Header logo is


2017


Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets
Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets

Hausman, K., Chebotar, Y., Schaal, S., Sukhatme, G., Lim, J.

In Proceedings from the conference "Neural Information Processing Systems 2017., (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., Advances in Neural Information Processing Systems 30 (NIPS), December 2017 (inproceedings)

am

pdf video [BibTex]

2017


pdf video [BibTex]


On the Design of {LQR} Kernels for Efficient Controller Learning
On the Design of LQR Kernels for Efficient Controller Learning

Marco, A., Hennig, P., Schaal, S., Trimpe, S.

Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), pages: 5193-5200, IEEE, IEEE Conference on Decision and Control, December 2017 (conference)

Abstract
Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.

am ics pn

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]


Optimizing Long-term Predictions for Model-based Policy Search
Optimizing Long-term Predictions for Model-based Policy Search

Doerr, A., Daniel, C., Nguyen-Tuong, D., Marco, A., Schaal, S., Toussaint, M., Trimpe, S.

Proceedings of 1st Annual Conference on Robot Learning (CoRL), 78, pages: 227-238, (Editors: Sergey Levine and Vincent Vanhoucke and Ken Goldberg), 1st Annual Conference on Robot Learning, November 2017 (conference)

Abstract
We propose a novel long-term optimization criterion to improve the robustness of model-based reinforcement learning in real-world scenarios. Learning a dynamics model to derive a solution promises much greater data-efficiency and reusability compared to model-free alternatives. In practice, however, modelbased RL suffers from various imperfections such as noisy input and output data, delays and unmeasured (latent) states. To achieve higher resilience against such effects, we propose to optimize a generative long-term prediction model directly with respect to the likelihood of observed trajectories as opposed to the common approach of optimizing a dynamics model for one-step-ahead predictions. We evaluate the proposed method on several artificial and real-world benchmark problems and compare it to PILCO, a model-based RL framework, in experiments on a manipulation robot. The results show that the proposed method is competitive compared to state-of-the-art model learning methods. In contrast to these more involved models, our model can directly be employed for policy search and outperforms a baseline method in the robot experiment.

am ics

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
Editorial for the Special Issue on Microdevices and Microsystems for Cell Manipulation

Hu, W., Ohta, A. T.

8, Multidisciplinary Digital Publishing Institute, September 2017 (misc)

pi

DOI [BibTex]

DOI [BibTex]


no image
A New Data Source for Inverse Dynamics Learning

Kappler, D., Meier, F., Ratliff, N., Schaal, S.

In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2017 (inproceedings)

am

[BibTex]

[BibTex]


no image
Bayesian Regression for Artifact Correction in Electroencephalography

Fiebig, K., Jayaram, V., Hesse, T., Blank, A., Peters, J., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 131-136, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Investigating Music Imagery as a Cognitive Paradigm for Low-Cost Brain-Computer Interfaces

Grossberger, L., Hohmann, M. R., Peters, J., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 160-164, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

am ei

DOI [BibTex]

DOI [BibTex]


On the relevance of grasp metrics for predicting grasp success
On the relevance of grasp metrics for predicting grasp success

Rubert, C., Kappler, D., Morales, A., Schaal, S., Bohg, J.

In Proceedings of the IEEE/RSJ International Conference of Intelligent Robots and Systems, September 2017 (inproceedings) Accepted

Abstract
We aim to reliably predict whether a grasp on a known object is successful before it is executed in the real world. There is an entire suite of grasp metrics that has already been developed which rely on precisely known contact points between object and hand. However, it remains unclear whether and how they may be combined into a general purpose grasp stability predictor. In this paper, we analyze these questions by leveraging a large scale database of simulated grasps on a wide variety of objects. For each grasp, we compute the value of seven metrics. Each grasp is annotated by human subjects with ground truth stability labels. Given this data set, we train several classification methods to find out whether there is some underlying, non-trivial structure in the data that is difficult to model manually but can be learned. Quantitative and qualitative results show the complexity of the prediction problem. We found that a good prediction performance critically depends on using a combination of metrics as input features. Furthermore, non-parametric and non-linear classifiers best capture the structure in the data.

am

Project Page [BibTex]

Project Page [BibTex]


no image
Swimming in low reynolds numbers using planar and helical flagellar waves

Khalil, I. S. M., Tabak, A. F., Seif, M. A., Klingner, A., Adel, B., Sitti, M.

In International Conference on Intelligent Robots and Systems (IROS) 2017, pages: 1907-1912, International Conference on Intelligent Robots and Systems, September 2017 (inproceedings)

Abstract
In travelling towards the oviducts, sperm cells undergo transitions between planar to helical flagellar propulsion by a beating tail based on the viscosity of the environment. In this work, we aim to model and mimic this behaviour in low Reynolds number fluids using externally actuated soft robotic sperms. We numerically investigate the effects of transition between planar to helical flagellar propulsion on the swimming characteristics of the robotic sperm using a model based on resistive-force theory to study the role of viscous forces on its flexible tail. Experimental results are obtained using robots that contain magnetic particles within the polymer matrix of its head and an ultra-thin flexible tail. The planar and helical flagellar propulsion are achieved using in-plane and out-of-plane uniform fields with sinusoidally varying components, respectively. We experimentally show that the swimming speed of the robotic sperm increases by a factor of 1.4 (fluid viscosity 5 Pa.s) when it undergoes a controlled transition between planar to helical flagellar propulsion, at relatively low actuation frequencies.

pi

DOI [BibTex]

DOI [BibTex]


no image
Local Bayesian Optimization of Motor Skills

Akrour, R., Sorokin, D., Peters, J., Neumann, G.

Proceedings of the 34th International Conference on Machine Learning, 70, pages: 41-50, Proceedings of Machine Learning Research, (Editors: Doina Precup, Yee Whye Teh), PMLR, International Conference on Machine Learning (ICML), August 2017 (conference)

am ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning
Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning

Chebotar, Y., Hausman, K., Zhang, M., Sukhatme, G., Schaal, S., Levine, S.

Proceedings of the 34th International Conference on Machine Learning, 70, Proceedings of Machine Learning Research, (Editors: Doina Precup, Yee Whye Teh), PMLR, International Conference on Machine Learning (ICML), August 2017 (conference)

am

pdf video [BibTex]

pdf video [BibTex]


An XY ϴz flexure mechanism with optimal stiffness properties
An XY ϴz flexure mechanism with optimal stiffness properties

Lum, G. Z., Pham, M. T., Teo, T. J., Yang, G., Yeo, S. H., Sitti, M.

In 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pages: 1103-1110, July 2017 (inproceedings)

Abstract
The development of optimal XY θz flexure mechanisms, which can deliver high precision motion about the z-axis, and along the x- and y-axes is highly desirable for a wide range of micro/nano-positioning tasks pertaining to biomedical research, microscopy technologies and various industrial applications. Although maximizing the stiffness ratios is a very critical design requirement, the achievable translational and rotational stiffness ratios of existing XY θz flexure mechanisms are still restricted between 0.5 and 130. As a result, these XY θz flexure mechanisms are unable to fully optimize their workspace and capabilities to reject disturbances. Here, we present an optimal XY θz flexure mechanism, which is designed to have maximum stiffness ratios. Based on finite element analysis (FEA), it has translational stiffness ratio of 248, rotational stiffness ratio of 238 and a large workspace of 2.50 mm × 2.50 mm × 10°. Despite having such a large workspace, FEA also predicts that the proposed mechanism can still achieve a high bandwidth of 70 Hz. In comparison, the bandwidth of similar existing flexure mechanisms that can deflect more than 0.5 mm or 0.5° is typically less than 45 Hz. Hence, the high stiffness ratios of the proposed mechanism are achieved without compromising its dynamic performance. Preliminary experimental results pertaining to the mechanism's translational actuating stiffness and bandwidth were in agreement with the FEA predictions as the deviation was within 10%. In conclusion, the proposed flexure mechanism exhibits superior performance and can be used across a wide range of applications.

pi

DOI [BibTex]

DOI [BibTex]


Positioning of drug carriers using permanent magnet-based robotic system in three-dimensional space
Positioning of drug carriers using permanent magnet-based robotic system in three-dimensional space

Khalil, I. S. M., Alfar, A., Tabak, A. F., Klingner, A., Stramigioli, S., Sitti, M.

In 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pages: 1117-1122, July 2017 (inproceedings)

Abstract
Magnetic control of drug carriers using systems with open-configurations is essential to enable scaling to the size of in vivo applications. In this study, we demonstrate motion control of paramagnetic microparticles in a low Reynolds number fluid, using a permanent magnet-based robotic system with an open-configuration. The microparticles are controlled in three-dimensional (3D) space using a cylindrical NdFeB magnet that is fixed to the end-effector of a robotic arm. We develop a kinematic map between the position of the microparticles and the configuration of the robotic arm, and use this map as a basis of a closed-loop control system based on the position of the microparticles. Our experimental results show the ability of the robot configuration to control the exerted field gradient on the dipole of the microparticles, and achieve positioning in 3D space with maximum error of 300 µm and 600 µm in the steady-state during setpoint and trajectory tracking, respectively.

pi

DOI [BibTex]

DOI [BibTex]


no image
Self-assembly of micro/nanosystems across scales and interfaces

Mastrangeli, M.

In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pages: 676 - 681, IEEE, July 2017 (inproceedings)

Abstract
Steady progress in understanding and implementation are establishing self-assembly as a versatile, parallel and scalable approach to the fabrication of transducers. In this contribution, I illustrate the principles and reach of self-assembly with three applications at different scales - namely, the capillary self-alignment of millimetric components, the sealing of liquid-filled polymeric microcapsules, and the accurate capillary assembly of single nanoparticles - and propose foreseeable directions for further developments.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Locomotion of light-driven soft microrobots through a hydrogel via local melting
Locomotion of light-driven soft microrobots through a hydrogel via local melting

Palagi, S., Mark, A. G., Melde, K., Qiu, T., Zeng, H., Parmeggiani, C., Martella, D., Wiersma, D. S., Fischer, P.

In 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2017 (inproceedings)

Abstract
Soft mobile microrobots whose deformation can be directly controlled by an external field can adapt to move in different environments. This is the case for the light-driven microrobots based on liquid-crystal elastomers (LCEs). Here we show that the soft microrobots can move through an agarose hydrogel by means of light-controlled travelling-wave motions. This is achieved by exploiting the inherent rise of the LCE temperature above the melting temperature of the agarose gel, which facilitates penetration of the microrobot through the hydrogel. The locomotion performance is investigated as a function of the travelling-wave parameters, showing that effective propulsion can be obtained by adapting the generated motion to the specific environmental conditions.

pf

DOI [BibTex]

DOI [BibTex]


Dynamic analysis on hexapedal water-running robot with compliant joints
Dynamic analysis on hexapedal water-running robot with compliant joints

Kim, H., Liu, Y., Jeong, K., Sitti, M., Seo, T.

In 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pages: 250-251, June 2017 (inproceedings)

Abstract
The dynamic analysis has been considered as one of the important design methods to design robots. In this research, we derive dynamic equation of hexapedal water-running robot to design compliant joints. The compliant joints that connect three bodies will be used to improve mobility and stability of water-running motion's pitch behavior. We considered all of parts as rigid body including links of six Klann mechanisms and three main frames. And then, we derived dynamic equation by using the Lagrangian method with external force of the water. We are expecting that the dynamic analysis is going to be used to design parts of the water running robot.

pi

DOI [BibTex]

DOI [BibTex]


Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers
Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers

Doerr, A., Nguyen-Tuong, D., Marco, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5295-5301, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics

PDF arXiv DOI Project Page [BibTex]

PDF arXiv DOI Project Page [BibTex]


Learning Feedback Terms for Reactive Planning and Control
Learning Feedback Terms for Reactive Planning and Control

Rai, A., Sutanto, G., Schaal, S., Meier, F.

Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (conference)

am

pdf video [BibTex]

pdf video [BibTex]


Design and actuation of a magnetic millirobot under a constant unidirectional magnetic field
Design and actuation of a magnetic millirobot under a constant unidirectional magnetic field

Erin, O., Giltinan, J., Tsai, L., Sitti, M.

In Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), pages: 3404-3410, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

Abstract
Magnetic untethered millirobots, which are actuated and controlled by remote magnetic fields, have been proposed for medical applications due to their ability to safely pass through tissues at long ranges. For example, magnetic resonance imaging (MRI) systems with a 3-7 T constant unidirectional magnetic field and 3D gradient coils have been used to actuate magnetic robots. Such magnetically constrained systems place limits on the degrees of freedom that can be actuated for untethered devices. This paper presents a design and actuation methodology for a magnetic millirobot that exhibits both position and orientation control in 2D under a magnetic field, dominated by a constant unidirectional magnetic field as found in MRI systems. Placing a spherical permanent magnet, which is free to rotate inside the millirobot and located away from the center of mass, allows the generation of net forces and torques with applied 3D magnetic field gradients. We model this system in a 3D planar case and experimentally demonstrate open-loop control of both position and orientation by the applied 2D field gradients. The actuation performance is characterized across the most important design variables, and we experimentally demonstrate that the proposed approach is feasible.

pi

DOI [BibTex]

DOI [BibTex]


Virtual vs. {R}eal: Trading Off Simulations and Physical Experiments in Reinforcement Learning with {B}ayesian Optimization
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 1557-1563, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics pn

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]


Magnetically actuated soft capsule endoscope for fine-needle aspiration biopsy
Magnetically actuated soft capsule endoscope for fine-needle aspiration biopsy

Son, D., Dogan, M. D., Sitti, M.

In Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), pages: 1132-1139, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

Abstract
This paper presents a magnetically actuated soft capsule endoscope for fine-needle aspiration biopsy (B-MASCE) in the upper gastrointestinal tract. A thin and hollow needle is attached to the capsule, which can penetrate deeply into tissues to obtain subsurface biopsy sample. The design utilizes a soft elastomer body as a compliant mechanism to guide the needle. An internal permanent magnet provides a means for both actuation and tracking. The capsule is designed to roll towards its target and then deploy the biopsy needle in a precise location selected as the target area. B-MASCE is controlled by multiple custom-designed electromagnets while its position and orientation are tracked by a magnetic sensor array. In in vitro trials, B-MASCE demonstrated rolling locomotion and biopsy of a swine tissue model positioned inside an anatomical human stomach model. It was confirmed after the experiment that a tissue sample was retained inside the needle.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Wireless micro-robots for endoscopic applications in urology
Wireless micro-robots for endoscopic applications in urology

Adams, F., Qiu, T., Mark, A. G., Melde, K., Palagi, S., Miernik, A., Fischer, P.

In Eur Urol Suppl, 16(3):e1914, March 2017 (inproceedings)

Abstract
Endoscopy is an essential and common method for both diagnostics and therapy in Urology. Current flexible endoscope is normally cable-driven, thus it is hard to be miniaturized and its reachability is restricted as only one bending section near the tip with one degree of freedom (DoF) is allowed. Recent progresses in micro-robotics offer a unique opportunity for medical inspections in minimally invasive surgery. Micro-robots are active devices that has a feature size smaller than one millimeter and can normally be actuated and controlled wirelessly. Magnetically actuated micro-robots have been demonstrated to propel through biological fluids.Here, we report a novel micro robotic arm, which is actuated wirelessly by ultrasound. It works as a miniaturized endoscope with a side length of ~1 mm, which fits through the 3 Fr. tool channel of a cystoscope, and successfully performs an active cystoscopy in a rabbit bladder.

pf

link (url) DOI [BibTex]


The use of clamping grips and friction pads by tree frogs for climbing curved surfaces
The use of clamping grips and friction pads by tree frogs for climbing curved surfaces

Endlein, T., Ji, A., Yuan, S., Hill, I., Wang, H., Barnes, W. J. P., Dai, Z., Sitti, M.

In Proc. R. Soc. B, 284(1849):20162867, Febuary 2017 (inproceedings)

Abstract
Most studies on the adhesive mechanisms of climbing animals have addressed attachment against flat surfaces, yet many animals can climb highly curved surfaces, like twigs and small branches. Here we investigated whether tree frogs use a clamping grip by recording the ground reaction forces on a cylindrical object with either a smooth or anti-adhesive, rough surface. Furthermore, we measured the contact area of fore and hindlimbs against differently sized transparent cylinders and the forces of individual pads and subarticular tubercles in restrained animals. Our study revealed that frogs use friction and normal forces of roughly a similar magnitude for holding on to cylindrical objects. When challenged with climbing a non-adhesive surface, the compressive forces between opposite legs nearly doubled, indicating a stronger clamping grip. In contrast to climbing flat surfaces, frogs increased the contact area on all limbs by engaging not just adhesive pads but also subarticular tubercles on curved surfaces. Our force measurements showed that tubercles can withstand larger shear stresses than pads. SEM images of tubercles revealed a similar structure to that of toe pads including the presence of nanopillars, though channels surrounding epithelial cells were less pronounced. The tubercles' smaller size, proximal location on the toes and shallow cells make them probably less prone to buckling and thus ideal for gripping curved surfaces.

pi

DOI [BibTex]

DOI [BibTex]


Planning spin-walking locomotion for automatic grasping of microobjects by an untethered magnetic microgripper
Planning spin-walking locomotion for automatic grasping of microobjects by an untethered magnetic microgripper

Dong, X., Sitti, M.

In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages: 6612-6618, 2017 (inproceedings)

Abstract
Most demonstrated mobile microrobot tasks so far have been achieved via pick-and-placing and dynamic trapping with teleoperation or simple path following algorithms. In our previous work, an untethered magnetic microgripper has been developed which has advanced functions, such as gripping objects. Both teleoperated manipulation in 2D and 3D have been demonstrated. However, it is challenging to control the magnetic microgripper to carry out manipulation tasks, because the grasping of objects so far in the literature relies heavily on teleoperation, which takes several minutes with even a skilled human expert. Here, we propose a new spin-walking locomotion and an automated 2D grasping motion planner for the microgripper, which enables time-efficient automatic grasping of microobjects that has not been achieved yet for untethered microrobots. In its locomotion, the microgripper repeatedly rotates about two principal axes to regulate its pose and move precisely on a surface. The motion planner could plan different motion primitives for grasping and compensate the uncertainties in the motion by learning the uncertainties and planning accordingly. We experimentally demonstrated that, using the proposed method, the microgripper could align to the target pose with error less than 0.1 body length and grip the objects within 40 seconds. Our method could significantly improve the time efficiency of micro-scale manipulation and have potential applications in microassembly and biomedical engineering.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]

2013


Probabilistic Object Tracking Using a Range Camera
Probabilistic Object Tracking Using a Range Camera

Wüthrich, M., Pastor, P., Kalakrishnan, M., Bohg, J., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3195-3202, IEEE, November 2013 (inproceedings)

Abstract
We address the problem of tracking the 6-DoF pose of an object while it is being manipulated by a human or a robot. We use a dynamic Bayesian network to perform inference and compute a posterior distribution over the current object pose. Depending on whether a robot or a human manipulates the object, we employ a process model with or without knowledge of control inputs. Observations are obtained from a range camera. As opposed to previous object tracking methods, we explicitly model self-occlusions and occlusions from the environment, e.g, the human or robotic hand. This leads to a strongly non-linear observation model and additional dependencies in the Bayesian network. We employ a Rao-Blackwellised particle filter to compute an estimate of the object pose at every time step. In a set of experiments, we demonstrate the ability of our method to accurately and robustly track the object pose in real-time while it is being manipulated by a human or a robot.

am

arXiv Video Code Video DOI Project Page [BibTex]

2013


arXiv Video Code Video DOI Project Page [BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent App. 14/016,651 (misc)

pi

[BibTex]

[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent App. 14/016,683 (misc)

pi

[BibTex]

[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent 8,524,092 (misc)

pi

[BibTex]

[BibTex]


Hypothesis Testing Framework for Active Object Detection
Hypothesis Testing Framework for Active Object Detection

Sankaran, B., Atanasov, N., Le Ny, J., Koletschka, T., Pappas, G., Daniilidis, K.

In IEEE International Conference on Robotics and Automation (ICRA), May 2013, clmc (inproceedings)

Abstract
One of the central problems in computer vision is the detection of semantically important objects and the estimation of their pose. Most of the work in object detection has been based on single image processing and its performance is limited by occlusions and ambiguity in appearance and geometry. This paper proposes an active approach to object detection by controlling the point of view of a mobile depth camera. When an initial static detection phase identifies an object of interest, several hypotheses are made about its class and orientation. The sensor then plans a sequence of view-points, which balances the amount of energy used to move with the chance of identifying the correct hypothesis. We formulate an active M-ary hypothesis testing problem, which includes sensor mobility, and solve it using a point-based approximate POMDP algorithm. The validity of our approach is verified through simulation and experiments with real scenes captured by a kinect sensor. The results suggest a significant improvement over static object detection.

am

pdf [BibTex]

pdf [BibTex]


no image
Dry adhesives and methods of making dry adhesives

Sitti, M., Murphy, M., Aksak, B.

March 2013, US Patent App. 13/845,702 (misc)

pi

[BibTex]

[BibTex]


no image
Action and Goal Related Decision Variables Modulate the Competition Between Multiple Potential Targets

Enachescu, V, Christopoulos, Vassilios N, Schrater, P. R., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2013), February 2013 (inproceedings)

am

[BibTex]

[BibTex]


Fusing visual and tactile sensing for 3-D object reconstruction while grasping
Fusing visual and tactile sensing for 3-D object reconstruction while grasping

Ilonen, J., Bohg, J., Kyrki, V.

In IEEE International Conference on Robotics and Automation (ICRA), pages: 3547-3554, 2013 (inproceedings)

Abstract
In this work, we propose to reconstruct a complete 3-D model of an unknown object by fusion of visual and tactile information while the object is grasped. Assuming the object is symmetric, a first hypothesis of its complete 3-D shape is generated from a single view. This initial model is used to plan a grasp on the object which is then executed with a robotic manipulator equipped with tactile sensors. Given the detected contacts between the fingers and the object, the full object model including the symmetry parameters can be refined. This refined model will then allow the planning of more complex manipulation tasks. The main contribution of this work is an optimal estimation approach for the fusion of visual and tactile data applying the constraint of object symmetry. The fusion is formulated as a state estimation problem and solved with an iterative extended Kalman filter. The approach is validated experimentally using both artificial and real data from two different robotic platforms.

am

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Learning Objective Functions for Manipulation

Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In 2013 IEEE International Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
We present an approach to learning objective functions for robotic manipulation based on inverse reinforcement learning. Our path integral inverse reinforcement learning algorithm can deal with high-dimensional continuous state-action spaces, and only requires local optimality of demonstrated trajectories. We use L 1 regularization in order to achieve feature selection, and propose an efficient algorithm to minimize the resulting convex objective function. We demonstrate our approach by applying it to two core problems in robotic manipulation. First, we learn a cost function for redundancy resolution in inverse kinematics. Second, we use our method to learn a cost function over trajectories, which is then used in optimization-based motion planning for grasping and manipulation tasks. Experimental results show that our method outperforms previous algorithms in high-dimensional settings.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Angular Motion Control Using a Closed-Loop CPG for a Water-Running Robot

Thatte, N., Khoramshahi, M., Ijspeert, A., Sitti, M.

In Dynamic Walking 2013, (EPFL-CONF-199763), 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Light-induced microbubble poration of localized cells

Fan, Qihui, Hu, Wenqi, Ohta, Aaron T

In Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pages: 4482-4485, 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A hybrid topological and structural optimization method to design a 3-DOF planar motion compliant mechanism

Lum, G. Z., Teo, T. J., Yang, G., Yeo, S. H., Sitti, M.

In Advanced Intelligent Mechatronics (AIM), 2013 IEEE/ASME International Conference on, pages: 247-254, 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
SoftCubes: towards a soft modular matter

Yim, S., Sitti, M.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages: 530-536, 2013 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Flapping wings via direct-driving by DC motors

Azhar, M., Campolo, D., Lau, G., Hines, L., Sitti, M.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages: 1397-1402, 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Three dimensional independent control of multiple magnetic microrobots

Diller, E., Giltinan, J., Jena, P., Sitti, M.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages: 2576-2581, 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A Perching Mechanism for Flying Robots Using a Fibre-Based Adhesive

Daler, L., Klaptocz, A., Briod, A., Sitti, M., Floreano, D.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Bonding methods for modular micro-robotic assemblies

Diller, E., Zhang, N., Sitti, M.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages: 2588-2593, 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Learning Task Error Models for Manipulation

Pastor, P., Kalakrishnan, M., Binney, J., Kelly, J., Righetti, L., Sukhatme, G. S., Schaal, S.

In 2013 IEEE Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
Precise kinematic forward models are important for robots to successfully perform dexterous grasping and manipulation tasks, especially when visual servoing is rendered infeasible due to occlusions. A lot of research has been conducted to estimate geometric and non-geometric parameters of kinematic chains to minimize reconstruction errors. However, kinematic chains can include non-linearities, e.g. due to cable stretch and motor-side encoders, that result in significantly different errors for different parts of the state space. Previous work either does not consider such non-linearities or proposes to estimate non-geometric parameters of carefully engineered models that are robot specific. We propose a data-driven approach that learns task error models that account for such unmodeled non-linearities. We argue that in the context of grasping and manipulation, it is sufficient to achieve high accuracy in the task relevant state space. We identify this relevant state space using previously executed joint configurations and learn error corrections for those. Therefore, our system is developed to generate subsequent executions that are similar to previous ones. The experiments show that our method successfully captures the non-linearities in the head kinematic chain (due to a counterbalancing spring) and the arm kinematic chains (due to cable stretch) of the considered experimental platform, see Fig. 1. The feasibility of the presented error learning approach has also been evaluated in independent DARPA ARM-S testing contributing to successfully complete 67 out of 72 grasping and manipulation tasks.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2011


no image
STOMP: Stochastic trajectory optimization for motion planning

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
We present a new approach to motion planning using a stochastic trajectory optimization framework. The approach relies on generating noisy trajectories to explore the space around an initial (possibly infeasible) trajectory, which are then combined to produced an updated trajectory with lower cost. A cost function based on a combination of obstacle and smoothness cost is optimized in each iteration. No gradient information is required for the particular optimization algorithm that we use and so general costs for which derivatives may not be available (e.g. costs corresponding to constraints and motor torques) can be included in the cost function. We demonstrate the approach both in simulation and on a dual-arm mobile manipulation system for unconstrained and constrained tasks. We experimentally show that the stochastic nature of STOMP allows it to overcome local minima that gradient-based optimizers like CHOMP can get stuck in.

am

link (url) Project Page [BibTex]

2011


link (url) Project Page [BibTex]


no image
Path Integral Control and Bounded Rationality

Braun, D. A., Ortega, P. A., Theodorou, E., Schaal, S.

In IEEE Symposium on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), 2011, clmc (inproceedings)

Abstract
Path integral methods [7], [15],[1] have recently been shown to be applicable to a very general class of optimal control problems. Here we examine the path integral formalism from a decision-theoretic point of view, since an optimal controller can always be regarded as an instance of a perfectly rational decision-maker that chooses its actions so as to maximize its expected utility [8]. The problem with perfect rationality is, however, that finding optimal actions is often very difficult due to prohibitive computational resource costs that are not taken into account. In contrast, a bounded rational decision-maker has only limited resources and therefore needs to strike some compromise between the desired utility and the required resource costs [14]. In particular, we suggest an information-theoretic measure of resource costs that can be derived axiomatically [11]. As a consequence we obtain a variational principle for choice probabilities that trades off maximizing a given utility criterion and avoiding resource costs that arise due to deviating from initially given default choice probabilities. The resulting bounded rational policies are in general probabilistic. We show that the solutions found by the path integral formalism are such bounded rational policies. Furthermore, we show that the same formalism generalizes to discrete control problems, leading to linearly solvable bounded rational control policies in the case of Markov systems. Importantly, Bellman?s optimality principle is not presupposed by this variational principle, but it can be derived as a limit case. This suggests that the information- theoretic formalization of bounded rationality might serve as a general principle in control design that unifies a number of recently reported approximate optimal control methods both in the continuous and discrete domain.

am

PDF [BibTex]

PDF [BibTex]


no image
Skill learning and task outcome prediction for manipulation

Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
Learning complex motor skills for real world tasks is a hard problem in robotic manipulation that often requires painstaking manual tuning and design by a human expert. In this work, we present a Reinforcement Learning based approach to acquiring new motor skills from demonstration. Our approach allows the robot to learn fine manipulation skills and significantly improve its success rate and skill level starting from a possibly coarse demonstration. Our approach aims to incorporate task domain knowledge, where appropriate, by working in a space consistent with the constraints of a specific task. In addition, we also present an approach to using sensor feedback to learn a predictive model of the task outcome. This allows our system to learn the proprioceptive sensor feedback needed to monitor subsequent executions of the task online and abort execution in the event of predicted failure. We illustrate our approach using two example tasks executed with the PR2 dual-arm robot: a straight and accurate pool stroke and a box flipping task using two chopsticks as tools.

am

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
An Iterative Path Integral Stochastic Optimal Control Approach for Learning Robotic Tasks

Theodorou, E., Stulp, F., Buchli, J., Schaal, S.

In Proceedings of the 18th World Congress of the International Federation of Automatic Control, 2011, clmc (inproceedings)

Abstract
Recent work on path integral stochastic optimal control theory Theodorou et al. (2010a); Theodorou (2011) has shown promising results in planning and control of nonlinear systems in high dimensional state spaces. The path integral control framework relies on the transformation of the nonlinear Hamilton Jacobi Bellman (HJB) partial differential equation (PDE) into a linear PDE and the approximation of its solution via the use of the Feynman Kac lemma. In this work, we are reviewing the generalized version of path integral stochastic optimal control formalism Theodorou et al. (2010a), used for optimal control and planing of stochastic dynamical systems with state dependent control and diffusion matrices. Moreover we present the iterative path integral control approach, the so called Policy Improvement with Path Integrals or (PI2 ) which is capable of scaling in high dimensional robotic control problems. Furthermore we present a convergence analysis of the proposed algorithm and we apply the proposed framework to a variety of robotic tasks. Finally with the goal to perform locomotion the iterative path integral control is applied for learning nonlinear limit cycle attractors with adjustable land scape.

am

PDF [BibTex]

PDF [BibTex]


no image
Iterative path integral stochastic optimal control: Theory and applications to motor control

Theodorou, E. A.

University of Southern California, University of Southern California, Los Angeles, CA, 2011 (phdthesis)

am

PDF [BibTex]

PDF [BibTex]


no image
Learning of grasp selection based on shape-templates

Herzog, A.

Karlsruhe Institute of Technology, 2011 (mastersthesis)

am

[BibTex]

[BibTex]


no image
Design and analysis of a magnetically actuated and compliant capsule endoscopic robot

Yim, S., Sitti, M.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages: 4810-4815, 2011 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Micro-scale propulsion using multiple flexible artificial flagella

Singleton, J., Diller, E., Andersen, T., Regnier, S., Sitti, M.

In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages: 1687-1692, 2011 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]