Header logo is


2019


Learning to Explore in Motion and Interaction Tasks
Learning to Explore in Motion and Interaction Tasks

Bogdanovic, M., Righetti, L.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, November 2019 (conference)

Abstract
Model free reinforcement learning suffers from the high sampling complexity inherent to robotic manipulation or locomotion tasks. Most successful approaches typically use random sampling strategies which leads to slow policy convergence. In this paper we present a novel approach for efficient exploration that leverages previously learned tasks. We exploit the fact that the same system is used across many tasks and build a generative model for exploration based on data from previously solved tasks to improve learning new tasks. The approach also enables continuous learning of improved exploration strategies as novel tasks are learned. Extensive simulations on a robot manipulator performing a variety of motion and contact interaction tasks demonstrate the capabilities of the approach. In particular, our experiments suggest that the exploration strategy can more than double learning speed, especially when rewards are sparse. Moreover, the algorithm is robust to task variations and parameter tuning, making it beneficial for complex robotic problems.

mg

arXiv [BibTex]

2019


arXiv [BibTex]


no image
Robust Humanoid Locomotion Using Trajectory Optimization and Sample-Efficient Learning

Yeganegi, M. H., Khadiv, M., Moosavian, S. A. A., Zhu, J., Prete, A. D., Righetti, L.

Proceedings International Conference on Humanoid Robots, IEEE, 2019 IEEE-RAS International Conference on Humanoid Robots, October 2019 (conference)

Abstract
Trajectory optimization (TO) is one of the most powerful tools for generating feasible motions for humanoid robots. However, including uncertainties and stochasticity in the TO problem to generate robust motions can easily lead to intractable problems. Furthermore, since the models used in TO have always some level of abstraction, it can be hard to find a realistic set of uncertainties in the model space. In this paper we leverage a sample-efficient learning technique (Bayesian optimization) to robustify TO for humanoid locomotion. The main idea is to use data from full-body simulations to make the TO stage robust by tuning the cost weights. To this end, we split the TO problem into two phases. The first phase solves a convex optimization problem for generating center of mass (CoM) trajectories based on simplified linear dynamics. The second stage employs iterative Linear-Quadratic Gaussian (iLQG) as a whole-body controller to generate full body control inputs. Then we use Bayesian optimization to find the cost weights to use in the first stage that yields robust performance in the simulation/experiment, in the presence of different disturbance/uncertainties. The results show that the proposed approach is able to generate robust motions for different sets of disturbances and uncertainties.

mg

https://arxiv.org/abs/1907.04616 link (url) [BibTex]

https://arxiv.org/abs/1907.04616 link (url) [BibTex]


no image
How do people learn how to plan?

Jain, Y. R., Gupta, S., Rakesh, V., Dayan, P., Callaway, F., Lieder, F.

Conference on Cognitive Computational Neuroscience, September 2019 (conference)

re

[BibTex]

[BibTex]


Soft Continuous Surface for Micromanipulation driven by Light-controlled Hydrogels
Soft Continuous Surface for Micromanipulation driven by Light-controlled Hydrogels

Choi, E., Jeong, H., Qiu, T., Fischer, P., Palagi, S.

4th IEEE International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), July 2019 (conference)

Abstract
Remotely controlled, automated actuation and manipulation at the microscale is essential for a number of micro-manufacturing, biology, and lab-on-a-chip applications. To transport and manipulate micro-objects, arrays of remotely controlled micro-actuators are required, which, in turn, typically require complex and expensive solid-state chips. Here, we show that a continuous surface can function as a highly parallel, many-degree of freedom, wirelessly-controlled microactuator with seamless deformation. The soft continuous surface is based on a hydrogel that undergoes a volume change in response to applied light. The fabrication of the hydrogels and the characterization of their optical and thermomechanical behaviors are reported. The temperature-dependent localized deformation of the hydrogel is also investigated by numerical simulations. Static and dynamic deformations are obtained in the soft material by projecting light fields at high spatial resolution onto the surface. By controlling such deformations in open loop and especially closed loop, automated photoactuation is achieved. The surface deformations are then exploited to examine how inert microbeads can be manipulated autonomously on the surface. We believe that the proposed approach suggests ways to implement universal 2D micromanipulation schemes that can be useful for automation in microfabrication and lab-on-a-chip applications.

pf

[BibTex]

[BibTex]


Soft Phantom for the Training of Renal Calculi Diagnostics and  Lithotripsy
Soft Phantom for the Training of Renal Calculi Diagnostics and Lithotripsy

Li., D., Suarez-Ibarrola, R., Choi, E., Jeong, M., Gratzke, C., Miernik, A., Fischer, P., Qiu, T.

41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), July 2019 (conference)

Abstract
Organ models are important for medical training and surgical planning. With the fast development of additive fabrication technologies, including 3D printing, the fabrication of 3D organ phantoms with precise anatomical features becomes possible. Here, we develop the first high-resolution kidney phantom based on soft material assembly, by combining 3D printing and polymer molding techniques. The phantom exhibits both the detailed anatomy of a human kidney and the elasticity of soft tissues. The phantom assembly can be separated into two parts on the coronal plane, thus large renal calculi are readily placed at any desired location of the calyx. With our sealing method, the assembled phantom withstands a hydraulic pressure that is four times the normal intrarenal pressure, thus it allows the simulation of medical procedures under realistic pressure conditions. The medical diagnostics of the renal calculi is performed by multiple imaging modalities, including X-ray, ultrasound imaging and endoscopy. The endoscopic lithotripsy is also successfully performed on the phantom. The use of a multifunctional soft phantom assembly thus shows great promise for the simulation of minimally invasive medical procedures under realistic conditions.

pf

[BibTex]

[BibTex]


A Magnetic Actuation System for the  Active Microrheology in Soft Biomaterials
A Magnetic Actuation System for the Active Microrheology in Soft Biomaterials

Jeong, M., Choi, E., Li., D., Palagi, S., Fischer, P., Qiu, T.

4th IEEE International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), July 2019 (conference)

Abstract
Microrheology is a key technique to characterize soft materials at small scales. The microprobe is wirelessly actuated and therefore typically only low forces or torques can be applied, which limits the range of the applied strain. Here, we report a new magnetic actuation system for microrheology consisting of an array of rotating permanent magnets, which achieves a rotating magnetic field with a spatially homogeneous high field strength of ~100 mT in a working volume of ~20×20×20 mm3. Compared to a traditional electromagnetic coil system, the permanent magnet assembly is portable and does not require cooling, and it exerts a large magnetic torque on the microprobe that is an order of magnitude higher than previous setups. Experimental results demonstrate that the measurement range of the soft gels’ elasticity covers at least five orders of magnitude. With the large actuation torque, it is also possible to study the fracture mechanics of soft biomaterials at small scales.

pf

[BibTex]

[BibTex]


no image
What’s in the Adaptive Toolbox and How Do People Choose From It? Rational Models of Strategy Selection in Risky Choice

Mohnert, F., Pachur, T., Lieder, F.

41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)

re

[BibTex]


no image
Measuring how people learn how to plan

Jain, Y. R., Callaway, F., Lieder, F.

RLDM 2019, July 2019 (conference)

re

[BibTex]

[BibTex]


no image
Measuring how people learn how to plan

Jain, Y. R., Callaway, F., Lieder, F.

41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)

re

[BibTex]

[BibTex]


no image
A cognitive tutor for helping people overcome present bias

Lieder, F., Callaway, F., Jain, Y., Krueger, P., Das, P., Gul, S., Griffiths, T.

RLDM 2019, July 2019 (conference)

re

[BibTex]

[BibTex]


no image
Introducing the Decision Advisor: A simple online tool that helps people overcome cognitive biases and experience less regret in real-life decisions

Iwama, G., Greenberg, S., Moore, D., Lieder, F.

40th Annual Meeting of the Society for Judgement and Decision Making, June 2019 (conference)

re

[BibTex]

[BibTex]


Leveraging Contact Forces for Learning to Grasp
Leveraging Contact Forces for Learning to Grasp

Merzic, H., Bogdanovic, M., Kappler, D., Righetti, L., Bohg, J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2019, IEEE, International Conference on Robotics and Automation, May 2019 (inproceedings)

Abstract
Grasping objects under uncertainty remains an open problem in robotics research. This uncertainty is often due to noisy or partial observations of the object pose or shape. To enable a robot to react appropriately to unforeseen effects, it is crucial that it continuously takes sensor feedback into account. While visual feedback is important for inferring a grasp pose and reaching for an object, contact feedback offers valuable information during manipulation and grasp acquisition. In this paper, we use model-free deep reinforcement learning to synthesize control policies that exploit contact sensing to generate robust grasping under uncertainty. We demonstrate our approach on a multi-fingered hand that exhibits more complex finger coordination than the commonly used two- fingered grippers. We conduct extensive experiments in order to assess the performance of the learned policies, with and without contact sensing. While it is possible to learn grasping policies without contact sensing, our results suggest that contact feedback allows for a significant improvement of grasping robustness under object pose uncertainty and for objects with a complex shape.

am mg

video arXiv [BibTex]

video arXiv [BibTex]


no image
Remediating cognitive decline with cognitive tutors

Das, P., Callaway, F., Griffiths, T., Lieder, F.

RLDM 2019, 2019 (conference)

re

[BibTex]

[BibTex]