle manipulation device with two emitters and a single split hologram is demonstrated that allows the positioning of a “phase surfer” along a 1D axis. This paper opens the door for new applications with complex manipulation of ultrasound whilst minimising the complexity and cost of the apparatus.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


A Helical Microrobot with an Optimized Propeller-Shape for Propulsion in Viscoelastic Biological Media
A Helical Microrobot with an Optimized Propeller-Shape for Propulsion in Viscoelastic Biological Media

Li., D., Jeong, M., Oren, E., Yu, T., Qiu, T.

Robotics, 8, pages: 87, MDPI, October 2019 (article)

Abstract
One major challenge for microrobots is to penetrate and effectively move through viscoelastic biological tissues. Most existing microrobots can only propel in viscous liquids. Recent advances demonstrate that sub-micron robots can actively penetrate nanoporous biological tissue, such as the vitreous of the eye. However, it is still difficult to propel a micron-sized device through dense biological tissue. Here, we report that a special twisted helical shape together with a high aspect ratio in cross-section permit a microrobot with a diameter of hundreds-of-micrometers to move through mouse liver tissue. The helical microrobot is driven by a rotating magnetic field and localized by ultrasound imaging inside the tissue. The twisted ribbon is made of molybdenum and a sharp tip is chemically etched to generate a higher pressure at the edge of the propeller to break the biopolymeric network of the dense tissue.

pf

link (url) DOI [BibTex]


Acoustic Holographic Cell Patterning in a Biocompatible Hydrogel
Acoustic Holographic Cell Patterning in a Biocompatible Hydrogel

Ma, Z., Holle, A., Melde, K., Qiu, T., Poeppel, K., Kadiri, V., Fischer, P.

Adv. Mat., 32(1904181), October 2019 (article)

Abstract
Acoustophoresis is promising as a rapid, biocompatible, non-contact cell manipulation method, where cells are arranged along the nodes or antinodes of the acoustic field. Typically, the acoustic field is formed in a resonator, which results in highly symmetric regular patterns. However, arbitrary, non-symmetrically shaped cell assemblies are necessary to obtain the irregular cellular arrangements found in biological tissues. We show that arbitrarily shaped cell patterns can be obtained from the complex acoustic field distribution defined by an acoustic hologram. Attenuation of the sound field induces localized acoustic streaming and the resultant convection flow gently delivers the suspended cells to the image plane where they form the designed pattern. We show that the process can be implemented in a biocompatible collagen solution, which can then undergo gelation to immobilize the cell pattern inside the viscoelastic matrix. The patterned cells exhibit F-actin-based protrusions, which indicates that the cells grow and thrive within the matrix. Cell viability assays and brightfield imaging after one week confirm cell survival and that the patterns persist. Acoustophoretic cell manipulation by holographic fields thus holds promise for non-contact, long-range, long-term cellular pattern formation, with a wide variety of potential applications in tissue engineering and mechanobiology.

pf

link (url) DOI [BibTex]


no image
Doing More with Less: Meta-Reasoning and Meta-Learning in Humans and Machines

Griffiths, T. L., Callaway, F., Chang, M. B., Grant, E., Krueger, P. M., Lieder, F.

Current Opinion in Behavioral Sciences, 29, pages: 24-30, October 2019 (article)

Abstract
Artificial intelligence systems use an increasing amount of computation and data to solve very specific problems. By contrast, human minds solve a wide range of problems using a fixed amount of computation and limited experience. We identify two abilities that we see as crucial to this kind of general intelligence: meta-reasoning (deciding how to allocate computational resources) and meta-learning (modeling the learning environment to make better use of limited data). We summarize the relevant AI literature and relate the resulting ideas to recent work in psychology.

re

DOI [BibTex]

DOI [BibTex]


Arrays of plasmonic nanoparticle dimers with defined nanogap spacers
Arrays of plasmonic nanoparticle dimers with defined nanogap spacers

Jeong, H., Adams, M. C., Guenther, J., Alarcon-Correa, M., Kim, I., Choi, E., Miksch, C., Mark, A. F. M., Mark, A. G., Fischer, P.

ACS Nano, 13, pages: 11453-11459, September 2019 (article)

Abstract
Plasmonic molecules are building blocks of metallic nanostructures that give rise to intriguing optical phenomena with similarities to those seen in molecular systems. The ability to design plasmonic hybrid structures and molecules with nanometric resolution would enable applications in optical metamaterials and sensing that presently cannot be demonstrated, because of a lack of suitable fabrication methods allowing the structural control of the plasmonic atoms on a large scale. Here we demonstrate a wafer-scale “lithography-free” parallel fabrication scheme to realize nanogap plasmonic meta-molecules with precise control over their size, shape, material, and orientation. We demonstrate how we can tune the corresponding coupled resonances through the entire visible spectrum. Our fabrication method, based on glancing angle physical vapor deposition with gradient shadowing, permits critical parameters to be varied across the wafer and thus is ideally suited to screen potential structures. We obtain billions of aligned dimer structures with controlled variation of the spectral properties across the wafer. We spectroscopically map the plasmonic resonances of gold dimer structures and show that they not only are in good agreement with numerically modeled spectra, but also remain functional, at least for a year, in ambient conditions.

pf

link (url) DOI [BibTex]


How do people learn how to plan?
How do people learn how to plan?

Jain, Y. R., Gupta, S., Rakesh, V., Dayan, P., Callaway, F., Lieder, F.

Conference on Cognitive Computational Neuroscience, September 2019 (conference)

Abstract
How does the brain learn how to plan? We reverse-engineer people's underlying learning mechanisms by combining rational process models of cognitive plasticity with recently developed empirical methods that allow us to trace the temporal evolution of people's planning strategies. We find that our Learned Value of Computation model (LVOC) accurately captures people's average learning curve. However, there were also substantial individual differences in metacognitive learning that are best understood in terms of multiple different learning mechanisms-including strategy selection learning. Furthermore, we observed that LVOC could not fully capture people's ability to adaptively decide when to stop planning. We successfully extended the LVOC model to address these discrepancies. Our models broadly capture people's ability to improve their decision mechanisms and represent a significant step towards reverse-engineering how the brain learns increasingly effective cognitive strategies through its interaction with the environment.

re

How do people learn to plan? How do people learn to plan? [BibTex]

How do people learn to plan? How do people learn to plan? [BibTex]


no image
Testing Computational Models of Goal Pursuit

Mohnert, F., Tosic, M., Lieder, F.

CCN2019, September 2019 (conference)

Abstract
Goals are essential to human cognition and behavior. But how do we pursue them? To address this question, we model how capacity limits on planning and attention shape the computational mechanisms of human goal pursuit. We test the predictions of a simple model based on previous theories in a behavioral experiment. The results show that to fully capture how people pursue their goals it is critical to account for people’s limited attention in addition to their limited planning. Our findings elucidate the cognitive constraints that shape human goal pursuit and point to an improved model of human goal pursuit that can reliably predict which goals a person will achieve and which goals they will struggle to pursue effectively.

re

link (url) DOI Project Page [BibTex]


Genetically modified M13 bacteriophage nanonets for enzyme catalysis and recovery
Genetically modified M13 bacteriophage nanonets for enzyme catalysis and recovery

Kadiri, V. M., Alarcon-Correa, M., Guenther, J. P., Ruppert, J., Bill, J., Rothenstein, D., Fischer, P.

Catalysts, 9, pages: 723, August 2019 (article)

Abstract
Enzyme-based biocatalysis exhibits multiple advantages over inorganic catalysts, including the biocompatibility and the unchallenged specificity of enzymes towards their substrate. The recovery and repeated use of enzymes is essential for any realistic application in biotechnology, but is not easily achieved with current strategies. For this purpose, enzymes are often immobilized on inorganic scaffolds, which could entail a reduction of the enzymes’ activity. Here, we show that immobilization to a nano-scaled biological scaffold, a nanonetwork of end-to-end cross-linked M13 bacteriophages, ensures high enzymatic activity and at the same time allows for the simple recovery of the enzymes. The bacteriophages have been genetically engineered to express AviTags at their ends, which permit biotinylation and their specific end-to-end self-assembly while allowing space on the major coat protein for enzyme coupling. We demonstrate that the phages form nanonetwork structures and that these so-called nanonets remain highly active even after re-using the nanonets multiple times in a flow-through reactor.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Light-controlled micromotors and soft microrobots
Light-controlled micromotors and soft microrobots

Palagi, S., Singh, D. P., Fischer, P.

Adv. Opt. Mat., 7, pages: 1900370, August 2019 (article)

Abstract
Mobile microscale devices and microrobots can be powered by catalytic reactions (chemical micromotors) or by external fields. This report is focused on the role of light as a versatile means for wirelessly powering and controlling such microdevices. Recent advances in the development of autonomous micromotors are discussed, where light permits their actuation with unprecedented control and thereby enables advances in the field of active matter. In addition, structuring the light field is a new means to drive soft microrobots that are based on (photo‐) responsive polymers. The behavior of the two main classes of thermo‐ and photoresponsive polymers adopted in microrobotics (poly(N‐isopropylacrylamide) and liquid‐crystal elastomers) is analyzed, and recent applications are reported. The advantages and limitations of controlling micromotors and microrobots by light are reviewed, and some of the remaining challenges in the development of novel photo‐active materials for micromotors and microrobots are discussed.

pf

link (url) DOI [BibTex]


Cognitive Prostheses for Goal Achievement
Cognitive Prostheses for Goal Achievement

Lieder, F., Chen, O. X., Krueger, P. M., Griffiths, T. L.

Nature Human Behavior, 3, August 2019 (article)

Abstract
Procrastination and impulsivity take a significant toll on people’s lives and the economy at large. Both can result from the misalignment of an action's proximal rewards with its long-term value. Therefore, aligning immediate reward with long-term value could be a way to help people overcome motivational barriers and make better decisions. Previous research has shown that game elements, such as points, levels, and badges, can be used to motivate people and nudge their decisions on serious matters. Here, we develop a new approach to decision support that leveragesartificial intelligence and game elements to restructure challenging sequential decision problems in such a way that it becomes easier for people to take the right course of action. A series of four increasingly more realistic experiments suggests that this approach can enable people to make better decisions faster, procrastinate less, complete their work on time, and waste less time on unimportant tasks. These findings suggest that our method is a promising step towards developing cognitive prostheses that help people achieve their goals by enhancing their motivation and decision-making in everyday life.

re

DOI [BibTex]

DOI [BibTex]


Soft Continuous Surface for Micromanipulation driven by Light-controlled Hydrogels
Soft Continuous Surface for Micromanipulation driven by Light-controlled Hydrogels

Choi, E., Jeong, H., Qiu, T., Fischer, P., Palagi, S.

4th IEEE International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), July 2019 (conference)

Abstract
Remotely controlled, automated actuation and manipulation at the microscale is essential for a number of micro-manufacturing, biology, and lab-on-a-chip applications. To transport and manipulate micro-objects, arrays of remotely controlled micro-actuators are required, which, in turn, typically require complex and expensive solid-state chips. Here, we show that a continuous surface can function as a highly parallel, many-degree of freedom, wirelessly-controlled microactuator with seamless deformation. The soft continuous surface is based on a hydrogel that undergoes a volume change in response to applied light. The fabrication of the hydrogels and the characterization of their optical and thermomechanical behaviors are reported. The temperature-dependent localized deformation of the hydrogel is also investigated by numerical simulations. Static and dynamic deformations are obtained in the soft material by projecting light fields at high spatial resolution onto the surface. By controlling such deformations in open loop and especially closed loop, automated photoactuation is achieved. The surface deformations are then exploited to examine how inert microbeads can be manipulated autonomously on the surface. We believe that the proposed approach suggests ways to implement universal 2D micromanipulation schemes that can be useful for automation in microfabrication and lab-on-a-chip applications.

pf

[BibTex]

[BibTex]


no image
Measuring How People Learn How to Plan

Jain, Y. R., Callaway, F., Lieder, F.

Proceedings 41st Annual Meeting of the Cognitive Science Society, pages: 1956-1962, CogSci2019, 41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)

Abstract
The human mind has an unparalleled ability to acquire complex cognitive skills, discover new strategies, and refine its ways of thinking and decision-making; these phenomena are collectively known as cognitive plasticity. One important manifestation of cognitive plasticity is learning to make better–more far-sighted–decisions via planning. A serious obstacle to studying how people learn how to plan is that cognitive plasticity is even more difficult to observe than cognitive strategies are. To address this problem, we develop a computational microscope for measuring cognitive plasticity and validate it on simulated and empirical data. Our approach employs a process tracing paradigm recording signatures of human planning and how they change over time. We then invert a generative model of the recorded changes to infer the underlying cognitive plasticity. Our computational microscope measures cognitive plasticity significantly more accurately than simpler approaches, and it correctly detected the effect of an external manipulation known to promote cognitive plasticity. We illustrate how computational microscopes can be used to gain new insights into the time course of metacognitive learning and to test theories of cognitive development and hypotheses about the nature of cognitive plasticity. Future work will leverage our computational microscope to reverse-engineer the learning mechanisms enabling people to acquire complex cognitive skills such as planning and problem solving.

re

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Soft Phantom for the Training of Renal Calculi Diagnostics and  Lithotripsy
Soft Phantom for the Training of Renal Calculi Diagnostics and Lithotripsy

Li., D., Suarez-Ibarrola, R., Choi, E., Jeong, M., Gratzke, C., Miernik, A., Fischer, P., Qiu, T.

41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), July 2019 (conference)

Abstract
Organ models are important for medical training and surgical planning. With the fast development of additive fabrication technologies, including 3D printing, the fabrication of 3D organ phantoms with precise anatomical features becomes possible. Here, we develop the first high-resolution kidney phantom based on soft material assembly, by combining 3D printing and polymer molding techniques. The phantom exhibits both the detailed anatomy of a human kidney and the elasticity of soft tissues. The phantom assembly can be separated into two parts on the coronal plane, thus large renal calculi are readily placed at any desired location of the calyx. With our sealing method, the assembled phantom withstands a hydraulic pressure that is four times the normal intrarenal pressure, thus it allows the simulation of medical procedures under realistic pressure conditions. The medical diagnostics of the renal calculi is performed by multiple imaging modalities, including X-ray, ultrasound imaging and endoscopy. The endoscopic lithotripsy is also successfully performed on the phantom. The use of a multifunctional soft phantom assembly thus shows great promise for the simulation of minimally invasive medical procedures under realistic conditions.

pf

[BibTex]

[BibTex]


Superior Magnetic Performance in FePt L1_0 Nanomaterials
Superior Magnetic Performance in FePt L1_0 Nanomaterials

Son, K., Ryu, G. H., Jeong, H., Fink, L., Merz, M., Nagel, P., Schuppler, S., Richter, G., Goering, E., Schütz, G.

Small, 15(1902353), July 2019 (article)

Abstract
The discovery of the high maximum energy product of 59 MGOe for NdFeB magnets is a breakthrough in the development of permanent magnets with a tremendous impact in many fields of technology. This value is still the world record, for 40 years. This work reports on a reliable and robust route to realize nearly perfectly ordered L1_0-phase FePt nanoparticles, leading to an unprecedented energy product of 80 MGOe at room temperature. Furthermore, with a 3 nm Au coverage, the magnetic polarization of these nanomagnets can be enhanced by 25% exceeding 1.8 T. This exceptional magnetization and anisotropy is confirmed by using multiple imaging and spectroscopic methods, which reveal highly consistent results. Due to the unprecedented huge energy product, this material can be envisaged as a new advanced basic magnetic component in modern micro and nanosized devices.

pf mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


A Magnetic Actuation System for the  Active Microrheology in Soft Biomaterials
A Magnetic Actuation System for the Active Microrheology in Soft Biomaterials

Jeong, M., Choi, E., Li., D., Palagi, S., Fischer, P., Qiu, T.

4th IEEE International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), July 2019 (conference)

Abstract
Microrheology is a key technique to characterize soft materials at small scales. The microprobe is wirelessly actuated and therefore typically only low forces or torques can be applied, which limits the range of the applied strain. Here, we report a new magnetic actuation system for microrheology consisting of an array of rotating permanent magnets, which achieves a rotating magnetic field with a spatially homogeneous high field strength of ~100 mT in a working volume of ~20×20×20 mm3. Compared to a traditional electromagnetic coil system, the permanent magnet assembly is portable and does not require cooling, and it exerts a large magnetic torque on the microprobe that is an order of magnitude higher than previous setups. Experimental results demonstrate that the measurement range of the soft gels’ elasticity covers at least five orders of magnitude. With the large actuation torque, it is also possible to study the fracture mechanics of soft biomaterials at small scales.

pf

[BibTex]

[BibTex]


no image
Extending Rationality

Pothos, E. M., Busemeyer, J. R., Pleskac, T., Yearsley, J. M., Tenenbaum, J. B., Goodman, N. D., Tessler, M. H., Griffiths, T. L., Lieder, F., Hertwig, R., Pachur, T., Leuker, C., Shiffrin, R. M.

Proceedings of the 41st Annual Conference of the Cognitive Science Society, pages: 39-40, CogSci 2019, July 2019 (conference)

re

Proceedings of the 41st Annual Conference of the Cognitive Science Society [BibTex]

Proceedings of the 41st Annual Conference of the Cognitive Science Society [BibTex]


How should we incentivize learning? An optimal feedback mechanism for educational games and online courses
How should we incentivize learning? An optimal feedback mechanism for educational games and online courses

Xu, L., Wirzberger, M., Lieder, F.

41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)

Abstract
Online courses offer much-needed opportunities for lifelong self-directed learning, but people rarely follow through on their noble intentions to complete them. To increase student retention educational software often uses game elements to motivate students to engage in and persist in learning activities. However, gamification only works when it is done properly, and there is currently no principled method that educational software could use to achieve this. We develop a principled feedback mechanism for encouraging good study choices and persistence in self-directed learning environments. Rather than giving performance feedback, our method rewards the learner's efforts with optimal brain points that convey the value of practice. To derive these optimal brain points, we applied the theory of optimal gamification to a mathematical model of skill acquisition. In contrast to hand-designed incentive structures, optimal brain points are constructed in such a way that the incentive system cannot be gamed. Evaluating our method in a behavioral experiment, we find that optimal brain points significantly increased the proportion of participants who instead of exploiting an inefficient skill they already knew-attempted to learn a difficult but more efficient skill, persisted through failure, and succeeded to master the new skill. Our method provides a principled approach to designing incentive structures and feedback mechanisms for educational games and online courses. We are optimistic that optimal brain points will prove useful for increasing student retention and helping people overcome the motivational obstacles that stand in the way of self-directed lifelong learning.

re

link (url) Project Page [BibTex]


no image
What’s in the Adaptive Toolbox and How Do People Choose From It? Rational Models of Strategy Selection in Risky Choice

Mohnert, F., Pachur, T., Lieder, F.

41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)

Abstract
Although process data indicates that people often rely on various (often heuristic) strategies to choose between risky options, our models of heuristics cannot predict people's choices very accurately. To address this challenge, it has been proposed that people adaptively choose from a toolbox of simple strategies. But which strategies are contained in this toolbox? And how do people decide when to use which decision strategy? Here, we develop a model according to which each person selects decisions strategies rationally from their personal toolbox; our model allows one to infer which strategies are contained in the cognitive toolbox of an individual decision-maker and specifies when she will use which strategy. Using cross-validation on an empirical data set, we find that this rational model of strategy selection from a personal adaptive toolbox predicts people's choices better than any single strategy (even when it is allowed to vary across participants) and better than previously proposed toolbox models. Our model comparisons show that both inferring the toolbox and rational strategy selection are critical for accurately predicting people's risky choices. Furthermore, our model-based data analysis reveals considerable individual differences in the set of strategies people are equipped with and how they choose among them; these individual differences could partly explain why some people make better choices than others. These findings represent an important step towards a complete formalization of the notion that people select their cognitive strategies from a personal adaptive toolbox.

re

link (url) [BibTex]


no image
Measuring How People Learn How to Plan

Jain, Y. R., Callaway, F., Lieder, F.

pages: 357-361, RLDM 2019, July 2019 (conference)

Abstract
The human mind has an unparalleled ability to acquire complex cognitive skills, discover new strategies, and refine its ways of thinking and decision-making; these phenomena are collectively known as cognitive plasticity. One important manifestation of cognitive plasticity is learning to make better – more far-sighted – decisions via planning. A serious obstacle to studying how people learn how to plan is that cognitive plasticity is even more difficult to observe than cognitive strategies are. To address this problem, we develop a computational microscope for measuring cognitive plasticity and validate it on simulated and empirical data. Our approach employs a process tracing paradigm recording signatures of human planning and how they change over time. We then invert a generative model of the recorded changes to infer the underlying cognitive plasticity. Our computational microscope measures cognitive plasticity significantly more accurately than simpler approaches, and it correctly detected the effect of an external manipulation known to promote cognitive plasticity. We illustrate how computational microscopes can be used to gain new insights into the time course of metacognitive learning and to test theories of cognitive development and hypotheses about the nature of cognitive plasticity. Future work will leverage our computational microscope to reverse-engineer the learning mechanisms enabling people to acquire complex cognitive skills such as planning and problem solving.

re

link (url) [BibTex]

link (url) [BibTex]


no image
A Cognitive Tutor for Helping People Overcome Present Bias

Lieder, F., Callaway, F., Jain, Y. R., Krueger, P. M., Das, P., Gul, S., Griffiths, T. L.

RLDM 2019, July 2019, Falk Lieder and Frederick Callaway contributed equally to this publication. (conference)

Abstract
People's reliance on suboptimal heuristics gives rise to a plethora of cognitive biases in decision-making including the present bias, which denotes people's tendency to be overly swayed by an action's immediate costs/benefits rather than its more important long-term consequences. One approach to helping people overcome such biases is to teach them better decision strategies. But which strategies should we teach them? And how can we teach them effectively? Here, we leverage an automatic method for discovering rational heuristics and insights into how people acquire cognitive skills to develop an intelligent tutor that teaches people how to make better decisions. As a proof of concept, we derive the optimal planning strategy for a simple model of situations where people fall prey to the present bias. Our cognitive tutor teaches people this optimal planning strategy by giving them metacognitive feedback on how they plan in a 3-step sequential decision-making task. Our tutor's feedback is designed to maximally accelerate people's metacognitive reinforcement learning towards the optimal planning strategy. A series of four experiments confirmed that training with the cognitive tutor significantly reduced present bias and improved people's decision-making competency: Experiment 1 demonstrated that the cognitive tutor's feedback can help participants discover far-sighted planning strategies. Experiment 2 found that this training effect transfers to more complex environments. Experiment 3 found that these transfer effects are retained for at least 24 hours after the training. Finally, Experiment 4 found that practicing with the cognitive tutor can have additional benefits over being told the strategy in words. The results suggest that promoting metacognitive reinforcement learning with optimal feedback is a promising approach to improving the human mind.

re

DOI [BibTex]

DOI [BibTex]


no image
Introducing the Decision Advisor: A simple online tool that helps people overcome cognitive biases and experience less regret in real-life decisions

lawama, G., Greenberg, S., Moore, D., Lieder, F.

40th Annual Meeting of the Society for Judgement and Decision Making, June 2019 (conference)

Abstract
Cognitive biases shape many decisions people come to regret. To help people overcome these biases, Clear-erThinking.org developed a free online tool, called the Decision Advisor (https://programs.clearerthinking.org/decisionmaker.html). The Decision Advisor assists people in big real-life decisions by prompting them to generate more alternatives, guiding them to evaluate their alternatives according to principles of decision analysis, and educates them about pertinent biases while they are making their decision. In a within-subjects experiment, 99 participants reported significantly fewer biases and less regret for a decision supported by the Decision Advisor than for a previous unassisted decision.

re

DOI [BibTex]

DOI [BibTex]


no image
The Goal Characteristics (GC) questionannaire: A comprehensive measure for goals’ content, attainability, interestingness, and usefulness

Iwama, G., Wirzberger, M., Lieder, F.

40th Annual Meeting of the Society for Judgement and Decision Making, June 2019 (conference)

Abstract
Many studies have investigated how goal characteristics affect goal achievement. However, most of them considered only a small number of characteristics and the psychometric properties of their measures remains unclear. To overcome these limitations, we developed and validated a comprehensive questionnaire of goal characteristics with four subscales - measuring the goal’s content, attainability, interestingness, and usefulness respectively. 590 participants completed the questionnaire online. A confirmatory factor analysis supported the four subscales and their structure. The GC questionnaire (https://osf.io/qfhup) can be easily applied to investigate goal setting, pursuit and adjustment in a wide range of contexts.

re

DOI [BibTex]


The acoustic hologram and particle manipulation with structured acoustic fields
The acoustic hologram and particle manipulation with structured acoustic fields

Melde, K.

Karlsruher Institut für Technologie (KIT), May 2019 (phdthesis)

Abstract
This thesis presents holograms as a novel approach to create arbitrary ultrasound fields. It is shown how any wavefront can simply be encoded in the thickness profile of a phase plate. Contemporary 3D-printers enable fabrication of structured surfaces with feature sizes corresponding to wavelengths of ultrasound up to 7.5 MHz in water—covering the majority of medical and industrial applications. The whole workflow for designing and creating acoustic holograms has been developed and is presented in this thesis. To reconstruct the encoded fields a single transducer element is sufficient. Arbitrary fields are demonstrated in transmission and reflection configurations in water and air and validated by extensive hydrophone scans. To complement these time-consuming measurements a new approach, based on thermography, is presented, which enables volumetric sound field scans in just a few seconds. Several original experiments demonstrate the advantages of using acoustic holograms for particle manipulation. Most notably, directed parallel assembly of microparticles in the shape of a projected acoustic image has been shown and extended to a fabrication method by fusing the particles in a polymerization reaction. Further, seemingly dynamic propulsion from a static hologram is demonstrated by controlling the phase gradient along a projected track. The necessary complexity to create ultrasound fields with set amplitude and phase distributions is easily managed using acoustic holograms. The acoustic hologram is a simple and cost-effective tool for shaping ultrasound fields with high-fidelity. It is expected to have an impact in many applications where ultrasound is employed.

pf

link (url) DOI [BibTex]


Recent advances in gold nanoparticles forbiomedical applications: from hybrid structuresto multi-functionality
Recent advances in gold nanoparticles forbiomedical applications: from hybrid structuresto multi-functionality

Jeong, H., Choi, E., Ellis, E., Lee, T.

J. of Mat. Chem. B, 7, pages: 3480, May 2019 (article)

Abstract
Gold nanoparticles (Au NPs) are arguably the most versatile nanomaterials reported to date. Recentadvances in nanofabrication and chemical synthesis have expanded the scope of Au NPs from classicalhomogeneous nanospheres to a wide range of hybrid nanostructures with programmable size, shapeand composition. Novel physiochemical properties can be achievedviadesign and engineering of thehybrid nanostructures. In this review we discuss the recent progress in the development of complexhybrid Au NPs and propose a classification framework based on three fundamental structuraldimensions (length scale, complexity and symmetry) to aid categorising, comparing and designingvarious types of Au NPs. Their novel functions and potential for biomedical applications will also bediscussed, featuring point-of-care diagnostics by advanced optical spectroscopy and assays, as well asminimally invasive surgeries and targeted drug delivery using multifunctional nano-robot

pf

link (url) DOI [BibTex]


Self-Assembled Phage-Based Colloids for High Localized Enzymatic Activity
Self-Assembled Phage-Based Colloids for High Localized Enzymatic Activity

Alarcon-Correa, M., Guenther, J., Troll, J., Kadiri, V. M., Bill, J., Fischer, P., Rothenstein, D.

ACS Nano, 13, pages: 5810–5815, March 2019 (article)

Abstract
Catalytically active colloids are model systems for chemical motors and active matter. It is desirable to replace the inorganic catalysts and the toxic fuels that are often used, with biocompatible enzymatic reactions. However, compared to inorganic catalysts, enzyme-coated colloids tend to exhibit less activity. Here, we show that the self-assembly of genetically engineered M13 bacteriophages that bind enzymes to magnetic beads ensures high and localized enzymatic activity. These phage-decorated colloids provide a proteinaceous environment for directed enzyme immobilization. The magnetic properties of the colloidal carrier particle permit repeated enzyme recovery from a reaction solution, while the enzymatic activity is retained. Moreover, localizing the phage-based construct with a magnetic field in a microcontainer allows the enzyme-phage-colloids to function as an enzymatic micropump, where the enzymatic reaction generates a fluid flow. This system shows the fastest fluid flow reported to date by a biocompatible enzymatic micropump. In addition, it is functional in complex media including blood where the enzyme driven micropump can be powered at the physiological blood-urea concentration.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Absolute diffusion measurements of active enzyme solutions by NMR
Absolute diffusion measurements of active enzyme solutions by NMR

Guenther, J., Majer, G., Fischer, P.

J. Chem. Phys., 150(124201), March 2019 (article)

Abstract
The diffusion of enzymes is of fundamental importance for many biochemical processes. Enhanced or directed enzyme diffusion can alter the accessibility of substrates and the organization of enzymes within cells. Several studies based on fluorescence correlation spectroscopy (FCS) report enhanced diffusion of enzymes upon interaction with their substrate or inhibitor. In this context, major importance is given to the enzyme fructose-bisphosphate aldolase, for which enhanced diffusion has been reported even though the catalysed reaction is endothermic. Additionally, enhanced diffusion of tracer particles surrounding the active aldolase enzymes has been reported. These studies suggest that active enzymes can act as chemical motors that self-propel and give rise to enhanced diffusion. However, fluorescence studies of enzymes can, despite several advantages, suffer from artefacts. Here we show that the absolute diffusion coefficients of active enzyme solutions can be determined with Pulsed Field Gradient Nuclear Magnetic Resonance (PFG-NMR). The advantage of PFG-NMR is that the motion of the molecule of interest is directly observed in its native state without the need for any labelling. Further, PFG-NMR is model-free and thus yields absolute diffusion constants. Our PFG-NMR experiments of solutions containing active fructose-bisphosphate aldolase from rabbit muscle do not show any diffusion enhancement for the active enzymes nor the surrounding molecules. Additionally, we do not observe any diffusion enhancement of aldolase in the presence of its inhibitor pyrophosphate.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Chemical Nanomotors at the Gram Scale Form a Dense Active Optorheological Medium
Chemical Nanomotors at the Gram Scale Form a Dense Active Optorheological Medium

Choudhury, U., Singh, D. P., Qiu, T., Fischer, P.

Adv. Mat., 31(1807382), Febuary 2019 (article)

Abstract
The rheological properties of a colloidal suspension are a function of the concentration of the colloids and their interactions. While suspensions of passive colloids are well studied and have been shown to form crystals, gels, and glasses, examples of energy‐consuming “active” colloidal suspensions are still largely unexplored. Active suspensions of biological matter, such as motile bacteria or dense mixtures of active actin–motor–protein mixtures have, respectively, reveals superfluid‐like and gel‐like states. Attractive inanimate systems for active matter are chemically self‐propelled particles. It has so far been challenging to use these swimming particles at high enough densities to affect the bulk material properties of the suspension. Here, it is shown that light‐triggered asymmetric titanium dioxide that self‐propel, can be obtained in large quantities, and self‐organize to make a gram‐scale active medium. The suspension shows an activity‐dependent tenfold reversible change in its bulk viscosity.

pf

link (url) DOI [BibTex]


no image
Resource-rational analysis: Understanding human cognition as the optimal use of limited computational resources

Lieder, F., Griffiths, T. L.

Behavioral and Brain Sciences, 43, E1, Febuary 2019 (article)

Abstract
Modeling human cognition is challenging because there are infinitely many mechanisms that can generate any given observation. Some researchers address this by constraining the hypothesis space through assumptions about what the human mind can and cannot do, while others constrain it through principles of rationality and adaptation. Recent work in economics, psychology, neuroscience, and linguistics has begun to integrate both approaches by augmenting rational models with cognitive constraints, incorporating rational principles into cognitive architectures, and applying optimality principles to understanding neural representations. We identify the rational use of limited resources as a unifying principle underlying these diverse approaches, expressing it in a new cognitive modeling paradigm called resource-rational analysis. The integration of rational principles with realistic cognitive constraints makes resource-rational analysis a promising framework for reverse-engineering cognitive mechanisms and representations. It has already shed new light on the debate about human rationality and can be leveraged to revisit classic questions of cognitive psychology within a principled computational framework. We demonstrate that resource-rational models can reconcile the mind's most impressive cognitive skills with people's ostensive irrationality. Resource-rational analysis also provides a new way to connect psychological theory more deeply with artificial intelligence, economics, neuroscience, and linguistics.

re

DOI [BibTex]

DOI [BibTex]


First Observation of Optical Activity in Hyper-Rayleigh Scattering
First Observation of Optical Activity in Hyper-Rayleigh Scattering

Collins, J., Rusimova, K., Hooper, D., Jeong, H. H., Ohnoutek, L., Pradaux-Caggiano, F., Verbiest, T., Carbery, D., Fischer, P., Valev, V.

Phys. Rev. X, 9(011024), January 2019 (article)

Abstract
Chiral nano- or metamaterials and surfaces enable striking photonic properties, such as negative refractive index and superchiral light, driving promising applications in novel optical components, nanorobotics, and enhanced chiral molecular interactions with light. In characterizing chirality, although nonlinear chiroptical techniques are typically much more sensitive than their linear optical counterparts, separating true chirality from anisotropy is a major challenge. Here, we report the first observation of optical activity in second-harmonic hyper-Rayleigh scattering (HRS). We demonstrate the effect in a 3D isotropic suspension of Ag nanohelices in water. The effect is 5 orders of magnitude stronger than linear optical activity and is well pronounced above the multiphoton luminescence background. Because of its sensitivity, isotropic environment, and straightforward experimental geometry, HRS optical activity constitutes a fundamental experimental breakthrough in chiral photonics for media including nanomaterials, metamaterials, and chemical molecules.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Extracting the dynamic magnetic contrast in time-resolved X-ray transmission microscopy

Schaffers, T., Feggeler, T., Pile, S., Meckenstock, R., Buchner, M., Spoddig, D., Ney, V., Farle, M., Wende, H., Wintz, S., Weigand, M., Ohldag, H., Ollefs, K, Ney, A.

{Nanomaterials}, 9(7), MDPI, Basel, Schweiz, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Generation of switchable singular beams with dynamic metasurfaces

Yu, P., Li, J., Li, X., Schütz, G., Hirscher, M., Zhang, S., Liu, N.

{ACS Nano}, 13(6):7100-7106, American Chemical Society, Washington, DC, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Piezo-electrical control of gyration dynamics of magnetic vortices

Filianina, M., Baldrati, L., Hajiri, T., Litzius, K., Foerster, M., Aballe, L., Kläui, M.

{Applied Physics Letters}, 115(6), American Institute of Physics, Melville, NY, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Barely porous organic cages for hydrogen isotrope separation

Liu, M., Zhang, L., Little, M. A., Kapil, V., Ceriotti, M., Yang, S., Ding, L., Holden, D. L., Balderas-Xicohténcatl, R., He, D., Clowes, R., Chong, S. Y., Schütz, G., Chen, L., Hirscher, M., Cooper, A. I.

{Science}, 366(6465):613-620, American Association for the Advancement of Science, Washington, D.C., 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetically induced anisotropy of flux penetration into strong-pinning superconductor/ferromagnet bilayers

Simmendinger, J., Hänisch, J., Bihler, M., Ionescu, A. M., Weigand, M., Sieger, M., Hühne, R., Rijckaert, H., van Driessche, I., Schütz, G., Albrecht, J.

{New Journal of Physics}, 21, IOP Publishing, Bristol, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
X-ray microscopic characterization of high-Tc-supercoductors using image processing

Bihler, M.

Universität Stuttgart, Stuttgart, 2019 (mastersthesis)

mms

[BibTex]


no image
X-ray Optics Fabrication Using Unorthodox Approaches

Sanli, U., Baluktsian, M., Ceylan, H., Sitti, M., Weigand, M., Schütz, G., Keskinbora, K.

Bulletin of the American Physical Society, APS, 2019 (article)

mms pi

[BibTex]

[BibTex]


{Direct observation of coherent magnons with suboptical wavelengths in a single-crystalline ferrimagnetic insulator}
Direct observation of coherent magnons with suboptical wavelengths in a single-crystalline ferrimagnetic insulator

Förster, J., Gräfe, J., Bailey, J., Finizio, S., Träger, N., Groß, F., Mayr, S., Stoll, H., Dubs, C., Surzhenko, O., Liebing, N., Woltersdorf, G., Raabe, J., Weigand, M., Schütz, G., Wintz, S.

{Physical Review B}, 100(21), American Physical Society, Woodbury, NY, 2019 (article)

Abstract
Spin-wave dynamics were studied in an extended thin film of single-crystalline yttrium iron garnet using time-resolved scanning transmission x-ray microscopy. A combination of mechanical grinding and focused ion beam milling has been utilized to achieve a soft x-ray transparent thickness of the underlying bulk gadolinium gallium garnet substrate. Damon-Eshbach type spin waves down to about 100 nm wavelength have been directly imaged in real space for varying frequencies and external magnetic fields. The dispersion relation extracted from the experimental data agreed well with theoretical predictions. A significant influence of the ion milling process on the local magnetic properties was not detected.

mms

DOI [BibTex]

DOI [BibTex]


{Nanoscale detection of spin wave deflection angles in permalloy}
Nanoscale detection of spin wave deflection angles in permalloy

Gross, F., Träger, N., Förster, J., Weigand, M., Schütz, G., Gräfe, J.

{Applied Physics Letters}, 114(1), American Institute of Physics, Melville, NY, 2019 (article)

Abstract
Magnonics is a potential candidate for beyond CMOS and neuromorphic computing technologies with advanced phase encoded logic. However, nanoscale imaging of spin waves with full phase and magnetization amplitude information is a challenge. We show a generalized scanning transmission x-ray microscopy platform to get a complete understanding of spin waves, including the k-vector, phase, and absolute magnetization deflection angle. As an example, this is demonstrated using a 50 nm thin permalloy film where we find a maximum deflection angle of 1.5° and good agreement with the k-vector dispersion previously reported in the literature. With a spatial resolution approximately ten times better than any other methods for spin wave imaging, x-ray microscopy opens a vast range of possibilities for the observation of spin waves and various magnetic structures.

mms

DOI [BibTex]

DOI [BibTex]


{gFORC: A graphics processing unit accelerated first-order reversal-curve calculator}
gFORC: A graphics processing unit accelerated first-order reversal-curve calculator

Groß, F., Martínez-García, J. C., Ilse, S. E., Schütz, G., Goering, E., Rivas, M., Gräfe, J.

{Journal of Applied Physics}, 126(16), AIP Publishing, New York, NY, 2019 (article)

Abstract
First-order reversal-curves have proven to be an indispensable characterization tool for physics as well as for geology. However, the conventional evaluation algorithm requires a lot of computational effort for a comparable easy task to overcome measurement noise. In this work, we present a new evaluation approach, which exploits the diversity of Fourier space to not only speed up the calculation by a factor of 1000 but also move away from the conventional smoothing factor toward real field resolution. By comparing the baseline resolution of the new and the old algorithm, we are able to deduce an analytical equation that converts the smoothing factor into field resolution, making the old and new algorithm comparable. We find excellent agreement not only for various systems of increasing complexity but also over a large range of smoothing factors. The achieved speedup enables us to calculate a large number of first-order reversal-curve diagrams with increasing smoothing factor allowing for an autocorrelation approach to find a hard criterion for the optimum smoothing factor. This previously computational prohibitive evaluation of first-order reversal-curves solves the problem of over- and undersmoothing by increasing general readability and preventing information destruction.

mms

DOI [BibTex]

DOI [BibTex]


no image
Soft Sensors for Curvature Estimation under Water in a Soft Robotic Fish

Wright, Brian, Vogt, Daniel M., Wood, Robert J., Jusufi, Ardian

In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft 2019), pages: 367-371, IEEE, Piscataway, NJ, 2nd IEEE International Conference on Soft Robotics (RoboSoft 2019), 2019 (inproceedings)

bio

DOI [BibTex]

DOI [BibTex]


no image
Nanomagnetismus im Röntgenlicht

Schütz, G.

In Vielfältige Physik, pages: 173-182, Springer Spektrum, Berlin, Heidelberg, 2019 (incollection)

mms

DOI [BibTex]

DOI [BibTex]


no image
A special issue on hydrogen-based Energy storage

Hirscher, M.

{International Journal of Hydrogen Energy}, 44, pages: 7737, Elsevier, Amsterdam, 2019 (misc)

mms

DOI [BibTex]

DOI [BibTex]


no image
Coordinated molecule-modulated magnetic phase with metamagnetism in metal-organic frameworks

Son, K., Kim, J. Y., Schütz, G., Kang, S. G., Moon, H. R., Oh, H.

{Inorganic Chemistry}, 58(14):8895-8899, American Chemical Society, Washington, DC, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Novel X-ray lenses for direct and coherent imaging

Sanli, U. T.

Universität Stuttgart, Stuttgart, 2019 (phdthesis)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Scaling of intrinsic domain wall magnetoresistance with confinement in electromigrated nanocontacts

Reeve, R. M., Loescher, A., Kazemi, H., Dupé, B., Mawass, M., Winkler, T., Schönke, D., Miao, J., Litzius, K., Sedlmayr, N., Schneider, I., Sinova, J., Eggert, S., Kläui, M.

{Physical Review B}, 99(21), American Physical Society, Woodbury, NY, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


{Coherent excitation of heterosymmetric spin waves with ultrashort wavelengths}
Coherent excitation of heterosymmetric spin waves with ultrashort wavelengths

Dieterle, G., Förster, J., Stoll, H., Semisalova, A. S., Finizio, S., Gangwar, A., Weigand, M., Noske, M., Fähnle, M., Bykova, I., Gräfe, J., Bozhko, D. A., Musiienko-Shmarova, H. Y., Tiberkevich, V., Slavin, A. N., Back, C. H., Raabe, J., Schütz, G., Wintz, S.

{Physical Review Letters}, 122(11), American Physical Society, Woodbury, N.Y., 2019 (article)

Abstract
In the emerging field of magnonics, spin waves are foreseen as signal carriers for future spintronic information processing and communication devices, owing to both the very low power losses and a high device miniaturization potential predicted for short-wavelength spin waves. Yet, the efficient excitation and controlled propagation of nanoscale spin waves remains a severe challenge. Here, we report the observation of high-amplitude, ultrashort dipole-exchange spin waves (down to 80 nm wavelength at 10 GHz frequency) in a ferromagnetic single layer system, coherently excited by the driven dynamics of a spin vortex core. We used time-resolved x-ray microscopy to directly image such propagating spin waves and their excitation over a wide range of frequencies. By further analysis, we found that these waves exhibit a heterosymmetric mode profile, involving regions with anti-Larmor precession sense and purely linear magnetic oscillation. In particular, this mode profile consists of dynamic vortices with laterally alternating helicity, leading to a partial magnetic flux closure over the film thickness, which is explained by a strong and unexpected mode hybridization. This spin-wave phenomenon observed is a general effect inherent to the dynamics of sufficiently thick ferromagnetic single layer films, independent of the specific excitation method employed.

mms

DOI [BibTex]

DOI [BibTex]


Reprogrammability and Scalability of Magnonic Fibonacci Quasicrystals
Reprogrammability and Scalability of Magnonic Fibonacci Quasicrystals

Lisiecki, F., Rychły, J., Kuświk, P., Głowiński, H., Kłos, J. W., Groß, F., Bykova, I., Weigand, M., Zelent, M., Goering, E. J., Schütz, G., Gubbiotti, G., Krawczyk, M., Stobiecki, F., Dubowik, J., Gräfe, J.

Physical Review Applied, 11, pages: 054003, 2019 (article)

Abstract
Magnonic crystals are systems that can be used to design and tune the dynamic properties of magnetization. Here, we focus on one-dimensional Fibonacci magnonic quasicrystals. We confirm the existence of collective spin waves propagating through the structure as well as dispersionless modes; the reprogammability of the resonance frequencies, dependent on the magnetization order; and dynamic spin-wave interactions. With the fundamental understanding of these properties, we lay a foundation for the scalable and advanced design of spin-wave band structures for spintronic, microwave, and magnonic applications.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]